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Overview

❶ Size and space issues

❷ Compression

❸ Term statistics

❹ Dictionary compression

❺ Postings compression
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Vocabulary and Posting

▪ One entry per term for each document: less terms 
less entries!

▪ Too many terms: can reduce by  stemming, 
normalization, removing diactritics  :and moreحركات 
more about that later

▪ Still what remains is large:  300K (and grows)

▪ Need to keep in memory as frequently used for 
lookup of query terms

▪ Usually sorted alphabetically to facilitate searching 
(and compression!?)
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Vocabulary and Posting

▪ Number of postings too large:  Docs*Terms (300,000 
* 10,000,000,000) 

▪ Too many postings: mostly zeros!.  Sparse matrix

▪ Store as links: one non-zero posting points to the 
next nonzero posting:  Term links to docs it occurs in

▪ Will need an extra field per posting for value: tf
(integer),  relative frequency (integer),  tf.idf (real).  

▪ We use integer tf, integer df and calculate reals later

▪ May order posting in increasing order of Doc IDs For 
faster intersecting
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Vocabulary and Posting

▪ Save on number but need extra links (real savings). 

▪ Use integers for df
i

and tfij (not reals).

▪ Note: df for term i is the count of postings (links in 
the list for that term: do you see that?)

▪ Doc id needs log2 (# of Docs) bits: here  34 bits??

▪ Same is needed for document  frequency(df):  may 
be as large as N: the number of docs (which terms?).
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Vocabulary and Posting

▪ Remove  stop words (with too many links).

▪ Still what remains is large:  

▪ need to fit the postings of 2 terms in memory to 
intersect,  and to keep all on disk

▪ Compression is our solution

8



Introduction to Information Retrieval

9

Take-away  today 
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Take-away today

▪ Motivation for compression in information retrieval systems

▪ How can we compress the dictionary component of the 
inverted index?

▪ How can we compress the postings component of the 
inverted index?

▪ Term statistics: how are terms distributed in document 
collections?
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❶ Recap

❷ Compression

❸ Term statistics

❹ Dictionary compression

❺ Postings compression
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Why compression? (in general)

▪ Use less disk space (saves money)

▪ Keep more stuff in memory (increases speed)

▪ Increase speed of transferring data from disk to memory 
(again, increases speed)

▪ [read compressed data and decompress in memory]                    
is faster than
[read uncompressed data]

▪ Premise: Decompression algorithms are fast.

▪ This is true of the decompression algorithms we will use.
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Why compression in information retrieval?

▪ First, we will consider space for dictionary

▪ Main motivation for dictionary compression: make it small 
enough to keep in main memory

▪ Then for the postings file

▪ Motivation: reduce disk space needed, decrease time needed 
to read from disk

▪ Note: Large search engines keep significant part of postings in 
memory

▪ We will devise various compression schemes for dictionary 
and postings.
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Lossy vs. lossless compression

▪ Lossy compression: Discard some information, irrevocably 

▪ Several of the preprocessing steps we frequently use can be 
viewed as lossy compression:

▪ downcasing, stop words, porter stemming, number elimination

▪ Lossless compression: All information is preserved.

▪ What we mostly do in index compression
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❶ Recap 

❷ Compression
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Model collection: The Reuters collection

16

symbol statistics value

N
L 
M

T

documents
avg. # tokens per document
word types
avg. # bytes per token (incl. spaces/punct.)
avg. # bytes per token (without spaces/punct.)
avg. # bytes per term (= word type)
non-positional postings

Recall: 
Token=Word (may be repeating)
Term=vocabulary element, distinct words only

Always more tokens than terms!

800,000
200
400,000
6

4.5
7.5
100,000,000
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Effect of preprocessing for Reuters
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How big is the term vocabulary?

▪ That is, how many distinct words are there?
▪ Can we assume there is an upper bound?
▪ Not really: At least 7020 ≈ 1037 different words of length 20.
▪ The vocabulary will keep growing with collection size.
▪ Heaps’ law: M = kTb

▪ M is the size of the vocabulary, T is the number of tokens in 
the collection.

▪ Typical values for the parameters k and b are: 30 ≤ k ≤ 100 and
b ≈ 0.5.

▪ Heaps’ law is linear in log-log space log(M) = log(k) + b*log(T).
▪ It is the simplest possible relationship between collection 

size and vocabulary size in log-log space.
▪ Empirical law
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Heaps’ law for Reuters

Vocabulary size M as a
function of collection size
T (number of tokens) for
Reuters-RCV1. For these
data, the dashed line
log10M =
0.49 ∗ log10 T + 1.64 is the
best least squares fit.
Thus, M = 101.64T0.49

and k = 101.64 ≈ 44 and
b = 0.49.
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Empirical fit for Reuters

▪ Good, as we just saw in the graph.

▪ Example: for the first 1,000,020 tokens Heaps’ law predicts 
38,323 terms:

44 × 1,000,0200.49 ≈ 38,323

▪ The actual number is 38,365 terms, very close to the 
prediction.

▪ Empirical observation: fit is good in general.
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Exercise

❶What is the effect of including spelling errors vs. 
automatically correcting spelling errors on Heaps’ law?

❷Compute vocabulary size M

▪ Looking at a collection of web pages, you find that there are 
3000 different terms in the first 10,000 tokens and 30,000 
different terms in the first 1,000,000 tokens.

▪ Assume a search engine indexes a total of 20,000,000,000
(2 × 1010) pages, containing 200 tokens on average

▪ What is the size of the vocabulary of the indexed collection 
as predicted by Heaps’ law?
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Zipf’s law

▪ Now we have characterized the growth of the vocabulary in 
collections.

▪ We also want to know how many frequent vs. infrequent 
terms we should expect in a collection.

▪ In natural language, there are a few very frequent terms and 
very many very rare terms.

▪ Zipf’s law: The ith most frequent term has frequency cfi

proportional to 1/i .

▪

▪ cfi is collection frequency: the number of occurrences of the 
term ti in the collection.

22



Introduction to Information Retrieval

23

Zipf’s law

▪ Zipf’s law: The ith most frequent term has frequency 
proportional to 1/i .

▪

▪ cf is collection frequency: the number of occurrences of the 
term in the collection.

▪ So if the most frequent term (the) occurs cf1 times, then the 
second most frequent term (of) has half as many occurrences     

▪ . . . and the third most frequent term (and) has a third as 
many occurrences

▪ Equivalent: cfi = cik and log cfi = log c +k log i (for k = −1)

▪ Example of a power law 23
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Zipf’s law for Reuters

Fit is not great. What
is important is the
key insight: Few frequent
terms, many
rare terms.
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Dictionary compression

▪ The dictionary is small compared to the postings file.

▪ But we want to keep it in memory.

▪ Also: competition with other applications, cell phones, 
onboard computers, fast startup time

▪ So compressing the dictionary is important.
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Recall: Dictionary as array of fixed-width entries

Space needed: 20 bytes      4 bytes            4 bytes

for Reuters: (20+4+4)*400,000 = 11.2 MB
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Fixed-width entries are bad.

▪ Most of the bytes in the term column are wasted.

▪ We allot 20 bytes for terms of length 1.

▪ We can’t handle HYDROCHLOROFLUOROCARBONS and
SUPERCALIFRAGILISTICEXPIALIDOCIOUS

▪ Average length of a term in English: 8 characters

▪ How can we use on average 8 characters per term?
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Dictionary as a string
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Space for dictionary as a string

▪ 4 bytes per term for frequency

▪ 4 bytes per term for pointer to postings list

▪ 8 bytes (on average) for term in string

▪ 3 bytes per pointer into string (need log2 8 · 400000 < 24 
bits to resolve 8 · 400,000 positions)

▪ Space: 400,000 × (4 +4 +3 + 8) = 7.6MB (compared to 11.2 
MB for fixed-width array)
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Dictionary as a string with blocking
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Space for dictionary as a string with blocking

▪ Example block size k = 4

▪ Where we used 4 × 3 bytes for term pointers without 
blocking  . . .

▪ . . .we now use 3 bytes for one pointer plus 4 bytes for 
indicating the length of each term.

▪ We save 12 − (3 + 4) = 5 bytes per block.

▪ Total savings: 400,000/4 ∗ 5 = 0.5 MB

▪ This reduces the size of the dictionary from 7.6 MB to 7.1

▪ MB.
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Lookup of a term without blocking
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Lookup of a term with blocking: (slightly) slower
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Front coding

One block in blocked compression (k = 4) . . .
8 a u t o m a t a 8 a u t o m a t e 9 a u t o m a t i c 10 a u t o m a t i o n

⇓
. . . further compressed with front coding.

8 a u t o m a t ∗ a 1 ⋄ e 2 ⋄ i c 3 ⋄ i o n

35
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Dictionary compression for Reuters: Summary

36

data structure size in MB

dictionary, fixed-width

dictionary, term pointers into string

∼, with blocking, k = 4

∼, with blocking & front coding

11.2

7.6

7.1

5.9
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Exercise

▪ Which prefixes should be used for front coding? What are 
the tradeoffs?

▪ Input: list of terms (= the term vocabulary)

▪ Output: list of prefixes that will be used in front coding

37
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Postings compression

▪ The postings file is much larger than the dictionary, factor 
of at least 10.

▪ Key desideratum: store each posting compactly

▪ A posting for our purposes is a docID.

▪ For Reuters (800,000 documents), we would use 32 bits per 
docID when using 4-byte integers.

▪ Alternatively, we can use log2 800,000 ≈ 19.6 < 20 bits per 
docID.

▪ Our goal: use a lot less than 20 bits per docID.
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Key idea: Store gaps instead of docIDs

▪ Each postings list is ordered in increasing order of docID.

▪ Example postings list: COMPUTER: 283154, 283159, 283202, . . .

▪ It suffices to store gaps: 283159-283154=5, 283202-283154=43

▪ Example postings list using gaps : COMPUTER: 283154, 5, 43, . . .

▪ Gaps for frequent terms are small.

▪ Thus: We can encode small gaps with fewer than 20 bits.

40
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Gap encoding

41
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Variable length encoding

▪ Aim:

▪ For ARACHNOCENTRIC and other rare terms, we will use 
about 20 bits per gap (= posting).

▪ For THE and other very frequent terms, we will use only a 
few bits per gap (= posting).

▪ In order to implement this, we need to devise some form 
of variable length encoding.

▪ Variable length encoding uses few bits for small gaps and 
many bits for large gaps.

42
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Variable byte (VB) code

▪ Used by many commercial/research systems

▪ Good low-tech blend of variable-length coding and 
sensitivity to alignment matches (bit-level codes, see later).

▪ Dedicate 1 bit (high bit) to be a continuation bit c.

▪ If the gap G fits within 7 bits, binary-encode it in the 7 
available bits and set c = 1.

▪ Else: encode lower-order 7 bits and then use one or more 
additional bytes to encode the higher order bits using the 
same algorithm.

▪ At the end set the continuation bit of the last byte to 1         
(c = 1) and of the other bytes to 0 (c = 0).
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VB code examples

44

docIDs
gaps
VB code

824

00000110  10111000

829
5
10000101

215406
214577
00001101 00001100 10110001



Introduction to Information Retrieval

45

VB code encoding algorithm
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VB code decoding algorithm
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Other variable codes

▪ Instead of bytes, we can also use a different “unit of 
alignment”: 32 bits (words), 16 bits, 4 bits (nibbles) etc

▪ Variable byte alignment wastes space if you have many 
small gaps – nibbles do better on those.

▪ Recent work on word-aligned codes that efficiently “pack” 
a variable number of gaps into one word – see resources 
at the end
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Gamma codes for gap encoding
▪ You can get even more compression with another type of 

variable length encoding: bitlevel code.

▪ Gamma code is the best known of these.

▪ First, we need unary code to be able to introduce gamma 
code.

▪ Unary code

▪ Represent n as n 1s with a final 0.

▪ Unary code for 3 is 1110

▪ Unary code for 40 is 
11111111111111111111111111111111111111110

▪ Unary code for 70 is: 

11111111111111111111111111111111111111111111111111111111111111111111110
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Gamma code

▪ Represent a gap G as a pair of length and offset.

▪ Offset is the gap in binary, with the leading bit chopped off.

▪ For example 13 → 1101 → 101 = offset

▪ Length is the length of offset.

▪ For 13 (offset 101), this is 3.

▪ Encode length in unary code: 1110.

▪ Gamma code of 13 is the concatenation of length and 
offset: 1110101.
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Gamma code examples
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Exercise

▪ Compute the variable byte code of 130

▪ Compute the gamma code of 130
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Length of gamma code

▪ The length of offset is ⌊log2 G⌋ bits.

▪ The length of length is ⌊log2 G⌋ + 1 bits,

▪ So the length of the entire code is 2 x ⌊log2 G⌋ + 1 bits.

▪ ϒ codes are always of odd length.

▪ Gamma codes are within a factor of 2 of the optimal 
encoding length log2 G.

▪ (assuming the frequency of a gap G is proportional to log2

G – not really true)
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Gamma code: Properties

▪ Gamma code is prefix-free: a valid code word is not a prefix 
of any other valid code.

▪ Encoding is optimal within a factor of 3 (and within a factor 
of 2 making additional assumptions).

▪ This result is independent of the distribution of gaps!

▪ We can use gamma codes for any distribution. Gamma code 
is universal.

▪ Gamma code is parameter-free.
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Gamma codes: Alignment

▪ Machines have word boundaries – 8, 16, 32 bits

▪ Compressing and manipulating at granularity of bits can be 
slow.

▪ Variable byte encoding is aligned and thus potentially more 
efficient.

▪ Regardless of efficiency, variable byte is conceptually 
simpler at little additional space cost.
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Compression of Reuters
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data structure size in MB

dictionary, fixed-width
dictionary, term pointers into string
∼, with blocking, k = 4
∼, with blocking & front coding
collection (text, xml markup etc)
collection (text)
T/D incidence matrix
postings, uncompressed (32-bit words)
postings, uncompressed (20 bits)
postings, variable byte encoded
postings,  encoded

11.2
7.6
7.1
5.9

3600.0
960.0

40,000.0
400.0
250.0
116.0
101.0
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Term-document incidence matrix

Entry is 1 if term occurs. Example: CALPURNIA occurs in Julius
Caesar. Entry is 0 if term doesn’t occur. Example: CALPURNIA

doesn’t occur in The tempest.
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Compression of Reuters

57

data structure size in MB

dictionary, fixed-width
dictionary, term pointers into string
∼, with blocking, k = 4
∼, with blocking & front coding
collection (text, xml markup etc)
collection (text)
T/D incidence matrix
postings, uncompressed (32-bit words)
postings, uncompressed (20 bits)
postings, variable byte encoded
postings,  encoded

11.2
7.6
7.1
5.9

3600.0
960.0

40,000.0
400.0
250.0
116.0
101.0
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Summary

▪ We can now create an index for highly efficient Boolean 
retrieval that is very space efficient.

▪ Only 10-15% of the total size of the text in the collection.

▪ However, we’ve ignored positional and frequency 
information.

▪ For this reason, space savings are less in reality.
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Take-away today

▪ Motivation for compression in information retrieval systems

▪ How can we compress the dictionary component of the 
inverted index?

▪ How can we compress the postings component of the 
inverted index?

▪ Term statistics: how are terms distributed in document 
collections?
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Resources

▪ Chapter 5 of IIR

▪ Resources at http://ifnlp.org/ir

▪ Original publication on word-aligned binary codes by Anh and 
Moffat (2005); also: Anh and Moffat (2006a)

▪ Original publication on variable byte codes by Scholer, 
Williams, Yiannis and Zobel (2002)

▪ More details on compression (including compression of 
positions and frequencies) in Zobel and Moffat (2006)
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