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Vocabulary and Posting

= One entry per term for each document: less terms
less entries!

"= Too many terms: can reduce by stemming,
normalization, removing diactritics <X _»sand more:
more about that later

= Still what remains is large: 300K (and grows)

= Need to keep in memory as frequently used for
lookup of query terms

= Usually sorted alphabetically to facilitate searching
(and compression!?)



Introduction to Information Retrieval

Vocabulary and Posting

* Number of postings too large: Docs*Terms (300,000
*10,000,000,000)

" Too many postings: mostly zeros!. Sparse matrix

= Store as links: one non-zero posting points to the
next nonzero posting: Term links to docs it occurs in

= Will need an extra field per posting for value: tf
(integer), relative frequency (integer), tf.idf (real).

= We use integer tf, integer df and calculate reals later

= May order posting in increasing order of Doc IDs For
faster intersecting
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For each term t, we store a list of all documents that contain t.

BrRuTUusS | — [1| 2| 4| 11|31 45 173|174

CAESAR | — |1]| 2| 4| 5| 6|16| H7 | 132

CALPURNIA | — | 2131 |54 | 101

N— — —_.—
dictionary postings file

Can you know the df for the terms$
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Vocabulary and Posting

= Save on number but need extra links (real savings).

= Use integers for dfi and tfij (not reals).

* Note: df for term i is the count of postings (links in
the list for that term: do you see that?)

" Doc id needs log2 (# of Docs) bits: here 34 bits??

= Same is needed for document frequency(df): may
be as large as N: the number of docs (which terms?).
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Vocabulary and Posting

= Remove stop words (with too many links).
= Still what remains is large:

" need to fit the postings of 2 terms in memory to
intersect, and to keep all on disk

= Compression is our solution
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Take-away today

For each term *, we store a list of all documents that contain r.

[ BRrRuUTUS | — [ ] 2] 4] 11 [ 31 | 45 | 173 | 174 |

[ CAESAR | — [ ] 2] 4] 5] 6] 16 | 57 | 132 | ...

[ CALPURNIA | —— [ 2 [ 31 | 54 | 101 |

~— - ~— —

term document pointer to
frequency postings list

a 656,265 —

aachen 65 —

zulu 221 —
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Take-away today

For each term *, we store a list of all documents that contain r.

[ BRrRuUTUS | — [ ] 2] 4] 11 [ 31 | 45 | 173 | 174 |

[ CAESAR | — [ ] 2] 4] 5] 6] 16 | 57 | 132 | ...

[ CALPURNIA | —— [ 2 [ 31 | 54 | 101 |

~— — ~—
"

dictionary postings file

= Motivation for compression in information retrieval systems

= How can we compress the dictionary component of the
inverted index?

= How can we compress the postings component of the
inverted index?

= Term statistics: how are terms distributed in document

collections? .
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@® Compression
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Why compression? (in general)

= Use less disk space (saves money)
= Keep more stuff in memory (increases speed)

" |ncrease speed of transferring data from disk to memory
(again, increases speed)

= [read compressed data and decompress in memory]
is faster than
[read uncompressed data]

= Premise: Decompression algorithms are fast.

= This is true of the decompression algorithms we will use.

12
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Why compression in information retrieval?

= First, we will consider space for dictionary

= Main motivation for dictionary compression: make it small
enough to keep in main memory

= Then for the postings file

= Motivation: reduce disk space needed, decrease time needed
to read from disk

= Note: Large search engines keep significant part of postings in
memory

= We will devise various compression schemes for dictionary
and postings.

13
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Lossy vs. lossless compression

= Lossy compression: Discard some information, irrevocably

= Several of the preprocessing steps we frequently use can be
viewed as lossy compression:
= downcasing, stop words, porter stemming, number elimination

= Lossless compression: All information is preserved.

= What we mostly do in index compression

14
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Outline

© Term statistics
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Model collection: The Reuters collection

symbol | statistics value
N documents 800,000
L avg. # tokens per document 200
M word types 400,000
avg. # bytes per token (incl. spaces/punct.) 6
avg. # bytes per token (without spaces/punct.) 4.5
avg. # bytes per term (= word type) 7.5
A non-positional postings 100,000,000
Recall:
Token=Word (may be repeating)
Term=vocabulary element, distinct words only
Always more tokens than terms!
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Effect of preprocessing for Reuters

non-pasitional ositional postings
vord types {tem) Ecﬁtiigs p]ward ’[ﬂk&?‘lEl E
size of dictionary non-positional index positional index
sz A oml. | size Aol size Aol
unfiltered | 484,494 109 971,179 197,879 290

nonumbers | 473723 2% 2% | 100680242 -8% -B% [179158204 0% -0%
case folding | 301,523 -17% -19% | 96,960,056 -3% -12% | 179158204 -0% -9%
W0stopw's | 391493 0% -19% | 83300443 -14% -24% | 121857825 -31% -38%
80 stopw's | 301,313 0% -19% | 67,000,847 -30% -39% | 94,516,599 -47% -52%
stemming | 322,383 -17% -33% | 63812300 4% -42% | 94516500 0% -52%
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How big is the term vocabulary?

= That is, how many distinct words are there?
= Can we assume there is an upper bound?
= Not really: At least 70%° = 103/ different words of length 20.
= The vocabulary will keep growing with collection size.
= Heaps’ law: M= k77
= M is the size of the vocabulary, 7is the number of tokens in
the collection.
= Typical values for the parameters kand b are: 30 £ £< 100 an
b=0.5.
= Heaps’ law is linear in log-log space log(M) = log(k) + b*log(T
" |t is the simplest possible relationship between collection
size and vocabulary size in log-log space.
= Emopirical law

18
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log 10 M

Heaps’ law for Reuters

Vocabulary size Mas a
function of collection size
I (number of tokens) for
Reuters-RCV1. For these
data, the dashed line

log, (M=

0.49 * log,, 7+ 1.64 is the
best least squares fit.
Thus, M= 101647049

and k= 1014 = 44 and
b=0.49.

19
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Empirical fit for Reuters

= Good, as we just saw in the graph.

= Example: for the first 1,000,020 tokens Heaps’ law predicts
38,323 terms:

44 X 1,000,020°4° = 38,323

= The actual number is 38,365 terms, very close to the
prediction.

= Empirical observation: fit is good in general.

20
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Exercise

@ What is the effect of including spelling errors vs.
automatically correcting spelling errors on Heaps’ law?
@ Compute vocabulary size M

= Looking at a collection of web pages, you find that there are
3000 different terms in the first 10,000 tokens and 30,000
different terms in the first 1,000,000 tokens.

= Assume a search engine indexes a total of 20,000,000,000
(2 X 1019) pages, containing 200 tokens on average

= What is the size of the vocabulary of the indexed collection
as predicted by Heaps’ law?

21



Introduction to Information Retrieval

Zipf's law

= Now we have characterized the growth of the vocabulary in
collections.

= We also want to know how many frequent vs. infrequent
terms we should expect in a collection.

" |n natural language, there are a few very frequent terms and
very many very rare terms.

= Zipf’s law: The /" most frequent term has frequency cf,

proportional to 1//.

1

1

= cf,is collection frequency: the number of occurrences of the
term ¢;in the collection.

s cf; o

22
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Zipf's law

= Zipf’s law: The " most frequent term has frequency

proportional to 1//.
1

= cfj ox 7

= cfis collection frequency: the number of occurrences of the
term in the collection.

= So if the most frequent term (the) occurs cf, times, then the
second most frequent term (of) has half as many occurrences

cfy = %{:['1 .
= . ..and the third most frequent term (and) has a third as
many occurrences cf; = %{:['1

= Equivalent: Cf/-= C/'k and log cf .= log c+klog /(for k=-1)

= Example of a power law )
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Zipf’s law for Reuters

- Fit is not great. What
' is important is the
key insight: Few frequent

] terms, many
- \ rare terms.

log10 e

log10 rank
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Outline

O Dictionary compression
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Dictionary compression

= The dictionary is small compared to the postings file.
= But we want to keep it in memory.

= Also: competition with other applications, cell phones,
onboard computers, fast startup time

= So compressing the dictionary is important.

26
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Recall: Dictionary as array of fixed-width entries

term document pointer to
frequency postings list
a 656,265 —
aachen 65 —
zulu 221 —
Space needed: 20 bytes 4 bytes 4 bytes

for Reuters: (20+4+4)*400,000 = 11.2 MB

27
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Fixed-width entries are bad.

= Most of the bytes in the term column are wasted.
= We allot 20 bytes for terms of length 1.

= We can’t handle HYDROCHLOROFLUOROCARBONS and
SUPERCALIFRAGILISTICEXPIALIDOCIOUS

= Average length of a term in English: 8 characters

= How can we use on average 8 characters per term?

28
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Dictionary as a string

...systilesyzygeticsyzygialsyzygyszaibelyiteszecinszono. ..

| |
freq. postings ptr. term ptr. ! |
9 —
92
o)

71
12

I

4 bytes 4 bytes 3 bytes

29
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Space for dictionary as a string

= 4 bytes per term for frequency
= 4 bytes per term for pointer to postings list
= 8 bytes (on average) for term in string

= 3 bytes per pointer into string (need log28 - 400000 < 24
bits to resolve 8 - 400,000 positions)

= Space: 400,000 X (4 +4 +3 + 8) = 7.6MB (compared to 11.2
MB for fixed-width array)

30
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Dictionary as a string with blocking

...7systilegsyzygeticlsyzygial6syzygyliszaibelyitesszecin. ..

freq. postings ptr. term ptr.

9
92
o}
71
12

Ll

31
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Space for dictionary as a string with blocking

= Example block size k=4

= Where we used 4 X 3 bytes for term pointers without
blocking ...

= . ..we now use 3 bytes for one pointer plus 4 bytes for
indicating the length of each term.

= We save 12 - (3 + 4) =5 bytes per block.

= Total savings: 400,000/4 « 5 =0.5 MB

= This reduces the size of the dictionary from 7.6 MB to 7.1
= MB.

32
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Lookup of a term without blocking
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Lookup of a term with blocking: (slightly) slower

AlD = BOX = DEN = o X
\__/ \__/

JOB ,@ ,@ ,@

34
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Front coding

One block in blocked compression (k=4) . ..
8automata8automate9automaticl0automation

U

... further compressed with front coding.
automat*alo¢e20ic3¢ion

35
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Dictionary compression for Reuters: Summary

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
~, with blocking, k=4 7.1
~, with blocking & front coding 5.9
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Exercise

" Which prefixes should be used for front coding? What are
the tradeoffs?

" |nput: list of terms (= the term vocabulary)
= Qutput: list of prefixes that will be used in front coding

37
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Outline

© Postings compression
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Postings compression

= The postings file is much larger than the dictionary, factor
of at least 10.

= Key desideratum: store each posting compactly
= A posting for our purposes is a doclD.

* For Reuters (800,000 documents), we would use 32 bits per
docID when using 4-byte integers.

= Alternatively, we can use log, 800,000 = 19.6 < 20 bits per
doclID.

= Qur goal: use a lot less than 20 bits per doclD.

39
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Key idea: Store gaps instead of doclIDs

Each postings list is ordered in increasing order of doclD.

= Example postings list: COMPUTER: 283154, 283159, 283202, ...
It suffices to store gaps: 283159-283154=5, 283202-283154=43
= Example postings list using gaps : COMPUTER: 283154, 5, 43, . ..

= Gaps for frequent terms are small.

Thus: We can encode small gaps with fewer than 20 bits.

40
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Gap encoding

encoding  postings list

THE doclDs . 283042 283043 283044 283045
Faps 1 1 1
COMPUTER doclDs . 283047 283154 283159 283202
gaps 107 5 43
ARACHNOCENTRIC doclDs 252000 500100
gaps 252000 248100

41
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Variable length encoding

= Aim:
= For ARACHNOCENTRIC and other rare terms, we will use
about 20 bits per gap (= posting).
= For THE and other very frequent terms, we will use only a
few bits per gap (= posting).
= |n order to implement this, we need to devise some form
of variable length encoding.
= Variable length encoding uses few bits for small gaps and

many bits for large gaps.

42
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Variable byte (VB) code

= Used by many commercial/research systems

= Good low-tech blend of variable-length coding and
sensitivity to alignment matches (bit-level codes, see later).

= Dedicate 1 bit (high bit) to be a continuation bit c.

= |f the gap G fits within 7 bits, binary-encode it in the 7
available bits and set c=1.

= Else: encode lower-order 7 bits and then use one or more
additional bytes to encode the higher order bits using the
same algorithm.

= At the end set the continuation bit of the last byte to 1
(c=1) and of the other bytes to 0 (c=0).

43
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VB code examples

doclDs 824 829 215406
gaps 5 214577
VB code 00000110 10111000 10000101 000011010000110010110001

44
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VB code encoding algorithm

VBENCODENUMBER(n) VBENCODE(numbers)

1 bytes — {) 1 bytestream «— ()

2  while true 2 for each n < numbers

3 do PreEPEND(bytes,n mod 128) 3 do bytes — VBENCODENUMBER(n)

4 if n< 128 4 bytestream «— EXTEND( bytestream, bytes)
5 then BREAK 5 return bytestream

6 n <« n div 128

7  bytes[LENGTH(bytes)] += 128

8 return bytes

45
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VB code decoding algorithm

VBDECODE( bytestream)
numbers — ()
n—~0
for i — 1 to LENGTH(bytestream)
do if bytestream[i] < 128
then n — 128 x n + bytestreami]
else n«— 128 x n+ (bytestream|i|] — 128)
APPEND(numbers, n)
n«—20
return numbers

WO 0~ SO W=

46
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Other variable codes

= |nstead of bytes, we can also use a different “unit of
alignment”: 32 bits (words), 16 bits, 4 bits (nibbles) etc

= Variable byte alignment wastes space if you have many
small gaps — nibbles do better on those.

= Recent work on word-aligned codes that efficiently “pack”
a variable number of gaps into one word — see resources
at the end

47
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Gamma codes for gap encoding

= You can get even more compression with another type of
variable length encoding: bitlevel code.

= Gamma code is the best known of these.

" First, we need unary code to be able to introduce gamma
code.

= Unary code
= Represent nas n1s with a final O.
= Unary code for 3is 1110

* Unary code for 40 is
11111111111111111111111111111111111111110

= Unary code for 70 is:
11111111111111111111111111111111111111111111111111111111111111111111110

48
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Gamma code

= Represent a gap G as a pair of length and offset.

= Offset is the gap in binary, with the leading bit chopped off.
"= For example 13 - 1101 - 101 = offset

= Length is the length of offset.

= For 13 (offset 101), this is 3.

= Encode length in unary code: 1110.

= Gamma code of 13 is the concatenation of length and
offset: 1110101.

49
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Gamma code examples

number unary code length offset ~+ code

0 0

1 10 0 0

2 110 10 0 10,0

3 1110 10 1 10,1

4 11110 110 a0 110,00

g 1111111110 1110 001 1110,001

13 1110 101 1110,101

24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111

1025 11111111110 0000000001 11111111110,0000000001

50
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Exercise

= Compute the variable byte code of 130
= Compute the gamma code of 130

51
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Length of gamma code

The length of offset is |log, G| bits.
The length of length is |log, G] + 1 bits,
= So the length of the entire code is 2 x [log, G| + 1 bits.

= Ycodes are always of odd length.

= Gamma codes are within a factor of 2 of the optimal
encoding length log, G.

= (assuming the frequency of a gap G is proportional to log,
G — not really true)

52



Introduction to Information Retrieval

Gamma code: Properties

= Gamma code is prefix-free: a valid code word is not a prefix
of any other valid code.

= Encoding is optimal within a factor of 3 (and within a factor
of 2 making additional assumptions).

= This result is independent of the distribution of gaps!

= We can use gamma codes for any distribution. Gamma code
is universal.

= Gamma code is parameter-free.

53
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Gamma codes: Alignment

= Machines have word boundaries — 8, 16, 32 bits

= Compressing and manipulating at granularity of bits can be
slow.

= Variable byte encoding is aligned and thus potentially more
efficient.

= Regardless of efficiency, variable byte is conceptually
simpler at little additional space cost.
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Compression of Reuters

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
~, with blocking, k=4 7.1
~, with blocking & front coding 5.9
collection (text, xml markup etc) 3600.0
collection (text) 960.0
T/D incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, encoded 101.0
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Term-document incidence matrix

Anthony  Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
ANTHONY 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
CAESAR 1 1 0 1 1 1
CALPURNIA 0 1 0 0 0 0
CLEOPATRA 1 0 0 0 0 0
MERCY 1 0 1 1 1 1
WORSER 1 0 1 1 1 0

Entry is 1 if term occurs. Example: CALPURNIA occurs in Julius
Caesar. Entry is 0 if term doesn’t occur. Example: CALPURNIA
doesn’t occur in The tempest.
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Compression of Reuters

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
~, with blocking, k=4 7.1
~, with blocking & front coding 5.9
collection (text, xml markup etc) 3600.0
collection (text) 960.0
T/D incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, encoded 101.0
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Summary

= We can now create an index for highly efficient Boolean
retrieval that is very space efficient.

= Only 10-15% of the total size of the text in the collection.

= However, we’ve ignored positional and frequency
information.

= For this reason, space savings are less in reality.
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Take-away today

For each term t, we store a list of all documents that contain t.

[ Brutus | — [1] 2] 4] 11[31[45[173[174]

| Caesar | — [1] 2] 4] 5] 6[16] 57 [132]... ]
[Cavrponnia | — [2]31]54 101

S——— ~ ~~
dictionary postings file

= Motivation for compression in information retrieval systems
= How can we compress the dictionary component of the
inverted index?

= How can we compress the postings component of the
inverted index?

= Term statistics: how are terms distributed in document
collections?
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Resources

= Chapter 5 of IIR
= Resources at http://ifnlp.org/ir

= Original publication on word-aligned binary codes by Anh and
Moffat (2005); also: Anh and Moffat (2006a)

= QOriginal publication on variable byte codes by Scholer,
Williams, Yiannis and Zobel (2002)

= More details on compression (including compression of
positions and frequencies) in Zobel and Moffat (2006)
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