COMP5331: Knowledge Discovery and Data Mining

Acknowledgement: Slides modified based on the slides provided by Lawrence Page, Sergey Brin, Rajeev Motwani and Terry Winograd, Jon M. Kleinberg

1

PageRank & HITS: Bring Order to the Web

- Background and Introduction
- Approach PageRank
- Approach Authorities & Hubs

Why is Page Importance Rating important?

- New challenges for information retrieval on the World Wide Web.
 - Huge number of web pages: 150 million by1998
 - 1000 billion by 2008
 - Diversity of web pages: different topics, different quality, etc.
- Hard to imagine no ranking algorithms in search engine.

Hard to imagine no ranking algorithms in search engine.

Authoritative Sources in a Hyperlinked Environment	Ŷ				
Page 49 of about 39,000 results (0.35 seconds)					
Review - Authoritative Sources in a Hyperlinked Environment Pu www.pubzone.org/dblp/journals/dr/Mendelzon00 +7 Publication Info · Discussion / Material · Links · Rating · Subscribe. Review - Authoritative Sources in a Hyperlinked Environment					
Webmining Techniques for Program Comprehension Andy Zaidman To www.docstoc.com//Webmining-Techniques-for-Program-Compreh +1 Apr 15, 2009 – Authoritative sources in a hyperlinked environment. Journal of the ACM. 1999 Hubs and Authorities n n n n Recursive definition of hub and					
source - DBLP dblp.cloudmining.net/search? +1 Jon M. Kleinberg: Authoritative Sources in a Hyperlinked Environment authoritative (1) environment (1) hyperlinked (1) source (1)					
xls:Authoritative Sources ina Hyperlinked Environment JonM www.searchuu.com//Authoritative+Sources+ina+Hyperlinked+Envi +7 eBook: Authoritative Sources ina Hyperlinked Environment JonM. Kleinbergy. 0					

4

- Modern search engines may return millions of pages for a single query. This amount is prohibitive to preview for human users.
- Ranking algorithms will process the search results and only show the most useful information to the search engine user.

Authoritative Sources in a Hyperlinked Environment

Ŷ

About 39,000 results (0.16 seconds)

Scholarly articles for Authoritative Sources in a Hyperlinked Environment Authoritative sources in a hyperlinked environment - Kleinberg - Cited by 6005 for topic distillation in a hyperlinked environment - Bharat - Cited by 908 Automatic resource compilation by analyzing hyperlink - Chakrabarti - Cited by 805

[PDF] Authoritative Sources in a Hyperlinked Environment - Cornell ...

www.cs.cornell.edu/home/kleinber/auth.pdf •1 File Format: PDF/Adobe Acrobat - Quick View by JM Kleinberg - Cited by 6005 - Related articles HITs is a link-structure analysis algorithm which ranks pages by "authorities" (pages which have many incoming links and provide the best **source** of information ...

Jon Kleinberg's Homepage

www.cs.cornell.edu/home/kleinber/ +1

Web Analysis and Search: Hubs and Authorities. J. Kleinberg. Authoritative ...

Show more results from cornell.edu

Authoritative sources in a hyperlinked environment dl.acm.org/citation.cfm?id=324140

PageRank: History

- PageRank was developed by Larry Page (hence the name Page-Rank) and Sergey Brin.
- It is first as part of a research project about a new kind of search engine. That project started in 1995 and led to a functional prototype in 1998.
- Shortly after, Page and Brin founded Google.

Link Structure of the Web

• 150 million web pages \rightarrow 1.7 billion links

Backlinks and Forward links:➤A and B are C's backlinks➤C is A and B's forward link

Intuitively, a webpage is important if it has a lot of backlinks.

What if a webpage has only one link off www.yahoo.com?

PageRank: A Simplified Version

$$R(u) = c \sum_{v \in B_u} \frac{R(v)}{N_v}$$

- u: a web page
- B_u: the set of u's backlinks
- N_v: the number of forward links of page v
- c: the normalization factor to make $||R||_{L1} = 1 (||R||_{L1} = |R_1 + ... + R_n|)$

An example of Simplified PageRank

PageRank Calculation: first iteration

An example of Simplified PageRank

PageRank Calculation: second iteration

An example of Simplified PageRank

Convergence after some iterations

A Problem with Simplified PageRank

A loop:

During each iteration, the loop accumulates rank but never distributes rank to other pages!

An example of the Problem

$$\begin{bmatrix} 1/3 \\ 1/6 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

An example of the Problem

$$\begin{bmatrix} 1/4 \\ 1/6 \\ 7/12 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/6 \\ 1/2 \end{bmatrix}$$

An example of the Problem

$$\begin{bmatrix} 5/24 \\ 1/8 \\ 2/3 \end{bmatrix} \begin{bmatrix} 1/6 \\ 5/48 \\ 35/48 \end{bmatrix} \dots \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Random Walks in Graphs

- The Random Surfer Model
 - The simplified model: the standing probability distribution of a random walk on the graph of the web. simply keeps clicking successive links at random
- The Modified Model
 - The modified model: the "random surfer" simply keeps clicking successive links at random, but periodically "gets bored" and jumps to a random page based on the distribution of E

Modified Version of PageRank

$$R'(u) = \operatorname{C_1}_{v \in B_u} \frac{R'(v)}{N_v} + \operatorname{C_2}E(u)$$

E(u): a distribution of ranks of web pages that "users" jump to when they "gets bored" after successive links at random.

An example of Modified PageRank

0.333	0.333	0.280	0.259	7/33
0.333	0.200	0.200	0.179	 5/33
0.333	0.467	0.520	0.563	21/33

Dangling Links

- Links that point to any page with no outgoing links
- Most are pages that have not been downloaded yet
- Affect the model since it is not clear where their weight should be distributed
- Do not affect the ranking of any other page directly
- Can be simply removed before pagerank calculation and added back afterwards

PageRank Implementation

- Convert each URL into a unique integer and store each hyperlink in a database using the integer IDs to identify pages
- Sort the link structure by ID
- Remove all the dangling links from the database
- Make an initial assignment of ranks and start iteration
 - Choosing a good initial assignment can speed up the pagerank
- Adding the dangling links back.

Convergence Property

- PR (322 Million Links): 52 iterations
- PR (161 Million Links): 45 iterations
- Scaling factor is roughly linear in *logn*

Convergence Property

- The Web is an expander-like graph
 - Theory of random walk: a random walk on a graph is said to be rapidly-mixing if it quickly converges to a limiting distribution on the set of nodes in the graph. A random walk is rapidlymixing on a graph if and only if the graph is an expander graph.
 - Expander graph: every subset of nodes S has a neighborhood (set of vertices accessible via outedges emanating from nodes in S) that is larger than some factor α times of |S|. A graph has a good expansion factor if and only if the largest eigenvalue is sufficiently larger than the second-largest eigenvalue.

PageRank vs. Web Traffic

- Some highly accessed web pages have low page rank possibly because
 - People do not want to link to these pages from their own web pages (the example in their paper is pornographic sites...)
 - Some important backlinks are omitted

use usage data as a start vector for PageRank.

Hypertext-Induced Topic Search(HITS)

- To find a small set of most "authoritative" pages relevant to the query.
- Authority Most useful/relevant/helpful results of a query.
 - "java" java.com
 - "harvard" harvard.edu
 - "search engine" powerful search engines.

Hypertext-Induced Topic Search(HITS)

- Or Authorities & Hubs, developed by Jon Kleinberg, while visiting IBM Almaden
- IBM expanded HITS into Clever.
- Authorities pages that are relevant and are linked to by many other pages
- Hubs pages that link to many related authorities

Authorities & Hubs

- Intuitive Idea to find authoritative results using link analysis:
 - Not all hyperlinks related to the conferral of authority.
 - Find the pattern authoritative pages have:
 - Authoritative Pages share considerable overlap in the sets of pages that point to them.

Hubs

Authorities

Authorities & Hubs

• First Step:

- Constructing a focused subgraph of the WWW based on query
- Second Step
 - Iteratively calculate authority weight and hub weight for each page in the subgraph

Why not find authorities on the entire WWW?

- The algorithm is non-trivial.
- not necessary when there is a query.
- Objective: S_{σ}
 - S_{σ} is relatively small.
 - S_{σ} is rich in relevant pages.
 - S_{σ} contains most (or many) of the strongest authorities

Solution:

- Generate a Root Set Q_{σ} from text-based search engine
- Expand the root set

Subgraph (o, Et,d)

σ : a query string
ε : a text-based search engine.
t, d: natural numbers.
Let R denote the top t results of ε on σ

Set S := R For each page $p \in R$ Let $\Gamma^+(p)$ denote the set of all pages p points to. Let $\Gamma^-(p)$ denote the set of all pages pointing to p. Add all pages in $\Gamma^+(p)$ to S. If $(\Gamma^-(p)) < d$ then Add all pages in $\Gamma(p)$ to S. Else Add an arbitrary set of d pages from $\Gamma^-(p)$ to S End

Subgraph (o, Et,d)

σ : a query string
E : a text-based search engine.
t, d: natural numbers.
Let R denote the top t results of E on σ

Set S := R For each page $p \in R$ Let $\Gamma^+(p)$ denote the set of all pages p points to. Let $\Gamma^-(p)$ denote the set of all pages pointing to p. Add all pages in $\Gamma^+(p)$ to S. If $(\Gamma^-(p)) < d$ then Add all pages in $\Gamma(p)$ to S. Else Add an arbitrary set of d pages from $\Gamma^-(p)$ to S End Root Set

Subgraph (σ, εt,d)

σ : a query string E : a text-based search engine. t, d: natural numbers. Let R denote the top t results of E on σ Set S := R For each page $p \in R$ Let $\Gamma^+(p)$ denote the set of all pages p points to. Let $\Gamma^-(p)$ denote the set of all pages pointing to p. Add all pages in $\Gamma^+(p)$ to S. If $(\Gamma^-(p)) < d$ then Add all pages in $\Gamma(p)$ to S. Else Add an arbitrary set of d pages from $\Gamma^-(p)$ to S

Root Set

Computing Hubs and Authorities

Rules:

- A good hub points to many good authorities.
- A good authority is pointed to by many good hubs.
- Authorities and hubs have a mutual reinforcement relationship.

Computing Hubs and Authorities

- Let authority score of the page i be x(i), and the hub score of page i be y(i).
- mutual reinforcing relationship:
- I step: $x(i) = \sum_{(j,i)\in E} y(j)$
- O step: $y(i) = \sum_{(i,j)\in E} x(j)$

1st Iteration I Step

1st Iteration I Step O Step

2nd Iteration I Step

2nd Iteration I Step O Step

- 2nd Iteration
- I Step
- O Step

...

...

...

Iterate(G,k)

G: a collection of n linked pages

k: a natural number

Let z denote the vector $(1, 1, 1, \ldots, 1) \in \mathbf{R}^n$.

Set $x_0 := z$. Set $y_0 := z$.

For i = 1, 2, ..., k

Apply the \mathcal{I} operation to (x_{i-1}, y_{i-1}) , obtaining new *x*-weights x'_i . Apply the \mathcal{O} operation to (x'_i, y_{i-1}) , obtaining new *y*-weights y'_i . Normalize x'_i , obtaining x_i . Normalize y'_i , obtaining y_i . End

Return (x_k, y_k) .

Initialization

Iterate(G,k)G: a collection of *n* linked pages k: a natural number Let z denote the vector $(1, 1, 1, \ldots, 1) \in \mathbf{R}^n$. Set $x_0 := z$. Set $y_0 := z$. I Step For i = 1, 2, ..., kApply the \mathcal{I} operation to (x_{i-1}, y_{i-1}) , obtaining new x-weights x'_i . Apply the \mathcal{O} operation to (x'_i, y_{i-1}) , obtaining new y-weights y'_i . Normalize x'_i , obtaining x_i . Normalize y'_i , obtaining y_i . End Return (x_k, y_k) .

Iterate(G,k)

- G: a collection of n linked pages
- k: a natural number
- Let z denote the vector $(1, 1, 1, \ldots, 1) \in \mathbf{R}^n$.
- Set $x_0 := z$.
- Set $y_0 := z$.
- For i = 1, 2, ..., k

Apply the \mathcal{I} operation to (x_{i-1}, y_{i-1}) , obtaining new x-weights x'_i .

Apply the \mathcal{O} operation to (x'_i, y_{i-1}) , obtaining new y-weights y'_i .

Normalize x'_i , obtaining x_i .

O Step

Normalize y'_i , obtaining y_i .

End

Return (x_k, y_k) .

Iterate(G,k)

```
G: a collection of n linked pages
```

k: a natural number

```
Let z denote the vector (1, 1, 1, \ldots, 1) \in \mathbf{R}^n.
```

Set $x_0 := z$.

Set $y_0 := z$.

```
For i = 1, 2, ..., k
```

Apply the \mathcal{I} operation to (x_{i-1}, y_{i-1}) , obtaining new *x*-weights x'_i . Apply the \mathcal{O} operation to (x'_i, y_{i-1}) , obtaining new *y*-weights y'_i .

Normalize x'_i , obtaining x_i .

```
Normalize y'_i, obtaining y_i.
```

Normalization

End

Return (x_k, y_k) .

A Statistical View of HITS

- 1st Eigenvalue of AA^T = singular value of A
- 1st Eigenvector of AA^T = transform vector to the 1st principal component.
- Principal Component:
 - Matrix A a set of vectors.
 - The dimension where vectors significantly distributed

A Statistical View of HITS

- The weight of authority equals the contribution of transforming the dataset to first principal component.
 - Importance of this vector for the distribution of whole dataset.
- From the statistical view:
 - HITS can be implemented by PCA
 - HITS is different from clustering using dimensionality reduction.
 - The number of samples of PCA is limited.

PageRank v.s. HITS

- PageRank
 - Computed for all web pages stored prior to the query
 - Computes authorities only
 - Fast to compute

• HITS

- Performed on the subset generated by each query.
- Computes authorities and hubs
- Easy to compute, real-time execution is hard.

Which one is more suitable for large scale data set??

Summary

- PageRank is a global ranking of all web pages based on their locations in the web graph structure
- PageRank uses information which is external to the web pages backlinks
- Backlinks from important pages are more significant than backlinks from average pages
- The structure of the web graph is very useful for information retrieval tasks.
- HITS Find authoritative pages; Construct subgraph; Mutually reinforcing relationship; Iterative algorithm