Interrupts in Personal Computers

Birzeit University
Information Technology Faculty

Computer Systems Engineering Department

Abstract

This experiment aims at understanding and expanding the concept of interruption. Students will
learn how to use and call Interrupt Service Routines (ISR) based on MS WinXp OS. Besides, creating
a new ISR using debug and TASM will be a main task of the experiment.

PART I Theoretical Introduction

The 8086 interrupts can be classified into three types. These are

1. Predefined interrupts
2. User-defined software interrupts
3. User-defined hardware interrupts

The interrupt vector address f or all the 8086 interrupts are determined from a table stored in
locations 00000H through 003FFH. The starting addresses for the service routines for the
interrupts are obtained by the 8086 using this table. Four bytes of the table are assigned to each
interrupt: two bytes for IP and two bytes for CS. The table may contain up to 256 8-bit vectors. If
fewer than 256 interrupts are defined in the system, the user need only provide enough memory
for the interrupt pointer table for obtaining the defined interrupts. The interrupt address vector
(contents of IP and CS) for all the interrupts of the 8086 assigns every interrupt a type code for
identifying the interrupt. There are 256 type codes associated with 256 table entries. Each entry
consists of two addresses, one for storing the IP contents and the other for storing the CS contents.
Each 8086 interrupt physical address vector is 20 bits wide and is computed from the 16-bit
contents of IP and CS. For obtaining an interrupt address vector, the 8086 calculates two addresses
in the pointer table where IP and CS are stored for a particular interrupt type. For example, for the
interrupt type nn (instruction INT nn), the table address for [P=4xnn and the table address for
CS=4xnn+2. For servicing the 8086's nonmaskable interrupt (NMI pin), the 8086 assigns the type
code 2 to this interrupt. The 8086 automatically executes the INT2 instruction internally to obtain
the interrupt address vector as follows:

Address forIP =4 x 2 =00008H
Address forCS=4x 2 +2=0000AH

The 8086 loads the values of IP and CS from the 20-bit physical address 00008H and 0000AH in
the pointer table. The user must store the desired 16-bit values o f IP and CS in these locations.
Similarly, the I P and CS values for other interrupts are calculated. The 8086 interrupt pointer table
layout is shown in Figure 1.

Interrupt type code 20-bit Memory Address

o o

. P 00000H
CS 00002H

| IP 00004H
CS 00006H

s 00008H
: 0000AH
)5 IP 003FEH
CS 00400H

Figure 1 Interrupt Vector Table

Interrupt Vector Table

14-31 Reserved The interrupt vector table is located in
% the first 1024 bytes of memory al

addresses OM00H through 0003FFH.

0R0H

04 0H| 16

03CH LUnassigned 15

D38H Fage fault 14

C24aRl__ Ceneral protection 113 There are 256 4byte entries (segment
030H]L _ Swack segoverrun 112 gnd offset in real mode).

o2CH Sesment nol presenl 11
o28H Inwvalid task stale seg |10

024H L oproc seg overmun L

020H[___Double fault __ |5 |5ez high |Seg low [Offset high Ofiset low]
Ei%gj "!*‘ espsarpot aall ¢ Dyes Dyle2 Dytel Tyte 0
014H| Baound H

010H Civerilow (1N 110] 4

o OCH| I-byte breakpoint |5

ooaH MM prin 2

004H Single-slep 1

o0oH Divide error 0

|——— 4 bytes |

Figure 2 Interrupt Vector Table

In response to an interrupt, the 8086 pushes flags, CS, and IP onto the stack, clears TF and IF
flags, and then loads IP and CS from the pointer table using the type code. Interrupt service routine

3

should be terminated with the IRET (Interrupt Return) instruction which pops the top three s tack
words into IP, CS, and flags, thus returning to the right place in the main program. The 256
interrupt type codes are assigned as follows;

o Types 0 to 4 are for the predefined interrupts.
e Types 5 to 31 are reserved by Intel for future use.
e Types 32 to 255 are available for maskable interrupts.

Our focus in this lab is on software interrupts.

PART II Pre-Lab

1. Review the material in your textbook talking about the concept of Interrupts.

PART III Practices

3.1 PRACTIC I: Activating the Interrupt Service Routine Manually

You have notices that Interrupt Vector table contains addresses for Interrupt Service Routines
(ISPs). These Routines can be activated by executing their code. One way to do so is using “INT n?”
Assembly instruction. This instructions activates the ISP its address loaded in vector number “n”.

Step 1: Open Command Dos Terminal and execute “Debug”.
Step 2: Assemble the following code to offset 100.
-INTO

Step 3: Run the program using G (Make sure the IP value is 100).

TASKS:
1. Explain what does “INT 0” do?

3.2 PRACTICE II: Activating the Interrupt Service Routine Automatically

Sometimes, ISP can be called automatically as a response of a specific situation or operation. For
example ISP 0 is activated whenever there is a division over zero.

Step 1: Run the Debug program.
Step2: Assemble the following program

MOV AX, 1234
MOV CL,0

DIV CL

INT 3

Step 3: Run the program using G.

TASKS:
1. Explain the result (Notice Figure 3)?
2. INT 3 used to set break point and stops the executions. If this instruction was removed, will
there be any changes in the result?

I n: Interrupt number

=+ Command Prompt

Microzsoft Windows HFP [Version 5.1.260881
CC» Copyright 1985-20001 Microsoft Corp.

C:sDocuments and Settingssabedl_karim:DEBUG

Divide overf low

C:~DOCUME™1~ABEDL_"1>

Figure 3 Activating ISP Automatically

3.3 PRACTICE III: Activating Interrupt Service Routine Manually
(Another Way)

What happened in the first practice was calling the ISP using an assembly instruction. This
instruction actually refers to the Interrupt Vector table each time it is executed. It goes there and
gets the address for the specified interrupt number, all what it needs is getting the Segment address
and the offset.

What we are trying to do in this practice is changing the CS and IP to the address of the ISP number
0 and executing using G. This supposed to work as it works with “INT 0” instruction.

Step 1: Run the debug program.
Step 2: Run the R command and check the content of the registers.
Finding Out the Address for ISP # 0

Step 3: The vector table is located in the address 0:0 on the memory, Display the content of
memory at this address (Hint: use D command).

Step 4: The address of interrupt service routine corresponding to INT 0 is located the range 0-3 as
shown in table below

3 Segment (high)
2 Segment (low)
1 Offset (high)

0 Offset (low)

Find out the values for ISP # 0 address.
(P.S.: The values of segment and offset below are not necessary the same on your PC)

Step 5: We can run the interrupt service routine by making the CS register points to the
code segment that the interrupt service routine located in it and making the IP register points to the
start address of the interrupt service routine. (Hint: Use R command)

Step 6: Use G to execute the program start at address CS:IP.

TASKS:
1. You should notice that the results of this practice and Practicel are the Same.
2. What s the routine address of INT F stored in the Interrupt Vector Table?

=+ Command Prompt

JCUME™1~ABEDL_™1 *DEBUG

"D Bz
AAD0:0060 |68 19 A7 89 BB 81 78 BA-16 @8 8D B3 8B Bi
| 3 ’ 7 PG B G F B3

ac 82 @A A4 BC 3R B8 8D a1
BD B3 #8 B8 8] 2 88 8D FF 83
5[nd @y § - LD B4
HA @9 Bl 1 A2 D - 5 L 1
HE BC : ac H Al
ab B6 BAC B2 A4 PA 37 Bt 20

1P BB
11868

q
Divide overf low

S DOCURME™1SABEDL_™1 >

Figure 4 Activating the ISP Manually (Another Way)

3.4 PRACTICE IV: Creating Your Own ISP

Now, to change the INT response. What about replacing the code of ISP 0? or maybe creating a
new code and replace the vector values with its address? We can write our routine and make it run
when dived by zero occur by putting the address (segment and offset) of our new routine in
memory location 0-3.

Out task: is to rewrite the interrupt routine for INT 0 to display AAAA when a divide by zero
occur.

Step 1: Run the debug program.
Step 2: Assemble the following program to offset 100

MOV CX,4

L1: MOV DL,41
MOV AH,6

INT 21

LOOP L1

INT 3

Notice that the first instruction should be at address CS:0100.

Step 3: Change the address of interrupt service routine corresponding to INT 0 To be
CS:0100 (Hint: Use E command) (Notice Figure 5).

—E B:0
HABB:0008 68.00 18.681 n?.62 Aa.13

Figure 5 Changing the Values of INT 0 Vector Entry

Step 4: Now we can test the new interrupt routine by making a program that makes a division by
zero (e.g. Practice II)

Code Example:

MOV CL,0

MOV AX,5043

DIV CL

INT 3

Notice that when we execute the program AAAA is displayed instead of divide overflow (Notice
Figure 6).

1362:018C MOU CL.A@
1362:A10E MOU AX.5043
1362:0111 DIV CL
1362:0113 INT 3
1362:0114

NX=B641 Bxi=00080 CX=-8088 DX-8841 SP=FFEB BP=-8000 S%EBEgBNﬁDI=BBEB

DS=1362 ES=1362 §88=1362 (S=1362 IP=016B NU UP DI
1362:818B CC INT 3

PO NC

Figure 6 Test the new INT 0

8

3.4 PRACTICE V: Creating Your Own ISP Using TASM

In this practice we would work on installing a new interrupt service routine for interrupt
number 62.

Setp1: Write down the following code and save it to an Assembly file.

.MODEL TINY
.CCDE
L3TACE 100h

MEZ3 DB "WELCOME TO 511 LAEB §*

HYINT PROC

1
&
&
4
5 JMP INSTALL
[}
-
=]
9 MOV BX ,OFFZET HME3IS

10 MOV DL ,z0

11 Li:

12 MOV AL ,CS5: [BX]

13 CMP AL,'§!

14 JZ LZ

15 PUSH BX ;WE WILL NEED IT
1a MOV BEH,0 ;3EE INT 10H, AH=Z
17 HOV AH,Z

15 HOV DH,z20

19 IHC DL

20 IHT 10H

21 MOV AH,9H

e ;/3EE INT 10 FUMCTION LH=9
#a MOV EH,C

EEE MOV EBEL ,S4H

Z5 HOV CX,1

Z6 IHT 10H

27 POP BX

Z8 IHC BX

Z9 JHP L1

30 LZ:

31 IRET

32 MYINT ENDF

33

34 INSTALL:

35 s INSTALL NEW INTERRUFT VECTOCR.
36 MOov AH, Z5H ; =set wector
37 MOV AL, 6ZH : interrupt vector
38 Mov DX, C8

38 Hov DS, DX

40 Mov DX, OFFZET MYINT

41 INT z1H

42

43 f/ TERMINATE AWND 3ITAY ;//REIIDENT.
44 MoV AX, 3100H

45 INT z1H

45 END

Step2: Compile and build this ASM file and execute it on MDA-8086 Kit. (How? Review Exp#1 Intro.
To MDA Kit)

Step 3: To test the code

- Open debug.
- Execute the instruction “INT 62”. What is the result?

Another way to test the code:
- Write the following code to an assembly file

.model small
.stack 100
.code
int 62h
mov ah,4ch
int 21h
end

- Compile and run it. What is the result?
TASKS:

1. Explain what does this code do (Line by line)?
2. Whatdoes INT 21 do?

10

