Interrupts
MDA-8086 Kit

Programmable Interrupt Controller Application

Birzeit University
Information Technology Faculty

Computer Systems Engineering Department

Abstract

This experiment aims at understanding and expanding 8086 Interrupt capabilities using Intel 8259
PIC that includes reviewing Intel 8259 control, its initialization and operational modes.

PART I Theoretical Introduction

The 8086 interrupts can be classified into three types. These are

1. Predefined interrupts
2. User-defined software interrupts
3. User-defined hardware interrupts

The interrupt vector address f or all the 8086 interrupts are determined from a table stored in
locations 00000H through 003FFH. The starting addresses for the service routines for the
interrupts are obtained by the 8086 using this table. Four bytes of the table are assigned to each
interrupt: two bytes for IP and two bytes for CS. The table may contain up to 256 8-bit vectors. If
fewer than 256 interrupts are defined in the system, the user need only provide enough memory
for the interrupt pointer table for obtaining the defined interrupts. The interrupt address vector
(contents of IP and CS) for all the interrupts of the 8086 assigns every interrupt a type code for
identifying the interrupt. There are 256 type codes associated with 256 table entries. Each entry
consists of two addresses, one for storing the IP contents and the other for storing the CS contents.
Each 8086 interrupt physical address vector is 20 bits wide and is computed from the 16-bit
contents of IP and CS. For obtaining an interrupt address vector, the 8086 calculates two addresses
in the pointer table where IP and CS are stored for a particular interrupt type. For example, for the
interrupt type nn (instruction INT nn), the table address for IP=4xnn and the table address for
CS=4xnn+2. For servicing the 8086's nonmaskable interrupt (NMI pin), the 8086 assigns the type
code 2 to this interrupt. The 8086 automatically executes the INT2 instruction internally to obtain
the interrupt address vector as follows:

Address forIP =4 x 2 =00008H
Address forCS=4x 2 +2=0000AH

The 8086 loads the values of IP and CS from the 20-bit physical address 00008H and 0000AH in
the pointer table. The user must store the desired 16-bit values o f IP and CS in these locations.
Similarly, the I P and CS values for other interrupts are calculated. The 8086 interrupt pointer table
layout is shown in Figure 1.

[nterrupt type code 20-bit Memory Address

o o

. [P | 00000H
Cs 00002H

| [P 00004H
Cs 0oooeH

s 00008H
N 0000DAH
155 [P O03FEH
- s 00400H

Figure 1 Interrupt Vector Table

In response to an interrupt, the 8086 pushes flags, CS, and IP onto the stack, clears TF and IF
flags, and then loads IP and CS from the pointer table using the type code. Interrupt service routine
should be terminated with the IRET (Interrupt Return) instruction which pops the top three s tack
words into IP, CS, and flags, thus returning to the right place in the main program. The 256
interrupt type codes are assigned as follows;

e Types 0 to 4 are for the predefined interrupts.
e Types 5 to 31 are reserved by Intel for future use.
e Types 32 to 255 are available for maskable interrupts.

Our focus in this lab is on software interrupts.

PART II Pre-Lab
(This part should be handed on to the teaching assistant in your Lab)

1. Review Intel 8259 Programmable Interrupt Controller and its modes of operation. Make
sure you read the datasheet.

2. What would be the I/0 ports for the 8259 if direct addressing mode is used with only 8086
A4 being “1” and 8086 A1 being connected to A0 of 82597

3. Study the TO-DO Practices and write down the values for ICW1, ICW2, and ICW4?

4. What values of OCWs are needed?

PART III Practices

3.1 PRACTIC I: User Defined Software Interrupts

The user can generate an interrupt by executing a two-byte interrupt instruction “INT nn”1. The
“INT nn” instruction is not maskable by the interrupt enable flag (IF). The “INT nn” instruction can
be used to test an interrupt service routine for external interrupts. Type codes 0 to 255 can be used.
If predefined interrupt is not used in a system, the associated type code can be utilized with the
“INT nn” instruction to generate software (internal) interrupts.

Setp1: Write down the following code and save it to an Assembly file.

1

2 CODE SEGHENT

3 LESTME 1 CODE 1 ZODE, tCODE 1 CODE
4 H

5 V_TAE EQU *

6 SEG D EQmT

7 H

g QRG

9 HOV +HEG_D
10 HOV .
11 MOV .V_TAiE
1z HOV OFFSET INT SER
13 MOV WORD FTR [BX],
14 H
15 IHC
16 IHC
17 H
15 HOV .
19 MOV WORD FTE [BX],
20
z1 HOV .
22 HOV .
23 IHT
24 HOP
25 HOP
26 IHT
27 H
28 INT_SER: ADD .
EiE] IBET
30
31 CODE ENDS
82 END
33

Figure 2 Code 1

Step2: Compile and build this ASM file and execute it on MDA-8086 kit. (How? Review Exp#1 Intro.
To MDA Kit)

Lnn: Interrupt number

TASKS:
1. Explain what does this code do?
2. What does INT 21 do? (after executing the code)
3. What s the content of AX after executing the code/

3.2 PRACTICE II: 8259a Interrupt Control (Polling Technique)

The Intel 8259A Programmable interrupt controller handles up to eight sectored priority
interrupts for the CPU. It is cascade-able for up to 64 vectored probabilities interrupts without
additional circuitry. It is packaged in a 28-pin DIP, uses NMOS technology and requires a single + 5V
supply. Circuitry is static, requiring no clock input. The 8259A is designed to minimize the software
and real time overhead in handling multi-level priority interrupts. It has several modes, permitting
optimization for a variety of system requirements. Refer to 8259A data sheet for more detail. The
8259A and MDA-8086 interface is shown in Figure 3.

(wse_13) 1l q1]2 ¢
ADDRESS BUS >-\ $ -3 oo :
5 2 N (Usa_17)
1
Ui] Tileaz u4z
1 24 50 12 12 _
A TR E T B ® 2
iz woa| 22 :s cas? WS
she HED ’ e Tl)28 LiLL3 RE3
4 L
& 19 A
71e Vos| 18 ' 1 oa ol 18 UB2E % e
& ph'ed I F) K] 2 it T 3 IR2
a7 /O3 = 2 g | R0 19 1 —_
8 102 02 "2 + 6 o
e vorf 12 3o R3| 53 74HC14
119] - 04 R4 C2
o 12 denp |13 5 g he irs | 23 = 182
% loe Ire| 24
ot 27v1e o7 "7
Ferd el
8252
{ura_14)
}(y — 5
U4 _15) [}
DATA BUS } 7y 4 @

F4L532

Figure 3 8259A and MDA-8086 interface

The IR2 interrupt request input of the 8259A is connected to press-button switch such that
whenever it is pressed an interrupt request is generated to the CPU (active low input).

Figure 4 shows the PPI connectivity with the LED farm.

LEDs FARM

kLR
| R
ABCOEFGP
) Ndde{d9u _'\R;
APPLICATION PORT R
Lpe M
rrm— LT RE$5SSE53 R g
e B R U R
oo . m Erlle il
LR N ﬁ % o &
5882 - (4] g & 8 %
VI,L) Pe8 . -ZLPH—/ ; -;
i r% 4 2
DATA BUS m G % 12 ! LED to 8255A
. o == fa:”7 = mn LEDH —PBO
.) Ll i:ts‘ ﬂj, LED12— PBf
0 Y,) ==
Tal: gﬁ:g LED13— PB2
Cim R LED14— PB3
4
o [
5550

Figure 4 PPI Connectivity with the LED Farm

Practice Goal: Write an Assembly program that will control the LEDs such that only one LED is lit
every time you send an interrupt to the CPU by requesting a service via the IR2 input to the 8259
controller? The LEDs circulate one at a time in response to an interrupt.

Needed Info: The 8259 is initialized with the following features:

ICW4 is needed

Edge triggered mode
An address interval of 8
Single mode

Interrupt vector of 40H
Normal end of interrupt
Non-buffered mode

Not SFNM

PN AW

Setp1: Write down the following code and save it to an Assembly file. (Code is not complete.
Complete it as required)

W -1 ;oo W o

fe S = T = S = YN TN N O o O N T O O [- - S R . St O 1 N U T P T B PV P T S I S I T S S S S A T e e e e e
L e 1 B O . J Y R = Ry [- SR v Y e LV ' O (R iy Y R S S B o o SR B I Y~ R S S o Vi S B B T]

CODE

ASIUNE

PPIC C
PPIC
PPIE
PFIL
INTA
INTA2
ORG

H

SJEGMENT

EQU 1FH
EQU 1DH
EQU 1EH
EQUT 19H

EQu
EQU

1000H

CALL INIT

MOV
ouT

MOV
ouT

MOV
ouT

MOV
MOV
ouT

Lz: MOV
ouT
IH

AL ,10000000E
PPIC_C,AL

AL, ,11111111E
PPIA AL

AL ,00000000E
FPIC AL

AH,11110001E
AL ,AH
FPIE,AL

AL, H
INTA,AL
AL,INTL

TEST AL,

JZ

SHL

TEST

JHZ
OR
JHMP

Lz

AH, 1

L1
AH,11110000E
L3

; LEI' out

Li: MOV
L3: MOV
ouT

AH,11110001E
AL ,AH
PPIE,AL

; EOI command

MOV
ouT
JHEP

INIT

AL, ; send non-specific EOI

INTA,AL
Lz

PROC HEAR

;ICHL

; ICWZ interrupt vector

s ICH4
;interrupt mask

BET
INIT
CCDE

END

ENDF

ENDS

Enshle Poll comnahd oh interrupts

AH, 000100008

C5:CODE,D5:CODE,ES:CODE,55: CODE

SFee Poll commnand on page 16 of 5259 datasheet

(OCH2)

Figure 5 Code 2

Qe Ch]

Step2: Compile and build this ASM file and execute it on MDA-8086 kit. (How? Review Exp#1 Intro.
To MDA Kit)

TASKS:
1. Explain what does this code do?
2. What do we mean by Polling? Why polling is used?
3. What does EOI assembly instruction do?

3.3 PRACTICE III: 8259a Interrupt Control (Interruption Technique)

Practice Goal: The task now is to control the seven-segment display to count from 0 to 9 and back
to 0. The display can advance from one digit to the next only when IR2 switch is pressed. You may
reference back to your work from experiment 9.

Setp1: Write down the following code and save it to an Assembly file to achieve the required goal.
(P.S.: Code is not complete. Complete it as required)

1

Z CODE SEGMENT

3 LISTME (CS5:CODE,DS:CODE,ES:CODE,S55:CODE
4 H

5 PPIC_C EQU

& PPIC EQi

7 PPIE EQT

5 PPIA EQT

a H

10 INTA EQi

11 INTAzZ EQi

1z H

13 INT W EQT *4: for service routine
14 H

15 STACE EQi

16 H

17 ORG

15 H

19 XO0R BX,BX

z0 MOV ES,BX

21 MOV DS, A%

22 MOV 55 ,BX

23 MOV SP,STACK

24

25 MOV AX,OFFSET INT SER
28 MOV EX,INT ¥

27 MOV WORD FTE ES: [BX] ,AX
28

EE] XOR AN, AX

30 MOV WORD FTE ES: [BE+:Z] AX
31

Lol
o

CALL INIT

o

Lt ;Initialize

a5 ;PRIC ©

36 ;PPIE

37 ;PPIC

38

39 MOV ST ,OFFZET DATA ;o ovou may use different ways [(Exp9)
40 MOV AL,BYTE FTE CS5:[5I]
41 0uUT PPIR AL

42 H

43 STI

44

45 ;Infinit Loop

46 L2: HOP

47 JHMP L2

45 H

49 H

50 INT 3ERVICE:

51 H

52 L3: OUT PPIL AL

53 IHC 51

54 ; EOQOI command

55 STI

56 IRET

57 INIT PROC HEAR

55 s ICwL

58 ;ICWHE interrupt wector
&0 s ICTE

a1 ;interrupt mask

G2 BET

63 INIT ENDFP

64 H

55 DATA: DE
66 CODE END3
567 END

Figure 6 Code 3

Step2: Compile and build this ASM file and execute it on MDA-8086 kit. (How? Review Exp#1 Intro.
To MDA Kit)

TASKS:
1. Explain what does this code do?
2. What is the difference between Code 3 and Code 2, are they checking the Interrupt
occurrence in the same way?

3. How come results changes on the Seven Segment while the CPU enters an infinite loop?
(Look @ line 46)

3.4 PRACTICE IV: 8259a Interrupt Control (Interruption Technique)
(C Code)

Practice Goal: We need to use C programming to perform Practice 111, but for counting from A to F?

Setp1: Write down the needed code and save it to C file to achieve the required goal. (P.S.: User the
following code. Complete it as required)

1

Z #include "mdes056. kT
3 f#define INT W Ox4z2
4

5 int datall = { }:

& int index = :

7

g woid walt{long del)

g {

10 T‘ while{ del-- }:

11 }

1z

13 /% Procezs Interrupt Routine #/
14 woid int_ser{woid)

15 =i

16 INTERRUPT_ IN:

17

15 index ++:

19 if{ index >=) index =
20 outporth{ FPI1 A, data[index] }:
21
22 f% 2ol command
23 outporth{ INTL,)
24
25 asm pop ds:
26 asm pop es:

27 asm pop dx:

28 asm pop Cx:

22 asm pop bx:

a0 asm pop ax:

31 asm pop di:

55 asm pop =1

33 asm i1ret;

34 o |

10

35

36 woid maindwvoid)

37 B

38 unsigned long far *intwvect ptr;

39

40 intvect ptr = {({unsigned long far #)0):

31

4z /¥ Init G259 */

43 asm CLI;

44

45 outporth{ INTL, b A% ICWL 7
46 outporth{ INTAZ, | A% ICWEZ interrupt Wector 7
47 outporth{ INTLZ, ¥ A% ICT4 wf
43 outporth{ INTAZ, | f£% interrupt mask w
49

50 J¥ 8255 Initial */

51 outporth{ PPI1 CE, ¥

5z outporth{ PFI1 E,)

53 outporth{ PPI1 C, ¥

5q outporth{ PPI1 A, ¥

EE

56 f% Define Interrupt Wector Takhle *f

57 *{intvect ptr+INT ¥) = { unsigned long }int ser;

ka8

59 asm 3TIL;

&0

gl whilef{ 1} :

G2 -}

Figure 7 Code 7

Step2: Compile and build this ASM file and execute it on MDA-8086 kit. (How? Review Exp#1 Intro.
To MDA Kit)

TASKS:
1. Explain what does this code do (Line by Line)?
2. What does “asm” Instruction mean?
3. Explain how can you find what does “INTURREPT_IN” instruction does?

11

Bibliography
Tech., MEDAS. 2008. MDA 8086 Kit User Manual. Korea : s.n., 2008.

12

