Web Search

Advances, Crawling &
Link Analysis



Overview

A simple crawler

A real crawler



How hard can Q[ammng be?

=Web search engines must crawl their documents.
=Getting the content of the documents is easier for many other IR systems.

=E.g., indexing all files on your hard disk: just do a recursive
descent on your file system

=Ok: for web IR, getting the content of the documents takes longer . . .
=. .. because of latency.
=But is that really a design/systems challenge?



. I .

=Initialize queue with URLs of known seed pages
"Repeat

=Take URL from queue

=Fetch and parse page

=Extract URLs from page

=Add URLSs to queue
*Fundamental assumption: The web is well linked.



e What th th er?

urlqueue := (some carefully selected set of seed urls)
while urlqueue is not empty:
myurl := urlqueue.getlastanddelete()
mypage := myurl.fetch()
fetchedurls.add(myurl)
newurls := mypage.extracturls()
for myurl in newurls:
if myurl not in fetchedurls and not in urlqueue:
urlqueue.add(myurl)
addtoinvertedindex(mypage)



hat’ th the simpl |

=Scale: we need to distribute.

=\We can’t index everything: we need to subselect. How?
=Duplicates: need to integrate duplicate detection

=Spam and spider traps: need to integrate spam detection

=Politeness: we need to be “nice” and space out all requests for a site over
a longer period (hours, days)

=Freshness: we need to recrawl periodically.

=Because of the size of the web, we can do frequent recrawls
only for a small subset.

= Again, subselection problem or prioritization



tude of 1 i "

=To fetch 20,000,000,000 pages in one month . . .
=. .. we need to fetch almost 8000 pages per second!

= Actually: many more since many of the pages we attempt to crawl will be
duplicates, unfetchable, spam etc.



= Don’t hit a site too often
= Only crawl pages you are allowed to crawl: robots.txt

= Be iImmune to spider traps, duplicates, very large pages, very
large websites, dynamic pages etc



- Robotstxt

=Protocol for giving crawlers (“robots”) limited access to a website, originally
from 1994

=Examples:
=User-agent: *
Disallow: /yoursite/temp/
=User-agent: searchengine
Disallow: /

=Important: cache the robots.txt file of each site we are crawling



User-agent: PicoSearch/1.0

Disallow: /news/information/knight/
Disallow: /nidcd/

Disallow: /news/research matters/secure/
Disallow: /od/ocpl/wag/
User-agent: *

Disallow: /news/information/knight/
Disallow: /nidcd/

Disallow: /news/research matters/secure/
Disallow: /od/ocpl/wag/
Disallow: /ddir/

Disallow: /sdminutes/
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—What any crawler should do

=Be capable of distributed operation

=Be scalable: need to be able to increase crawl rate by adding more machines
=Fetch pages of higher quality first

=Continuous operation: get fresh version of already crawled pages

11



URL frontier:
found, but unseen URLs
not yet crawled

URLs crawled
and parsed
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e URL frontier

=The URL frontier is the data structure that holds and manages URLs we’ve
seen, but that have not been crawled yet.

=Can include multiple pages from the same host
=Must avoid trying to fetch them all at the same time
=Must keep all crawling threads busy
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=Some URLSs extracted from a document are relative URLS.
=E.g., at http://mit.edu, we may have aboutsite.html

=This is the same as: http://mit.edu/aboutsite.html
=During parsing, we must normalize (expand) all relative URLSs.
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—Contentseen

=For each page fetched: check if the content is already in the index
=Check this using document fingerprints or shingles
=Skip documents whose content has already been indexed
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stributing 4 I

=Run multiple crawl threads, potentially at different nodes

=Usually geographically distributed nodes
=Partition hosts being crawled into nodes
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rontier: . derat

=Politeness: Don’t hit a web server too frequently

=E.g., Insert a time gap between successive requests to the same
server

*Freshness: Crawl some pages (e.g., news sites) more often than others
=Not an easy problem: simple priority queue fails.
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Mercator URL frontier
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Mercator URL frontier
}

prioritizer

\J

F front queues =URLSs flow in from the top into
the frontier.

/ =Front queues manage
prioritization.

f. queue selector & b. queue router

P — B =Back queues enforce politeness.

O back queves: =Each queue is FIFO.

single host on each

\/

b. queue selector [———lheap

i

/™

|
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Mercator URL frontier: Front gueues




Mercator URL frontier: Front gueues
|

prioritizer =Prioritizer assigns to URL an

/ \ integer priority between 1 and ~.
: F

F front queues

X

f. queue selector & b. queue router
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Mercator URL frontier: Fron
|

inlaobichiel =Prioritizer assigns to URL an
/ \ integer priority between 1 and ~.
: i =Then appends URL to

corresponding queue

F front queues

f. queue selector & b. queue router
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Mercator URL frontier: Front gueues
|

prioritizer =Prioritizer assigns to URL an

/ \ integer priority between 1 and ~.
: i =Then appends URL to

corresponding queue

F front queues

=Heuristics for assigning

priority: refresh rate, PageRank

f. queue selector & b. queue router
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Mercator URL frontier: Front gueues
|

prioritizer =Selection from front queues is

/ \ initiated by back queues
1 F “Pick a front queue from which

to select next URL: Round

F front queues

robin, randomly, or more

sophisticated variant

' =But with a bias in favor of
high-priority front queues

f. queue selector & b. queue router
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Mercator URL frontier: Back queues

f. queue selector & b. queue router

1//\ .

E back queues
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%b. queue selector "'_I heap

|
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Mercator URL frontier: Back queues

=Invariant 1. Each back queue is
f. queue selector & b. queue router

kept non-empty while the crawl
1 ’/\ B IS In progress.

B back queues =Invariant 2. Each back queue
»>ingle host on each only contains URLs from a
single host.

\ =Maintain a table from hosts to
b. queue selector  [* ] heap back queues.
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Mercator URL frontier: Back queues

=In the heap:

=One entry for each back queue

f. queue selector & b. queue router

”//‘\ =The entry is the earliest time t,
1 B at which the host corresponding

B back queues to the back queue can be hit
.5|'ng|e h{_:hst on ez:ch again

=The earliest time t, is

\ determined by (i) last access to
that host (i) time gap heuristic

—
b. queue selector | heap

|
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Mercator URL frontier: Back queues

=How fetcher interacts with back
queue:

f. queue selector & b. queue router

=Repeat (i) extract current root ¢
1 ’/\ B of the heap (gis a back queue)

E back queues =and (II) fetch URL v at head of

Single host on each
L] L] L] q LI ]

=, .. until we empty the gwe

\ get.
Xb' queue selector ] heap =(i.e.: vwas the last URL in g)
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Mercator URL frontier: Back queues

=\When we have emptied a back
queue g

f. queue selector & b. queue router

=Repeat (i) pull URLs «from
1 **//‘\ B front queues and (ii) add vto its
B back queues corresponding back queue . . .

Single host on each

=, .. until we get a #whose host
does not have a back queue.

\ =Then put vin gand create heap
b. queue selector 4 heap entry for it.
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Mercator URL frontier
|

prioritizer

1‘/‘-//'/ \F

F front queues

=URLSs flow in from the top into

the frontier.
\ / =Front queues manage

f. queue selector & b. queue router priOfitiZ&tiOn-
1 /\ B =Back queues enforce
E back queues: pOliteneSS.

single host on each

\_\*/

o S—
b. queue selector | heap
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— Spidertrap

=Malicious server that generates an infinite sequence of linked pages

=Sophisticated spider traps generate pages that are not easily identified as
dynamic.
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—REsources

=Chapter 20 of IIR
=Resources at http://ifnlp.org/ir

=Paper on Mercator by Heydon et al.
=Robot exclusion standard

38



Meta-Search Engines

 Search engine that passes query to several other
search engines and integrate results.
— Submit queries to host sites.
— Parse resulting HTML pages to extract search results.
— Integrate multiple rankings into a “consensus’ ranking.
— Present integrated results to user.

« Examples:
— Metacrawler

— SavvySearch
— Doqgpile

39


http://www.metacrawler.com/
http://www.savvysearch.com/
http://www.dogpile.com/

HTML Structure & Feature Weighting

« Weight tokens under particular HTML tags
more heavily (Semi-structured Data):

— <TITLE> tokens (Google seems to like title matches)
— <H1><H2>... tokens

— <META> keyword tokens

» Parse page into sections and weight tokens
differently based on section: Multitier Indexing

Title, Abstract, Boady,......
* Links can also be a major factor (Citations?)

40



Bibliometrics: Citation Analysis

« Many standard documents include own
bibliographies (or references), explicit citationsto
other previously published documents.

 Using citations as links, standard corpora can be
viewed as a graph.

 The structure of this graph, independent of
content, can provide interesting information about
the similarity of documents and the structure of

Information.
* In Science/Academia this i1s the norm! Promotions

41



Impact Factor

Developed by Garfield in 1972 to measure the
Importance (quality, influence) of scientific journals.

Measure of how often papers in the journal are cited by
other scientists.

Computed and published annually by, e.g. the Institute
for Scientific Information (ISI).

The /mpact Factor (IF) of a journal Jin year Y'is the
average number of citations (from indexed documents
published in year Y) to a paper published in Jin year
Y-1or Y-2.

Does not account for the quality of the citing article.

42



Bibliographic Coupling

BC: A Measure of similarity of documents introduced by
Kessler in 1963.

The bibliographic coupling of two documents A and Bis
the number of documents cited by both Aand B
(documents based on same aqata are similar!)-overlap-.

Size of the intersection of their bibliographies.
Maybe want to normalize by size of bibliographies?

43



Co-Citation

 An alternate citation-based measure of similarity
Introduced by Small in 1973.

* Number of documents that cite both A and 5.
(Stmilar documents are cited in same articles!)

» Maybe want to normalize by total number of
documents citing either Aor B?

44



Citations vs. Links

* Web links are a bit different than citations:
— Many links are navigational.

— Many pages with high in-degree are portals not
content providers (not documents).

— Not all links are endorsements.
— Company websites don’t point to their competitors.

— Citations to relevant literature is enforced by peer-
review. Not the case for web pages

45



Authorities

Authorities are pages that are recognized as
providing significant, trustworthy, and
useful information on a topic (&>_»).

In-degree (number of pointers to a page) is
one simple measure of authority (6 here).

However in-degree treats all links as equal.
Should links from pages that are themselves

authoritative count more? \ ' '\
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Hubs

» Hubs are index pages that provide lots of
useful links to relevant content pages (topic
authorities). Large Out-Degree.

« Hub pages for IR are included in the course

47



HITS (Hypertext Induced Topic Search)

* Developed by Kleinberg in 1998.

 Attempts to determine hubs and authorities
on a particular topic through analysis of a
relevant subgraph of the web. Hubs  Authorities

» Based on mutually recursive facts:
— Hubs point to lots of authorities.
— Authorities are pointed to by lots of hubs

— Hubs and Authorities together tend to?orm a
bipartite graph:

48



HITS Algorithm

» Computes hubs and authorities for a particular
topic specified by a normal query Q.

* First determines a set of relevant pages for the
query called the baseset S.

 Analyze the link structure of the web subgraph
defined by S (pages linked with —to, from- S)
to find authority and hub pages in this set.

49



Constructing a Base Subgraph

For a specific query O, let the set of documents
returned by a standard search engine be called the
rootset R.

Initialize Sto A. Then expand as follows:
Add to Sall pages pointed to by any page in ~.
Add to Sall pages that point to any page in ~.

50



Base Limitations

« To limit computational expense:

— Limit number of root pages to the top 200 pages
retrieved for the query.

— Limit number of “back-pointer” pages to a random set

of at most 50 pages returned by a “reverse link” query.

 To eliminate purely navigational links:
— Eliminate links between two pages on the same host.

 To eliminate “non-authority-conveying” links:

— Allow only m (m =4-8) pages from a given host as
pointers to any individual page.
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Authorities and In-Degree

 Even within the base set Sfor a given
query, the nodes with highest in-degree are
not necessarily authorities (may just be
generally popular pages like Yahoo or
Amazon).

 True authority pages are pointed to by a
number of hubs (i.e. pages that point to lots
of authorities).
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Iterative Algorithm

 Use an iterative algorithm to slowly converge on a
mutually reinforcing set of hubs and authorities.

« Maintain for each page p € S
— Authority score: a, (vector a)

— Hub score: h, (vector /)

e Initialize all a, :hp =7
 Maintain normalized scores:

Saf-1 -

peS pes
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HITS Update Rules

 Authorities are pointed to by lots of good hubs:

ap, = th

q:g—p

» Hubs point to lots of good authorities:

h, = Zaq

4-P—4q
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[llustrated Update Rules

ay=hy +h,+h;

Iy

h,=a;+a;+a,
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HITS Iterative Algorithm

Initialize forall pe S. a,=h,=1
Fori=1tok:
Forall pe Sa,= ). h, (ypadate auth. scores)

q-a—>p

corall pe S-h, = D a, (uypdate hub scores)
corall pe Srazak o L@/ =1 (omaen

peS

Forall pe Son=hsc ¢ Ylh,icf =1 (omaizeh)

peS
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Convergence

Algorithm converges to a fix-pointif iterated
Indefinitely.

Define A to be the adjacency matrix for the
subgraph defined by S.

~ A;=1forie S, jeSiff iy

Authority vector, 4, converges to the principal
eigenvector of A’A

Hub vector, A, converges to the principal
eigenvector of AA”

In practice, 20 iterations produces fairly stable
results.
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Results

 Authorities for query: “Java”
— java.sun.com
— comp.lang.java FAQ
 Authorities for query “search engine”
— Yahoo.com
— Excite.com
— Lycos.com
— Altavista.com

 Authorities for query “Gates”
— Microsoft.com
— roadahead.com
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Result Comments

* |In most cases, the final authorities were not

In the Initial root set generated using
Altavista.

 Authorities were brought in from linked and
reverse-linked pages and then HITS
computed their high authority score.
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Glven a

Finding Similar Pages Using Link Structure

page, P, let R (the root set) be ¢

(e.g. 200) pages that point to A

Grow a

nase set Sfrom ~.

Run HI
Return t

SonéS.

ne best authorities in S as the best

similar-pages for ~.

Finds authorities in the “link neighbor-
hood” of ~P.
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Similar Page Results

« Given “honda.com”
— toyota.com
— ford.com
— bmwusa.com
— saturncars.com
— nissanmotors.com
— audi.com
— volvocars.com
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HITS for Clustering

« An ambiguous query can result in the

principal eigenvector only covering one of
the possible meanings.

» Non-principal eigenvectors may contain
hubs & authorities for other meanings.

« Example: “jaguar’:
— Atari video game (principal eigenvector)

— NFL Football team (2" non-princ. eigenvector)
— Automobile (3" non-princ. eigenvector)

62



PageRank

Alternative link-analysis method used by
Google

Does not attempt to capture the distinction
between hubs and authorities.

Ranks pages just by authority.

Applied to the entire web rather than a local
neighborhood of pages surrounding the
results of a query.
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Initial PageRank ldea

» Just measuring in-degree (citation count) doesn’t
account for the authority of the source of a link.

* Initial page rank equation for page p:

R
R(p)=c Y -2
gg—>p Vg

— N, is the total number of out-links from page g.
— A page, g, “gives” an equal fraction of its authority to

all the pages it points to (e.g. p).
— cl1s anormalizing constant set so that the rank of all

pages always sums to 1.
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Initial PageRank Idea (cont.)

» Can view It as a process of PageRank

“flowing” from pages to the pages they cite.
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Initial Algorithm

* lterate rank-flowing process until convergence:
Let Sbe the total set of pages.
Initialize Vpe S: Ap) = 1/|.5/
Until ranks do not change (much) (convergence)

For each pe S:
, R
R(p)= Y =2
gq—>p q
c=1/ Z R'(p)

pesS
For each pe S: R(p) = cR(p) (normalize)
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Sample Stable Fixpoint

0.2
0.4 0.2 :
—~ e
2
\ ﬁ 2
0.4 \J0.4
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Linear Algebra Version

Treat R as a vector over web pages.

Let A be a 2-d matrix over pages where

~ A, ~1N,if u—>velse A, =0

Then R=cAR

R converges to the principal eigenvector of A.
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Problem with Initial Idea

» A group of pages that only point to
themselves but are pointed to by other pages

act as a “rank sink” and absorb all the rank
In the system.

/j Rank flows into

T cycle and can’t get out

>
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Rank Source

* Introduce a “rank source” £ that continually
replenishes the rank of each page, p, by a
fixed amount £(p).

N

q:q—p q

R<p>=c[ 3 R(O')+E(|o>]
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PageRank Algorithm

Let Sbe the total set of pages.

Let Vpe S E(p) = o/|S/ (Tor some O<a<l, e.g. 0.15)
Initialize Vpe S A(p) = 1/|5/

Until ranks do not change (much) (convergence)

For each peS. i
R()=| 1) ¥ S |+E(p)
c=1/ 3 R(p) )

peS

For each pe S: R(p) = cR(p) (normalize)
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Linear Algebra Version

* R=c(AR + E)
« Since |[R||;=1: R=c(A+ Ex1)R

— Where 1 is the vector consisting of all 1°s.
» So R Is an eigenvector of (A + Ex1)
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Random Surfer Model

» PageRank can be seen as modeling a “random
surfer” that starts on a random page and then at
each point:

— With probability £(p) randomly jumps to page p.
— Otherwise, randomly follows a link on the current page.

* R(p) models the probability that this random surfer
will be on page pat any given time.

* “E jumps” are needed to prevent the random surfer
from getting “trapped” in web sinks with no
outgoing links.
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Speed of Convergence

Early experiments on Google used 322
million links.

PageRank algorithm converged (within
small tolerance) in about 52 iterations.

Number of iterations required for
convergence Is empirically O(log ) (where
n1s the number of links).

Therefore calculation is quite efficient.
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Simple Title Search with PageRank

» Use simple Boolean search to search web-
page titles and rank the retrieved pages by
their PageRank.

« Sample search for “university”:

— Altavista returned a random set of pages with
“university” in the title (seemed to prefer short

URLS).

— Primitive Google returned the home pages of
top universities.
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Google Ranking

« Complete Google ranking includes (based on
university publications prior to
commercialization).

— Vector-space similarity component.

— Keyword proximity component.

— HTML-tag weight component (e.g. title preference).
— PageRank component.

 Details of current commercial ranking functions
are trade secrets.
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Personalized PageRank

PageRank can be biased (personalized) by
changing E to a non-uniform distribution.

Restrict “random jumps” to a set of
specified relevant pages.

For example, let £(p) = 0 except for one’s
own home page, for which £p) = a

This results in a bias towards pages that are
closer in the web graph to your own
homepage.
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Google PageRank-Biased Spidering

» Use PageRank to direct (focus) a spider on
“Important” pages.

- Compute page-rank using the current set of
crawled pages.

 Order the spider’s search queue based on
current estimated PageRank.
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Link Analysis Conclusions

» Link analysis uses information about the
structure of the web graph to aid search.

* It Is one of the major innovations in web
search.

* It was one of the primary reasons for
Google’s initial success.
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