
 1

Experiment 0 - Introduction to DEBUG and the
Assembly Process

This experiment will introduce you to DEBUG and TASM, allowing you to become
familiar with the process of assembling, debugging and executing an assembly language
program with a PC. DEBUG is a program available with every version of WINDOWS
and DOS. Here you will learn how to use DEBUG to assemble, disassemble, execute and
debug assembly language programs with a PC. You will also be instructed on how to
examine and modify the memory and CPU registers of your PC. TASM (Turbo
Assembler) is the assembler you will use in the lab this semester. One may find many
assemblers like: MASM, NASN, TASM, etc, on the web. I recommend you download
one to your computer at home so that you may work on your project away from the lab.
In this experiment you will copy, edit, assemble, link, debug and execute the program.
During this process you will be using several programs, such as Turbo Assembler, Turbo
Linker, Debug, and Notepad or Edit to accomplish your task. The knowledge acquired in
this experiment will be extremely useful when working with the programs you will write
during the semester. You may want to modify and save the program so that you can use it
as the starting point when programming you next assignments. Do that by eliminating the
red italicized statements.

The following convention will be used with all examples shown in this manual:

CAPITALIZED ITALICS REPRESENTS THE INFORMATION TYPED BY THE USER.

CAPITALIZED BOLD REPRESENTS THE COMPUTERS RESPONSE.

It is also suggested that the students use a floppy disk in drive A: or a pen drive to store
their programs. This will avoid the possibility of having your programs copied in case
you forget to erase them from drive C:.

Write the answers to the questions in this experiment on the space provided, and then
hand the answer sheet to the Instructor before leaving the lab.

Loading DEBUG
1 – Open a DOS window by double clicking the DOS WINDOW icon on the desktop or
in the Programs Menu.
2 – Issue the following command at the DOS prompt to load DEBUG:

A:\DEBUG <ENTER>

What prompt is displayed? _____________

Exiting DEBUG

 2

3 – Issue the following command at the DEBUG prompt to exit DEBUG:

-Q<ENTER>

What prompt is displayed? _____________

Examining and modifying the contents of registers
4 – Load DEBUG and at the DEBUG prompt enter the following command

-R<ENTER>
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0B2C ES=0B2C SS=0B2C CS=0B2C IP=0100 NV UP EI PL NZ NA PO NC
0B2C:0100 7509 JNZ 010B
-R CX<ENTER>
CX 0000
:0008<ENTER>
-R<ENTER>
AX=0000 BX=0000 CX=0008 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0B2C ES=0B2C SS=0B2C CS=0B2C IP=0100 NV UP EI PL NZ NA PO NC
0B2C:0100 7509 JNZ 010B

Compare your display with the one shown above and discuss any possible discrepancies
below.

-R CX<ENTER>
CX 0008
:321<ENTER>
-R<ENTER>
AX=0000 BX=0000 CX=0321 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0B2C ES=0B2C SS=0B2C CS=0B2C IP=0100 NV UP EI PL NZ NA PO NC
0B2C:0100 7509 JNZ 010B
-

Note that DEBUG displays all numeric values as hexadecimal numbers and that if you
enter a value smaller than 4 digits, i.e. 321, DEBUG will pad it with zeros, 0321, when it
writes them to the register.
5 – Modify the contents of register DX to 1F54.

 3

6 – Now modify the contents of register DL from 54 to 68 without modifying the
contents of register DH which you set to 1F in the previous step. Show the Instructor the
results of steps 5 and 6.
7 – Enter the command below and tell me what happens:

-R AH<ENTER>

Assembling, disassembling, and executing programs
8 – Below you will find a series of commands to assemble and execute a program that
adds the contents of registers AX and BX. Practice the procedure by entering the same
information and verifying the results displayed. Note that the segment address may be
different than 0B2C.

-A 100<ENTER>
0B2C:0100 MOV AX,1<ENTER>
0B2C:0103 MOV BX,2<ENTER>
0B2C:0106 ADD AX,BX<ENTER>
0B2C:0108 INT 3<ENTER>
0B2C:0109<ENTER>
-R<ENTER>
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0B2C ES=0B2C SS=0B2C CS=0B2C IP=0100 NV UP EI PL NZ NA PO NC
0B2C:0100 B80100 MOV AX,0001
-G<ENTER>
AX=0003 BX=0002 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0B2C ES=0B2C SS=0B2C CS=0B2C IP=0108 NV UP EI PL NZ NA PE NC
0B2C:0108 CC INT 3
-

You were exposed to two new commands:

A - used for the assembly of programs.
Format: A <starting address>.
The starting address may be given as an offset to the code segment address. This was
done in the example above.

G - used for the execution of programs.
Format: G <=starting address> <breakpoint addresses>.

 4

=starting address - Specifies the address that program execution will begin at. Note that
the equal sign is used to differentiate the starting address from the breakpoint addresses.
Execution will start at CS:IP if no start address is given. If the program ends with an INT
20 instruction, the IP register is reset back to offset 100, and if the program ends with an
INT 3 instruction, the IP register will remain pointing to the next instruction after the last
instruction executed.

breakpoint addresses - Specifies from 1 to 10 breakpoints that can be entered with the Go
command. The program stops at the first breakpoint that it encounters and dumps the
contents of all registers, the status of the FLAGS and displays the last instruction that was
executed. Try the following command then write an explanation of what you observed
during its execution:

-G =100 103 106<ENTER>

9 – Shown below are two formats for the command used to disassemble the program
given in the example above. The first format uses a beginning and an ending address, and
the second format uses a beginning address and a count of the number of bytes to be
disassembled. Notice that the count is preceded by an ‘L’.

-U 100 108<ENTER>
0B2C:0100 B80100 MOV AX,0001
0B2C:0103 BB0200 MOV BX,0002
0B2C:0106 01D8 ADD AX,BX
0B2C:0108 CC INT 3
-U 100 L9<ENTER>
0B2C:0100 B80100 MOV AX,0001
0B2C:0103 BB0200 MOV BX,0002
0B2C:0106 01D8 ADD AX,BX
0B2C:0108 CC INT 3
-

 5

10 – Write a program to subtract the content of register DX from the content of register
AX, then add the result to the content of CX. Set the registers to 4, 0A and 1F
respectively. Make sure to perform the following in the order given: assemble, and
execute the program, then write the value of the registers shown below, and the
instructions with the respective opcodes of your program:

AX = _____ BX=_____ CX=_____ CS=_____ IP=_____

Instruction Opcode

Tracing the execution of your program
11 – The trace command T is used to trace the execution of a program by displaying
register information after the execution of the each instruction in the selected range.
Format: T <=starting address> <number of instructions>
Like the Go command if the starting address is not specified, it starts execution at CS:IP.

-T =100 4<ENTER>

AX=0001 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0B2C ES=0B2C SS=0B2C CS=0B2C IP=0103 NV UP EI PL NZ NA PO NC
0B2C:0103 BB0200 MOV BX,0002

AX=0001 BX=0002 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0B2C ES=0B2C SS=0B2C CS=0B2C IP=0106 NV UP EI PL NZ NA PO NC
0B2C:0106 01D8 ADD AX,BX

AX=0003 BX=0002 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0B2C ES=0B2C SS=0B2C CS=0B2C IP=0108 NV UP EI PL NZ NA PE NC
0B2C:0108 CC INT 3

AX=0003 BX=0002 CX=0000 DX=0000 SP=FFE8 BP=0000 SI=0000 DI=0000
DS=0B2C ES=0B2C SS=0B2C CS=0590 IP=13B1 NV UP DI PL NZ NA PE NC
0590:13B1 55 PUSH BP
-

Check the example above then trace the execution of your program. Show the results to
the instructor.

 6

Accessing and modifying data in DEBUG
12 – In this section you will be exposed to the three commands: F – fill, D – dump, and E
– enter. This command’s address reference the data segment (DS). If you need to access
information in another segment you need to include the segment in the address. The
command’s description and usage examples are given below:
F – used to fill blocks of memory with data.
Format: F <starting address> <ending address> <data>
 D <starting address> <L number of bytes> <data>
D – used to display the memory content.
Format: D <starting address> <ending address>
 D <starting address> <L number of bytes>
The starting and ending addresses may be given as offsets in the data segment. If access
to another segment is required then the segment information should be included in the
address, example: F CS:100 1FF 20
E – used to enter information in memory.
Format: E <address> <data list>
 E <address>
If the E command is used without the data list, DEBUG assumes that you wish to
examine that byte of memory and possibly modify it. The following options are given to
you in that case:
a – You may enter a new data byte which DEBUG will write to memory.
b – You may press <ENTER> to signify you do not wish to modify the byte.
c – You may press the space bar which will leave the displayed byte unchanged and
move to the next byte where you may possibly modify it.
d – You may enter the minus sign, which will leave the displayed byte unchanged and
move you to the previous byte where you may possibly modify it.
See examples below:

-F 100 11F 20<ENTER>
-F 120 13F 30<ENTER>
-D 100 13F<ENTER>
0B2C:0100 20 20 20 20 20 20 20 20-20 20 20 20 20 20 20 20
0B2C:0110 20 20 20 20 20 20 20 20-20 20 20 20 20 20 20 20
0B2C:0120 30 30 30 30 30 30 30 30-30 30 30 30 30 30 30 30
0000000000000000
0B2C:0130 30 30 30 30 30 30 30 30-30 30 30 30 30 30 30 30
0000000000000000
-F 140 L20 31<ENTER>
-D 140 L20<ENTER>
0B2C:0140 31 31 31 31 31 31 31 31-31 31 31 31 31 31 31 31
1111111111111111
0B2C:0150 31 31 31 31 31 31 31 31-31 31 31 31 31 31 31 31
1111111111111111

-E 100 'Gabi'<ENTER>
-D 100 10F<ENTER>
0B2C:0100 47 61 62 69 20 20 20 20-20 20 20 20 20 20 20 20 Gabi
-E 100<ENTER>
0B2C:0100 47.67<ENTER>

 7

-D 100 10F<ENTER>
0B2C:0100 67 61 62 69 20 20 20 20-20 20 20 20 20 20 20 20 gabi
-E 100<ENTER>
0B2C:0100 67.<SPACE BAR> 61.41<SPACE BAR>62.42<SPACE BAR>69.49<ENTER>
-D 100 10F<ENTER>
0B2C:0100 67 41 42 49 20 20 20 20-20 20 20 20 20 20 20 20 gABI
-

13 – Fill the memory locations 100 to 12F with the ASCII character which represents the
number 5, then display the modified memory locations.
14 – Enter EE2730 in memory location 130, and then display those memory locations.
Then using the E 130 command, modify the 2730 characters to 3751. Notice that the data
list was excluded. Demonstrate to the instructor the procedures performed above.

Using Redirection with DEBUG
15 – Use Notepad to create a file called INPUT.TXT with the following contents:
F 150 L10 41<ENTER>
F 160 L10 61<ENTER>
D 150 L20<ENTER>
Q<ENTER>

Make sure this file is in the C:\WORK subdirectory or in the A: drive, whichever one you
are using. Issue the following command at the DOS prompt:

\A:\DEBUG < INPUT.TXT<ENTER>
-F 150 L10 41
-F 160 L10 61
-D 150 L20
0B92:0150 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41
AAAAAAAAAAAAAAAA
0B92:0160 61 61 61 61 61 61 61 61-61 61 61 61 61 61 61 61
aaaaaaaaaaaaaaaa
-Q
A:\

Issue the following command next:
A:\DEBUG < INPUT.TXT > OUTPUT.TXT<ENTER>
A:\

Open the file OUTPUT.TXT with Notepad and check its contents.

Print file to be submitted to TA at end of lab.

Editing, assembling, linking and executing an Assembly Language program.

.MODEL SMALL

.386

.STACK 64

.DATA

 8

MESS DB ‘Hello World!’,13,10,’$’
 .CODE
BEGIN PROC FAR
 MOV AX,@DATA
 MOV DS,AX

 MOV AH,9H
 MOV DX,OFFSET MESS
 INT 21H

 MOV AH,4CH
 INT 21H
BEGIN ENDP
 END BEGIN

16 – Copy the program above using Notepad, and save it as PROG0A.ASM in the A:\>
drive.

17 – Following you will find the commands that you should type to accomplish the task
of assembling, linking and using DEBUG to execute the program given to you.

A:\>TASM PROG0A.ASM /L<ENTER>
Turbo Assembler Version 3.1 Copyright (c) 1988, 1992 Borland
International
Assembling file: PROG0A.ASM
Error messages: None
Warning messages: None
Passes: 1
Remaining memory: 435k

 If there are any problems during assembly you will see several error messages displayed
on a DOS window opened by the OS. At this point you may open the file PROG0A.LST
to check where the errors occur and then edit them in the PROG0A.ASM file, before
assembling it again, otherwise continue below.

A:\>TLINK PROG0A.OBJ<ENTER>
Turbo Link Version 5.1 Copyright (c) 1992 Borland International

Now you are going to use DEBUG to execute the program.

A:\>DEBUG PROG0A.EXE<ENTER>
-G<ENTER>
Hello World!

Program terminated normally
-Q<ENTER>

 9

A:\>

You can also execute the program directly by doing what is shown below:

A:\>PROG0A.EXE<ENTER>
Hello World!

A:\>

18 – Copy the program below using Notepad, and save it as PROG0B.ASM in the A:\>
drive.

.MODEL SMALL

.386

.STACK 64

.DATA
N1 DB 33H
N2 DB 24H
SUM DB 0H
 .CODE
BEGIN PROC FAR
 MOV AX,@DATA
 MOV DS,AX

 MOV AL,N1
 ADD AL,N2
 MOV SUM,AL

 MOV AH,4CH
 INT 21H
BEGIN ENDP
 END BEGIN

19 – Following you will find the commands that you should type to accomplish the task
of assembling, linking and using DEBUG to execute the program given to you.

A:\>TASM PROG0B.ASM /L<ENTER>
Turbo Assembler Version 3.1 Copyright (c) 1988, 1992 Borland
International
Assembling file: PROG0B.ASM
Error messages: None
Warning messages: None
Passes: 1
Remaining memory: 435k

 10

If there are any problems during assembly you will see several error messages displayed
on a DOS window opened by the OS. At this point you may open the file PROG0B.LST
to check where the errors occur and then edit them in the PROG0B.ASM file, before
assembling it again, otherwise continue below.

A:\>TLINK PROG0B.OBJ<ENTER>
Turbo Link Version 5.1 Copyright (c) 1992 Borland International

Now you are going to use DEBUG to execute the program and to verify memory to see if
the program executed correctly. Follow the steps below exactly.

A:\>DEBUG PROG0B.EXE<ENTER>

The next two steps allow you to find out the initial address of the data segment, and its
contents. You will do this by disassembling the first instruction (MOV AX,@DATA) of
your program, then dumping the contents of several memory locations starting at the
address you just found.

-U CS:0 1<ENTER>
10A2:0000 B8A410 MOV AX,10A4
-D 10A4:0 2<ENTER>
10A4:0000 33 24 00 3$.

To execute the program, and to display the memory, follow the steps below. These steps
allow you to verify if the program executed correctly.

-G<ENTER>

Program terminated normally
-D 10A4:0 2<ENTER>
10A4:0000 33 24 57 3$W

-Q<ENTER>
A:\>

Procedure

20 - Using the information learned from the previous steps, create a new program called
PROG0C.ASM to perform PRODUCT = A * B * C.

DATA segment array definition.

.DATA
A DB 4H
B DB 10H
C DB 7FH
PRODUCT DW ?

 11

Dump the memory where the data segment is located at and check the result of the
multiplication you just performed. Show the instructor the results and hand him your
observations made during the lab.

