
Introduction to Information Retrieval

Introduction to

Information Retrieval

Hinrich Schütze and Christina Lioma

Lecture 5: Index Compression

1

Introduction to Information Retrieval

Overview

❶ Size and space issues

❷ Compression

❸ Term statistics

❹ Dictionary compression

❺ Postings compression

2

Introduction to Information Retrieval

Outline

❶ Size and space issues

❷ Compression

❸ Term statistics

❹ Dictionary compression

❺ Postings compression

3

Introduction to Information Retrieval

4

Vocabulary and Posting

▪ One entry per term for each document: less terms
less entries!

▪ Too many terms: can reduce by stemming,
normalization, removing diactritics :and moreحركات
more about that later

▪ Still what remains is large: 300K (and grows)

▪ Need to keep in memory as frequently used for
lookup of query terms

▪ Usually sorted alphabetically to facilitate searching
(and compression!?)

4

Introduction to Information Retrieval

5

Vocabulary and Posting

▪ Number of postings too large: Docs*Terms (300,000
* 10,000,000,000)

▪ Too many postings: mostly zeros!. Sparse matrix

▪ Store as links: one non-zero posting points to the
next nonzero posting: Term links to docs it occurs in

▪ Will need an extra field per posting for value: tf
(integer), relative frequency (integer), tf.idf (real).

▪ We use integer tf, integer df and calculate reals later

▪ May order posting in increasing order of Doc IDs For
faster intersecting

5

Introduction to Information Retrieval

6Can you know the df for the terms

Introduction to Information Retrieval

7

Vocabulary and Posting

▪ Save on number but need extra links (real savings).

▪ Use integers for df
i

and tfij (not reals).

▪ Note: df for term i is the count of postings (links in
the list for that term: do you see that?)

▪ Doc id needs log2 (# of Docs) bits: here 34 bits??

▪ Same is needed for document frequency(df): may
be as large as N: the number of docs (which terms?).

7

Introduction to Information Retrieval

8

Vocabulary and Posting

▪ Remove stop words (with too many links).

▪ Still what remains is large:

▪ need to fit the postings of 2 terms in memory to
intersect, and to keep all on disk

▪ Compression is our solution

8

Introduction to Information Retrieval

9

Take-away today

9

Introduction to Information Retrieval

10

Take-away today

▪ Motivation for compression in information retrieval systems

▪ How can we compress the dictionary component of the
inverted index?

▪ How can we compress the postings component of the
inverted index?

▪ Term statistics: how are terms distributed in document
collections?

10

Introduction to Information Retrieval

Outline

❶ Recap

❷ Compression

❸ Term statistics

❹ Dictionary compression

❺ Postings compression

11

Introduction to Information Retrieval

12

Why compression? (in general)

▪ Use less disk space (saves money)

▪ Keep more stuff in memory (increases speed)

▪ Increase speed of transferring data from disk to memory
(again, increases speed)

▪ [read compressed data and decompress in memory]
is faster than
[read uncompressed data]

▪ Premise: Decompression algorithms are fast.

▪ This is true of the decompression algorithms we will use.

12

Introduction to Information Retrieval

13

Why compression in information retrieval?

▪ First, we will consider space for dictionary

▪ Main motivation for dictionary compression: make it small
enough to keep in main memory

▪ Then for the postings file

▪ Motivation: reduce disk space needed, decrease time needed
to read from disk

▪ Note: Large search engines keep significant part of postings in
memory

▪ We will devise various compression schemes for dictionary
and postings.

13

Introduction to Information Retrieval

14

Lossy vs. lossless compression

▪ Lossy compression: Discard some information, irrevocably

▪ Several of the preprocessing steps we frequently use can be
viewed as lossy compression:

▪ downcasing, stop words, porter stemming, number elimination

▪ Lossless compression: All information is preserved.

▪ What we mostly do in index compression

14

Introduction to Information Retrieval

Outline

❶ Recap

❷ Compression

❸ Term statistics

❹ Dictionary compression

❺ Postings compression

15

Introduction to Information Retrieval

16

Model collection: The Reuters collection

16

symbol statistics value

N
L
M

T

documents
avg. # tokens per document
word types
avg. # bytes per token (incl. spaces/punct.)
avg. # bytes per token (without spaces/punct.)
avg. # bytes per term (= word type)
non-positional postings

Recall:
Token=Word (may be repeating)
Term=vocabulary element, distinct words only

Always more tokens than terms!

800,000
200
400,000
6

4.5
7.5
100,000,000

Introduction to Information Retrieval

17

Effect of preprocessing for Reuters

17

Introduction to Information Retrieval

18

How big is the term vocabulary?

▪ That is, how many distinct words are there?
▪ Can we assume there is an upper bound?
▪ Not really: At least 7020 ≈ 1037 different words of length 20.
▪ The vocabulary will keep growing with collection size.
▪ Heaps’ law: M = kTb

▪ M is the size of the vocabulary, T is the number of tokens in
the collection.

▪ Typical values for the parameters k and b are: 30 ≤ k ≤ 100 and
b ≈ 0.5.

▪ Heaps’ law is linear in log-log space log(M) = log(k) + b*log(T).
▪ It is the simplest possible relationship between collection

size and vocabulary size in log-log space.
▪ Empirical law

18

Introduction to Information Retrieval

19

Heaps’ law for Reuters

Vocabulary size M as a
function of collection size
T (number of tokens) for
Reuters-RCV1. For these
data, the dashed line
log10M =
0.49 ∗ log10 T + 1.64 is the
best least squares fit.
Thus, M = 101.64T0.49

and k = 101.64 ≈ 44 and
b = 0.49.

19

Introduction to Information Retrieval

20

Empirical fit for Reuters

▪ Good, as we just saw in the graph.

▪ Example: for the first 1,000,020 tokens Heaps’ law predicts
38,323 terms:

44 × 1,000,0200.49 ≈ 38,323

▪ The actual number is 38,365 terms, very close to the
prediction.

▪ Empirical observation: fit is good in general.

20

Introduction to Information Retrieval

21

Exercise

❶What is the effect of including spelling errors vs.
automatically correcting spelling errors on Heaps’ law?

❷Compute vocabulary size M

▪ Looking at a collection of web pages, you find that there are
3000 different terms in the first 10,000 tokens and 30,000
different terms in the first 1,000,000 tokens.

▪ Assume a search engine indexes a total of 20,000,000,000
(2 × 1010) pages, containing 200 tokens on average

▪ What is the size of the vocabulary of the indexed collection
as predicted by Heaps’ law?

21

Introduction to Information Retrieval

22

Zipf’s law

▪ Now we have characterized the growth of the vocabulary in
collections.

▪ We also want to know how many frequent vs. infrequent
terms we should expect in a collection.

▪ In natural language, there are a few very frequent terms and
very many very rare terms.

▪ Zipf’s law: The ith most frequent term has frequency cfi

proportional to 1/i .

▪

▪ cfi is collection frequency: the number of occurrences of the
term ti in the collection.

22

Introduction to Information Retrieval

23

Zipf’s law

▪ Zipf’s law: The ith most frequent term has frequency
proportional to 1/i .

▪

▪ cf is collection frequency: the number of occurrences of the
term in the collection.

▪ So if the most frequent term (the) occurs cf1 times, then the
second most frequent term (of) has half as many occurrences

▪ . . . and the third most frequent term (and) has a third as
many occurrences

▪ Equivalent: cfi = cik and log cfi = log c +k log i (for k = −1)

▪ Example of a power law 23

Introduction to Information Retrieval

24

Zipf’s law for Reuters

Fit is not great. What
is important is the
key insight: Few frequent
terms, many
rare terms.

24

Introduction to Information Retrieval

Outline

❶ Recap

❷ Compression

❸ Term statistics

❹ Dictionary compression

❺ Postings compression

25

Introduction to Information Retrieval

26

Dictionary compression

▪ The dictionary is small compared to the postings file.

▪ But we want to keep it in memory.

▪ Also: competition with other applications, cell phones,
onboard computers, fast startup time

▪ So compressing the dictionary is important.

26

Introduction to Information Retrieval

27

Recall: Dictionary as array of fixed-width entries

Space needed: 20 bytes 4 bytes 4 bytes

for Reuters: (20+4+4)*400,000 = 11.2 MB

27

Introduction to Information Retrieval

28

Fixed-width entries are bad.

▪ Most of the bytes in the term column are wasted.

▪ We allot 20 bytes for terms of length 1.

▪ We can’t handle HYDROCHLOROFLUOROCARBONS and
SUPERCALIFRAGILISTICEXPIALIDOCIOUS

▪ Average length of a term in English: 8 characters

▪ How can we use on average 8 characters per term?

28

Introduction to Information Retrieval

29

Dictionary as a string

29

Introduction to Information Retrieval

30

Space for dictionary as a string

▪ 4 bytes per term for frequency

▪ 4 bytes per term for pointer to postings list

▪ 8 bytes (on average) for term in string

▪ 3 bytes per pointer into string (need log2 8 · 400000 < 24
bits to resolve 8 · 400,000 positions)

▪ Space: 400,000 × (4 +4 +3 + 8) = 7.6MB (compared to 11.2
MB for fixed-width array)

30

Introduction to Information Retrieval

31

Dictionary as a string with blocking

31

Introduction to Information Retrieval

32

Space for dictionary as a string with blocking

▪ Example block size k = 4

▪ Where we used 4 × 3 bytes for term pointers without
blocking . . .

▪ . . .we now use 3 bytes for one pointer plus 4 bytes for
indicating the length of each term.

▪ We save 12 − (3 + 4) = 5 bytes per block.

▪ Total savings: 400,000/4 ∗ 5 = 0.5 MB

▪ This reduces the size of the dictionary from 7.6 MB to 7.1

▪ MB.

32

Introduction to Information Retrieval

33

Lookup of a term without blocking

33

Introduction to Information Retrieval

34

Lookup of a term with blocking: (slightly) slower

34

Introduction to Information Retrieval

35

Front coding

One block in blocked compression (k = 4) . . .
8 a u t o m a t a 8 a u t o m a t e 9 a u t o m a t i c 10 a u t o m a t i o n

⇓
. . . further compressed with front coding.

8 a u t o m a t ∗ a 1 ⋄ e 2 ⋄ i c 3 ⋄ i o n

35

Introduction to Information Retrieval

36

Dictionary compression for Reuters: Summary

36

data structure size in MB

dictionary, fixed-width

dictionary, term pointers into string

∼, with blocking, k = 4

∼, with blocking & front coding

11.2

7.6

7.1

5.9

Introduction to Information Retrieval

37

Exercise

▪ Which prefixes should be used for front coding? What are
the tradeoffs?

▪ Input: list of terms (= the term vocabulary)

▪ Output: list of prefixes that will be used in front coding

37

Introduction to Information Retrieval

Outline

❶ Recap

❷ Compression

❸ Term statistics

❹ Dictionary compression

❺ Postings compression

38

Introduction to Information Retrieval

39

Postings compression

▪ The postings file is much larger than the dictionary, factor
of at least 10.

▪ Key desideratum: store each posting compactly

▪ A posting for our purposes is a docID.

▪ For Reuters (800,000 documents), we would use 32 bits per
docID when using 4-byte integers.

▪ Alternatively, we can use log2 800,000 ≈ 19.6 < 20 bits per
docID.

▪ Our goal: use a lot less than 20 bits per docID.

39

Introduction to Information Retrieval

40

Key idea: Store gaps instead of docIDs

▪ Each postings list is ordered in increasing order of docID.

▪ Example postings list: COMPUTER: 283154, 283159, 283202, . . .

▪ It suffices to store gaps: 283159-283154=5, 283202-283154=43

▪ Example postings list using gaps : COMPUTER: 283154, 5, 43, . . .

▪ Gaps for frequent terms are small.

▪ Thus: We can encode small gaps with fewer than 20 bits.

40

Introduction to Information Retrieval

41

Gap encoding

41

Introduction to Information Retrieval

42

Variable length encoding

▪ Aim:

▪ For ARACHNOCENTRIC and other rare terms, we will use
about 20 bits per gap (= posting).

▪ For THE and other very frequent terms, we will use only a
few bits per gap (= posting).

▪ In order to implement this, we need to devise some form
of variable length encoding.

▪ Variable length encoding uses few bits for small gaps and
many bits for large gaps.

42

Introduction to Information Retrieval

43

Variable byte (VB) code

▪ Used by many commercial/research systems

▪ Good low-tech blend of variable-length coding and
sensitivity to alignment matches (bit-level codes, see later).

▪ Dedicate 1 bit (high bit) to be a continuation bit c.

▪ If the gap G fits within 7 bits, binary-encode it in the 7
available bits and set c = 1.

▪ Else: encode lower-order 7 bits and then use one or more
additional bytes to encode the higher order bits using the
same algorithm.

▪ At the end set the continuation bit of the last byte to 1
(c = 1) and of the other bytes to 0 (c = 0).

43

Introduction to Information Retrieval

44

VB code examples

44

docIDs
gaps
VB code

824

00000110 10111000

829
5
10000101

215406
214577
00001101 00001100 10110001

Introduction to Information Retrieval

45

VB code encoding algorithm

45

Introduction to Information Retrieval

46

VB code decoding algorithm

46

Introduction to Information Retrieval

47

Other variable codes

▪ Instead of bytes, we can also use a different “unit of
alignment”: 32 bits (words), 16 bits, 4 bits (nibbles) etc

▪ Variable byte alignment wastes space if you have many
small gaps – nibbles do better on those.

▪ Recent work on word-aligned codes that efficiently “pack”
a variable number of gaps into one word – see resources
at the end

47

Introduction to Information Retrieval

48

Gamma codes for gap encoding
▪ You can get even more compression with another type of

variable length encoding: bitlevel code.

▪ Gamma code is the best known of these.

▪ First, we need unary code to be able to introduce gamma
code.

▪ Unary code

▪ Represent n as n 1s with a final 0.

▪ Unary code for 3 is 1110

▪ Unary code for 40 is
110

▪ Unary code for 70 is:

110

48

Introduction to Information Retrieval

49

Gamma code

▪ Represent a gap G as a pair of length and offset.

▪ Offset is the gap in binary, with the leading bit chopped off.

▪ For example 13 → 1101 → 101 = offset

▪ Length is the length of offset.

▪ For 13 (offset 101), this is 3.

▪ Encode length in unary code: 1110.

▪ Gamma code of 13 is the concatenation of length and
offset: 1110101.

49

Introduction to Information Retrieval

50

Gamma code examples

50

Introduction to Information Retrieval

51

Exercise

▪ Compute the variable byte code of 130

▪ Compute the gamma code of 130

51

Introduction to Information Retrieval

52

Length of gamma code

▪ The length of offset is ⌊log2 G⌋ bits.

▪ The length of length is ⌊log2 G⌋ + 1 bits,

▪ So the length of the entire code is 2 x ⌊log2 G⌋ + 1 bits.

▪ ϒ codes are always of odd length.

▪ Gamma codes are within a factor of 2 of the optimal
encoding length log2 G.

▪ (assuming the frequency of a gap G is proportional to log2

G – not really true)

52

Introduction to Information Retrieval

53

Gamma code: Properties

▪ Gamma code is prefix-free: a valid code word is not a prefix
of any other valid code.

▪ Encoding is optimal within a factor of 3 (and within a factor
of 2 making additional assumptions).

▪ This result is independent of the distribution of gaps!

▪ We can use gamma codes for any distribution. Gamma code
is universal.

▪ Gamma code is parameter-free.

53

Introduction to Information Retrieval

54

Gamma codes: Alignment

▪ Machines have word boundaries – 8, 16, 32 bits

▪ Compressing and manipulating at granularity of bits can be
slow.

▪ Variable byte encoding is aligned and thus potentially more
efficient.

▪ Regardless of efficiency, variable byte is conceptually
simpler at little additional space cost.

54

Introduction to Information Retrieval

55

Compression of Reuters

55

data structure size in MB

dictionary, fixed-width
dictionary, term pointers into string
∼, with blocking, k = 4
∼, with blocking & front coding
collection (text, xml markup etc)
collection (text)
T/D incidence matrix
postings, uncompressed (32-bit words)
postings, uncompressed (20 bits)
postings, variable byte encoded
postings, encoded

11.2
7.6
7.1
5.9

3600.0
960.0

40,000.0
400.0
250.0
116.0
101.0

Introduction to Information Retrieval

56

Term-document incidence matrix

Entry is 1 if term occurs. Example: CALPURNIA occurs in Julius
Caesar. Entry is 0 if term doesn’t occur. Example: CALPURNIA

doesn’t occur in The tempest.

56

Introduction to Information Retrieval

57

Compression of Reuters

57

data structure size in MB

dictionary, fixed-width
dictionary, term pointers into string
∼, with blocking, k = 4
∼, with blocking & front coding
collection (text, xml markup etc)
collection (text)
T/D incidence matrix
postings, uncompressed (32-bit words)
postings, uncompressed (20 bits)
postings, variable byte encoded
postings, encoded

11.2
7.6
7.1
5.9

3600.0
960.0

40,000.0
400.0
250.0
116.0
101.0

Introduction to Information Retrieval

58

Summary

▪ We can now create an index for highly efficient Boolean
retrieval that is very space efficient.

▪ Only 10-15% of the total size of the text in the collection.

▪ However, we’ve ignored positional and frequency
information.

▪ For this reason, space savings are less in reality.

58

Introduction to Information Retrieval

59

Take-away today

▪ Motivation for compression in information retrieval systems

▪ How can we compress the dictionary component of the
inverted index?

▪ How can we compress the postings component of the
inverted index?

▪ Term statistics: how are terms distributed in document
collections?

59

Introduction to Information Retrieval

60

Resources

▪ Chapter 5 of IIR

▪ Resources at http://ifnlp.org/ir

▪ Original publication on word-aligned binary codes by Anh and
Moffat (2005); also: Anh and Moffat (2006a)

▪ Original publication on variable byte codes by Scholer,
Williams, Yiannis and Zobel (2002)

▪ More details on compression (including compression of
positions and frequencies) in Zobel and Moffat (2006)

60

