
1

Web Search

Advances, Crawling &

Link Analysis

Overview

A simple crawler

A real crawler

2

3

How hard can crawling be?

▪Web search engines must crawl their documents.

▪Getting the content of the documents is easier for many other IR systems.

▪E.g., indexing all files on your hard disk: just do a recursive

descent on your file system

▪Ok: for web IR, getting the content of the documents takes longer . . .

▪. . . because of latency.

▪But is that really a design/systems challenge?

3

4

Basic crawler operation

▪Initialize queue with URLs of known seed pages

▪Repeat

▪Take URL from queue

▪Fetch and parse page

▪Extract URLs from page

▪Add URLs to queue

▪Fundamental assumption: The web is well linked.

4

5

Exercise: What’s wrong with this crawler?

urlqueue := (some carefully selected set of seed urls)

while urlqueue is not empty:

myurl := urlqueue.getlastanddelete()

mypage := myurl.fetch()

fetchedurls.add(myurl)

newurls := mypage.extracturls()

for myurl in newurls:

if myurl not in fetchedurls and not in urlqueue:

urlqueue.add(myurl)

addtoinvertedindex(mypage)

5

6

What’s wrong with the simple crawler

▪Scale: we need to distribute.

▪We can’t index everything: we need to subselect. How?

▪Duplicates: need to integrate duplicate detection

▪Spam and spider traps: need to integrate spam detection

▪Politeness: we need to be “nice” and space out all requests for a site over

a longer period (hours, days)

▪Freshness: we need to recrawl periodically.

▪Because of the size of the web, we can do frequent recrawls

only for a small subset.

▪Again, subselection problem or prioritization

6

7

Magnitude of the crawling problem

▪To fetch 20,000,000,000 pages in one month . . .

▪. . . we need to fetch almost 8000 pages per second!

▪Actually: many more since many of the pages we attempt to crawl will be

duplicates, unfetchable, spam etc.

7

8

What a crawler must do

Be robust

▪ Be immune to spider traps, duplicates, very large pages, very

large websites, dynamic pages etc

8

Be polite

▪ Don’t hit a site too often

▪ Only crawl pages you are allowed to crawl: robots.txt

9

Robots.txt

▪Protocol for giving crawlers (“robots”) limited access to a website, originally

from 1994

▪Examples:

▪User-agent: *

Disallow: /yoursite/temp/

▪User-agent: searchengine

Disallow: /

▪Important: cache the robots.txt file of each site we are crawling

9

10

Example of a robots.txt (nih.gov)

User-agent: PicoSearch/1.0
Disallow: /news/information/knight/

Disallow: /nidcd/
...

Disallow: /news/research_matters/secure/
Disallow: /od/ocpl/wag/

User-agent: *
Disallow: /news/information/knight/

Disallow: /nidcd/
...

Disallow: /news/research_matters/secure/
Disallow: /od/ocpl/wag/

Disallow: /ddir/
Disallow: /sdminutes/

10

11

What any crawler should do

▪Be capable of distributed operation

▪Be scalable: need to be able to increase crawl rate by adding more machines

▪Fetch pages of higher quality first

▪Continuous operation: get fresh version of already crawled pages

11

12

URL frontier

12

13

URL frontier

▪The URL frontier is the data structure that holds and manages URLs we’ve

seen, but that have not been crawled yet.

▪Can include multiple pages from the same host

▪Must avoid trying to fetch them all at the same time

▪Must keep all crawling threads busy

13

14

Basic crawl architecture

14

15

URL normalization

▪Some URLs extracted from a document are relative URLs.

▪E.g., at http://mit.edu, we may have aboutsite.html

▪This is the same as: http://mit.edu/aboutsite.html

▪During parsing, we must normalize (expand) all relative URLs.

15

16

Content seen

▪For each page fetched: check if the content is already in the index

▪Check this using document fingerprints or shingles

▪Skip documents whose content has already been indexed

16

17

Distributing the crawler

▪Run multiple crawl threads, potentially at different nodes

▪Usually geographically distributed nodes

▪Partition hosts being crawled into nodes

17

18

Google data centers (wazfaring. com)

18

19

Distributed crawler

19

20

URL frontier: Two main considerations

▪Politeness: Don’t hit a web server too frequently

▪E.g., insert a time gap between successive requests to the same

server

▪Freshness: Crawl some pages (e.g., news sites) more often than others

▪Not an easy problem: simple priority queue fails.

20

21

Mercator URL frontier

21

22

Mercator URL frontier

▪URLs flow in from the top into

the frontier.

22

23

Mercator URL frontier

▪URLs flow in from the top into

the frontier.

▪Front queues manage

prioritization.

23

24

Mercator URL frontier

▪URLs flow in from the top into

the frontier.

▪Front queues manage

prioritization.

▪Back queues enforce politeness.

24

25

Mercator URL frontier

▪URLs flow in from the top into

the frontier.

▪Front queues manage

prioritization.

▪Back queues enforce politeness.

▪Each queue is FIFO.

25

26

Mercator URL frontier: Front queues

26

27

Mercator URL frontier: Front queues

▪Prioritizer assigns to URL an

integer priority between 1 and F.

27

28

Mercator URL frontier: Front queues

▪Prioritizer assigns to URL an

integer priority between 1 and F.

▪Then appends URL to

corresponding queue

28

29

Mercator URL frontier: Front queues

▪Prioritizer assigns to URL an

integer priority between 1 and F.

▪Then appends URL to

corresponding queue

▪Heuristics for assigning

priority: refresh rate, PageRank

etc

29

30

Mercator URL frontier: Front queues

▪Selection from front queues is

initiated by back queues

▪Pick a front queue from which

to select next URL: Round

robin, randomly, or more

sophisticated variant

▪But with a bias in favor of

high-priority front queues

30

31

Mercator URL frontier: Back queues

31

32

Mercator URL frontier: Back queues

▪Invariant 1. Each back queue is

kept non-empty while the crawl

is in progress.

▪Invariant 2. Each back queue

only contains URLs from a

single host.

▪Maintain a table from hosts to

back queues.

32

33

Mercator URL frontier: Back queues

▪In the heap:

▪One entry for each back queue

▪The entry is the earliest time te

at which the host corresponding

to the back queue can be hit

again.

▪The earliest time te is

determined by (i) last access to

that host (ii) time gap heuristic

33

34

Mercator URL frontier: Back queues

▪How fetcher interacts with back

queue:

▪Repeat (i) extract current root q
of the heap (q is a back queue)

▪and (ii) fetch URL u at head of

q . . .

▪. . . until we empty the q we

get.

▪(i.e.: u was the last URL in q)

34

35

Mercator URL frontier: Back queues

▪When we have emptied a back

queue q:

▪Repeat (i) pull URLs u from

front queues and (ii) add u to its

corresponding back queue . . .

▪. . . until we get a u whose host

does not have a back queue.

▪Then put u in q and create heap

entry for it.

35

36

Mercator URL frontier

▪URLs flow in from the top into

the frontier.

▪Front queues manage

prioritization.

▪Back queues enforce

politeness.

36

37

Spider trap

▪Malicious server that generates an infinite sequence of linked pages

▪Sophisticated spider traps generate pages that are not easily identified as

dynamic.

37

38

Resources

▪Chapter 20 of IIR

▪Resources at http://ifnlp.org/ir

▪Paper on Mercator by Heydon et al.

▪Robot exclusion standard

38

39

Meta-Search Engines

• Search engine that passes query to several other

search engines and integrate results.

– Submit queries to host sites.

– Parse resulting HTML pages to extract search results.

– Integrate multiple rankings into a “consensus” ranking.

– Present integrated results to user.

• Examples:

– Metacrawler

– SavvySearch

– Dogpile

http://www.metacrawler.com/
http://www.savvysearch.com/
http://www.dogpile.com/

40

HTML Structure & Feature Weighting

• Weight tokens under particular HTML tags

more heavily (Semi-structured Data):

– <TITLE> tokens (Google seems to like title matches)

– <H1>,<H2>… tokens

– <META> keyword tokens

• Parse page into sections and weight tokens

differently based on section: Multitier Indexing

Title, Abstract, Body,…...

• Links can also be a major factor (Citations?)

41

Bibliometrics: Citation Analysis

• Many standard documents include own

bibliographies (or references), explicit citations to

other previously published documents.

• Using citations as links, standard corpora can be

viewed as a graph.

• The structure of this graph, independent of

content, can provide interesting information about

the similarity of documents and the structure of

information.

• In Science/Academia this is the norm! Promotions

42

Impact Factor

• Developed by Garfield in 1972 to measure the
importance (quality, influence) of scientific journals.

• Measure of how often papers in the journal are cited by
other scientists.

• Computed and published annually by, e.g. the Institute
for Scientific Information (ISI).

• The Impact Factor (IF) of a journal J in year Y is the
average number of citations (from indexed documents
published in year Y) to a paper published in J in year
Y1 or Y2.

• Does not account for the quality of the citing article.

43

Bibliographic Coupling

• BC: A Measure of similarity of documents introduced by

Kessler in 1963.

• The bibliographic coupling of two documents A and B is

the number of documents cited by both A and B

(documents based on same data are similar!)-overlap-.

• Size of the intersection of their bibliographies.

• Maybe want to normalize by size of bibliographies?

A B

44

Co-Citation

• An alternate citation-based measure of similarity

introduced by Small in 1973.

• Number of documents that cite both A and B.

(Similar documents are cited in same articles!)

• Maybe want to normalize by total number of

documents citing either A or B ?

A B

45

Citations vs. Links

• Web links are a bit different than citations:

– Many links are navigational.

– Many pages with high in-degree are portals not

content providers (not documents).

– Not all links are endorsements.

– Company websites don’t point to their competitors.

– Citations to relevant literature is enforced by peer-

review. Not the case for web pages

46

Authorities

• Authorities are pages that are recognized as

providing significant, trustworthy, and

useful information on a topic (مرجع) .

• In-degree (number of pointers to a page) is

one simple measure of authority (6 here).

• However in-degree treats all links as equal.

• Should links from pages that are themselves

authoritative count more?

A B

47

Hubs

• Hubs are index pages that provide lots of

useful links to relevant content pages (topic

authorities). Large Out-Degree.

• Hub pages for IR are included in the course

home page:

A

48

HITS (Hypertext Induced Topic Search)

• Developed by Kleinberg in 1998.

• Attempts to determine hubs and authorities

on a particular topic through analysis of a

relevant subgraph of the web.

• Based on mutually recursive facts:

– Hubs point to lots of authorities.

– Authorities are pointed to by lots of hubs.

– Hubs and Authorities together tend to form a

bipartite graph:

AuthoritiesHubs

49

HITS Algorithm

• Computes hubs and authorities for a particular

topic specified by a normal query Q.

• First determines a set of relevant pages for the

query called the base set S.

• Analyze the link structure of the web subgraph

defined by S (pages linked with –to, from- S)

to find authority and hub pages in this set.

50

Constructing a Base Subgraph

• For a specific query Q, let the set of documents

returned by a standard search engine be called the

root set R.

• Initialize S to R. Then expand as follows:

• Add to S all pages pointed to by any page in R.

• Add to S all pages that point to any page in R.

R

S

Back Pointer

51

Base Limitations

• To limit computational expense:

– Limit number of root pages to the top 200 pages

retrieved for the query.

– Limit number of “back-pointer” pages to a random set

of at most 50 pages returned by a “reverse link” query.

• To eliminate purely navigational links:

– Eliminate links between two pages on the same host.

• To eliminate “non-authority-conveying” links:

– Allow only m (m  48) pages from a given host as

pointers to any individual page.

52

Authorities and In-Degree

• Even within the base set S for a given

query, the nodes with highest in-degree are

not necessarily authorities (may just be

generally popular pages like Yahoo or

Amazon).

• True authority pages are pointed to by a

number of hubs (i.e. pages that point to lots

of authorities).

53

Iterative Algorithm

• Use an iterative algorithm to slowly converge on a

mutually reinforcing set of hubs and authorities.

• Maintain for each page p  S:

– Authority score: ap (vector a)

– Hub score: hp (vector h)

• Initialize all ap = hp = 1

• Maintain normalized scores:

  1
2


Sp

ph  1
2


Sp

pa

54

HITS Update Rules

• Authorities are pointed to by lots of good hubs:

• Hubs point to lots of good authorities:





pqq

qp ha
:





qpq

qp ah
:

55

Illustrated Update Rules

2

3

a4 = h1 + h2 + h3

1

5

7

6

4

4h4 = a5 + a6 + a7

56

HITS Iterative Algorithm

Initialize for all p  S: ap = hp = 1

For i = 1 to k:

For all p  S: (update auth. scores)

For all p  S: (update hub scores)

For all p  S: ap= ap/c c:

For all p  S: hp= hp/c c:





pqq

qp ha
:





qpq

qp ah
:   1/

2


Sp

p ca

  1/
2


Sp

p ch

(normalize a)

(normalize h)

57

Convergence

• Algorithm converges to a fix-point if iterated
indefinitely.

• Define A to be the adjacency matrix for the
subgraph defined by S.
– Aij = 1 for i  S, j  S iff ij

• Authority vector, a, converges to the principal
eigenvector of ATA

• Hub vector, h, converges to the principal
eigenvector of AAT

• In practice, 20 iterations produces fairly stable
results.

58

Results

• Authorities for query: “Java”

– java.sun.com

– comp.lang.java FAQ

• Authorities for query “search engine”

– Yahoo.com

– Excite.com

– Lycos.com

– Altavista.com

• Authorities for query “Gates”

– Microsoft.com

– roadahead.com

59

Result Comments

• In most cases, the final authorities were not

in the initial root set generated using

Altavista.

• Authorities were brought in from linked and

reverse-linked pages and then HITS

computed their high authority score.

60

Finding Similar Pages Using Link Structure

• Given a page, P, let R (the root set) be t

(e.g. 200) pages that point to P.

• Grow a base set S from R.

• Run HITS on S.

• Return the best authorities in S as the best

similar-pages for P.

• Finds authorities in the “link neighbor-

hood” of P.

61

Similar Page Results

• Given “honda.com”

– toyota.com

– ford.com

– bmwusa.com

– saturncars.com

– nissanmotors.com

– audi.com

– volvocars.com

62

HITS for Clustering

• An ambiguous query can result in the
principal eigenvector only covering one of
the possible meanings.

• Non-principal eigenvectors may contain
hubs & authorities for other meanings.

• Example: “jaguar”:

– Atari video game (principal eigenvector)

– NFL Football team (2nd non-princ. eigenvector)

– Automobile (3rd non-princ. eigenvector)

63

PageRank

• Alternative link-analysis method used by

Google (Brin & Page, 1998).

• Does not attempt to capture the distinction

between hubs and authorities.

• Ranks pages just by authority.

• Applied to the entire web rather than a local

neighborhood of pages surrounding the

results of a query.

64

Initial PageRank Idea

• Just measuring in-degree (citation count) doesn’t

account for the authority of the source of a link.

• Initial page rank equation for page p:

– Nq is the total number of out-links from page q.

– A page, q, “gives” an equal fraction of its authority to

all the pages it points to (e.g. p).

– c is a normalizing constant set so that the rank of all

pages always sums to 1.





pqq qN

qR
cpR

:

)(
)(

65

Initial PageRank Idea (cont.)

• Can view it as a process of PageRank

“flowing” from pages to the pages they cite.

.1

.09

.05

.05

.03

.03

.03

.08

.08

.03

66

Initial Algorithm

• Iterate rank-flowing process until convergence:
Let S be the total set of pages.

Initialize pS: R(p) = 1/|S|

Until ranks do not change (much) (convergence)

For each pS:

For each pS: R(p) = cR´(p) (normalize)





pqq qN

qR
pR

:

)(
)(





Sp

pRc)(/1

67

Sample Stable Fixpoint

0.4

0.4

0.2

0.2

0.2

0.2

0.4

68

Linear Algebra Version

• Treat R as a vector over web pages.

• Let A be a 2-d matrix over pages where

– Avu= 1/Nu if u v else Avu= 0

• Then R=cAR

• R converges to the principal eigenvector of A.

69

Problem with Initial Idea

• A group of pages that only point to

themselves but are pointed to by other pages

act as a “rank sink” and absorb all the rank

in the system.

Rank flows into

cycle and can’t get out

70

Rank Source

• Introduce a “rank source” E that continually

replenishes the rank of each page, p, by a

fixed amount E(p).














 



)(
)(

)(
:

pE
N

qR
cpR

pqq q

71

PageRank Algorithm

Let S be the total set of pages.

Let pS: E(p) = /|S| (for some 0<<1, e.g. 0.15)

Initialize pS: R(p) = 1/|S|

Until ranks do not change (much) (convergence)

For each pS:

For each pS: R(p) = cR´(p) (normalize)

)(
)(

)1()(
:

pE
N

qR
pR

pqq q













 









Sp

pRc)(/1

72

Linear Algebra Version

• R = c(AR + E)

• Since ||R||1 =1 : R = c(A + E1)R

– Where 1 is the vector consisting of all 1’s.

• So R is an eigenvector of (A + Ex1)

73

Random Surfer Model

• PageRank can be seen as modeling a “random

surfer” that starts on a random page and then at

each point:

– With probability E(p) randomly jumps to page p.

– Otherwise, randomly follows a link on the current page.

• R(p) models the probability that this random surfer

will be on page p at any given time.

• “E jumps” are needed to prevent the random surfer

from getting “trapped” in web sinks with no

outgoing links.

74

Speed of Convergence

• Early experiments on Google used 322

million links.

• PageRank algorithm converged (within

small tolerance) in about 52 iterations.

• Number of iterations required for

convergence is empirically O(log n) (where

n is the number of links).

• Therefore calculation is quite efficient.

75

Simple Title Search with PageRank

• Use simple Boolean search to search web-

page titles and rank the retrieved pages by

their PageRank.

• Sample search for “university”:

– Altavista returned a random set of pages with

“university” in the title (seemed to prefer short

URLs).

– Primitive Google returned the home pages of

top universities.

76

Google Ranking

• Complete Google ranking includes (based on

university publications prior to

commercialization).

– Vector-space similarity component.

– Keyword proximity component.

– HTML-tag weight component (e.g. title preference).

– PageRank component.

• Details of current commercial ranking functions

are trade secrets.

77

Personalized PageRank

• PageRank can be biased (personalized) by
changing E to a non-uniform distribution.

• Restrict “random jumps” to a set of
specified relevant pages.

• For example, let E(p) = 0 except for one’s
own home page, for which E(p) = 

• This results in a bias towards pages that are
closer in the web graph to your own
homepage.

78

Google PageRank-Biased Spidering

• Use PageRank to direct (focus) a spider on

“important” pages.

• Compute page-rank using the current set of

crawled pages.

• Order the spider’s search queue based on

current estimated PageRank.

79

Link Analysis Conclusions

• Link analysis uses information about the

structure of the web graph to aid search.

• It is one of the major innovations in web

search.

• It was one of the primary reasons for

Google’s initial success.

