# Programmable Interval Timer (PIT) MDA-8086 Kit Application

**Birzeit University** 

Information Technology Faculty

Computer Systems Engineering Department

#### Abstract

This experiment aims at to understanding, configuring and testing the 8253/4 Programmable Interval Timer (PIT) devices, on the MDA 8086 kit and Personal Computers.

# **PART I Theoretical and Technical Introduction**

### 1.1 The 8254A PIT in the personal computer

#### **1.1.1 Introduction**

The 8254A Programmable Interval Timer (PIT) is a counter and timer that provides three channel timers. All channels are driven by a 1.19MHz oscillator signal. Each "tick" of the PIT generates hardware interrupt request 0.

#### **1.1.2 Timer channel differences**

There are some differences between the three timer channels.

#### Counters 0 and 2:

- Are independent 16-bit counters.
- Can be preset.
- Can count in BCD (Binary Coded Decimal) or in binary.

#### Counter 3:

- Is only 8 bits.
- Can be preset.
- Counts in binary only.
- Can only count downward.

### 1.1.3 System Timer Modes

The system timer has six modes:

| Mode | Name                             |
|------|----------------------------------|
| 0    | Interrupt on Terminal Count      |
| 1    | Hardware Re-triggerable One-Shot |
| 2    | Rate Generator                   |
| 3    | Square Wave Generator            |
| 4    | Software Triggered Strobe        |
| 5    | Hardware Re-triggerable Strobe   |

#### 1.1.4 Common timer mode operations

All modes have the following operations in common:

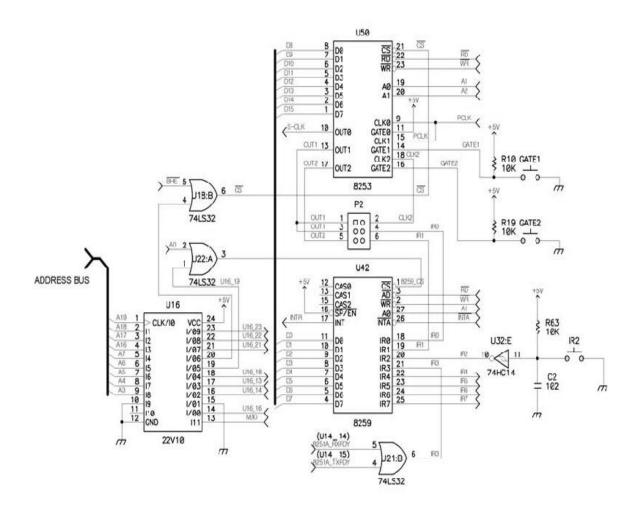
- The counter logic is reset when control bytes are written to a counter.
- Counters do not stop when they reach zero.
- In modes 0, 1, 4 and 5, the counter wraps to the highest possible count, and continues to count.
- In modes 2 and 3, the counter reloads the initial count and continues to count.

#### **1.1.5 Timer Channels**

The following table describes the functions of the timer channels. The system timers are treated as a series of I/O ports. There are three counter registers, and two control registers.

| Channel                      | I/O Port | Read/Write Status |
|------------------------------|----------|-------------------|
| 0 System Timer               | 0040h    | R/W               |
| 2 Tone Generator for Speaker | 0042h    | R/W               |
| 3 Watchdog Timer             | 0044h    | R/W               |
| Control Register 0, 2        | 0043h    | W                 |
| Control Register 3           | 0047h    | W                 |

The speaker is controlled by the following I/O port


| I/O Address | Read/Write Status | Description                                  |
|-------------|-------------------|----------------------------------------------|
| 0061h       | W                 | System control port B, Where:                |
|             |                   | Bit 7 = 1 Reset timer 0 output latch (IRQ 0) |
|             |                   | Bits 6-4 = Reserved                          |
|             |                   | Bit 3 = 0 Enable channel check               |
|             |                   | Bit 2 = 0 Enable parity check                |
|             |                   | Bit 1 = 1 Speaker data enable                |
|             |                   | Bit 0 = 1 Enable timer 2 gate to speaker     |

\* See the data sheets of the 8254A chip.

**P.S.** In this Experiment, we will use the 8254 timer 2 to generate different tones.

### 1.2 The 8253 PIT in the MDA-8086 Kit

Study the schematics shown in (Figure 1) for the 8253 PIT interface on the MDA-8086 kit.





Recall the I/O port addresses for the 8253 on the MDA-8086 kit: 09H : TIMER 0 REGISTER 0BH : TIMER 1 REGISTER 0DH : TIMER 2 REGISTER 0FH : CONTROL REGISTER

# PART II Pre-Lab

(This part should be handed on to the teaching assistant in your Lab)

- 1. Review the PIT different modes and configuration from your microprocessor book and/or the 8253/4 datasheets.
- 2. Review the material about the PITs in the personal computer and the MDA 8086 kit.
- 3. Prepare all necessary code for the practices.

# **PART III Practices**

### **3.1 PRACTICE I: Configuring PIT on PC**

**Step1:** Using Dos Command prompt, start **debug**.

**Step2:** Type the following instructions.

O 42 11 O 42 11 O 61 33 O 61 32 O 42 55 O 42 3F O 43 B0 O 42 11 O 42 11 O 42 FF O 42 FF

What frequency dos drive the speaker? What is the effect of this operation 3, 4, 5?

#### TASKS:

- 1. Explain the above instructions one by one and show what is the result for each of them?
- 2. Find the control word at address 43 that enables the speakers with frequency of the count 1111.
- 3. What is the mode in which the timer operates?
- 4. What frequency dos drive the speaker
- 5. Write an assembly program that enables the speaker with the tone frequency about 5 KHz, 7 KHz, 12 KHz.
- 6. Modify the program so that the sequence of tones is repeated with a certain delay interruption between tones and about two seconds of interruption between the set of tones.

## 3.2 PRACTICE II: Configuring PIT on MDA-8086 Kit

Look-up the components on your kit guided by (Figure 1), and familiarize yourself with the hardware, especially U50, GATE1 and GATE2.

**WARNING**: Don't touch any exposed wiring or the pins of any of the ICs.

**Step 1:** Configure the P2 connector using a jumper cap as shown in (Figure 2).



Figure 2 P2 Configuration

**Step2:** Write the following code and save it.

| 1  | CODE S   | EGMENT                            |
|----|----------|-----------------------------------|
| 2  | ASSUM    | E CS:CODE,DS:CODE,ES:CODE,SS:CODE |
| 3  | ;        |                                   |
| 4  | PPIC_C E | QU 1FH                            |
| 5  | PPIC E   | QU 1DH                            |
| 6  | PPIB E   | QU 1BH                            |
| 7  | PPIA E   | QU 19H                            |
| 8  | ;        |                                   |
| 9  | CTC1 E   | QU OBH                            |
| 10 | CTCC E   | QU OFH                            |
| 11 | ;        |                                   |
| 12 | INTA E   | QU 10H                            |
| 13 | INTA2 E  | QU INTA+2                         |
| 14 | ;        |                                   |
| 15 | INT_V E  | QU 40H★4                          |
| 16 | ;        |                                   |
| 17 | ORG 1    | DOOH                              |
| 18 | 2        |                                   |
| 19 | XOR B    |                                   |
| 20 | MOV E    | S,BX                              |
| 21 | ;        |                                   |
| 22 |          | X,OFFSET INT_SER                  |
| 23 |          | x, INT_V                          |
| 24 |          | ORD PTR ES:[BX],AX                |
| 25 | ;        |                                   |
| 26 | XOR A    |                                   |
| 27 |          | ORD PTR ES:[BX+2],AX              |
| 28 | ;        |                                   |
| 29 |          | INIT                              |
| 30 |          | P_INIT                            |
| 31 | ;        |                                   |
|    |          | itialization                      |
| 33 |          | L,1000000B                        |
| 34 |          | PIC_C, <mark>AL</mark>            |
| 35 | ;        |                                   |

| 36       | MOV AL, 11111111B               |
|----------|---------------------------------|
|          |                                 |
| 37       | OUT PPIA, <mark>AL</mark>       |
| 38       | ;                               |
| 39       | MOV AL,0000000B                 |
| 40       | OUT PPIC,AL                     |
| 41       |                                 |
| 42       | MOV AH, 11110001B               |
|          |                                 |
| 43       | MOV AL, AH                      |
| 44       | OUT PPIB,AL                     |
| 45       | STI                             |
| 46       | L2: NOP                         |
| 47       | JMP L2                          |
| 48       | ;                               |
| 49       | INT 3                           |
| 50       | ;                               |
|          |                                 |
| 51       | ; The Interrupt Service Routine |
| 52       | INT_SER:                        |
| 53       | SHL AH, 1                       |
| 54       | TEST AH,00010000B               |
| 55       | JNZ L1                          |
| 56       | <b>OR</b> AH,11110000B          |
| 57       | JMP L3                          |
| 58       | ; LED out                       |
|          | L1: MOV AH, 11110001B           |
| 60       | L3: MOV AL,AH                   |
|          |                                 |
| 61       | OUT PPIB,AL                     |
| 62       | ;                               |
| 63       | PUSH AX                         |
| 64       | MOV AX, OFFFFH                  |
| 65       | OUT CTC1,AL                     |
| 66       | MOV AL ,AH                      |
| 67       | OUT CTC1,AL                     |
| 68       | POP AX                          |
| 69       | ; EOI command                   |
| 70       | MOV AL,00100000B                |
| 71       | OUT INTA,AL                     |
|          | STI                             |
| 72       |                                 |
| 73       | IRET                            |
| 74       | ;                               |
| 75       | ; 8253 Initialization           |
| 76       | P_INIT PROC NEAR                |
| 77       | PUSH AX                         |
| 78       | MOV AL,01110000B                |
| 79       | OUT CTCC,AL                     |
| 80       | ;                               |
| 81       | MOV AX, OFFFFH                  |
| 82       | OUT CTC1,AL                     |
|          |                                 |
| 83       | MOV AL,AH                       |
| 84       | OUT CTC1,AL                     |
| 85       | POP AX                          |
| 86       | RET                             |
| 87       | P_INIT ENDP                     |
| 88       | ;                               |
| 89       | ; 8259 Initialization           |
| 90       | INIT PROC NEAR                  |
| 91       | ; ICW1                          |
| 92       | MOV AL,00010011B                |
| 93       | OUT INTA,AL                     |
| 93<br>94 |                                 |
|          | ;ICW2 interrupt vector          |
| 95       | MOV AL,40H                      |
| 96       | OUT INTA2, AL                   |
| 97       | ;ICW4                           |
| 98       | MOV AL,0000001B                 |
| 99       | OUT INTA2, <mark>AL</mark>      |
| 100      | ; interrupt mask                |
|          |                                 |

```
101
         NOV
                 AL,11111110B
102
         OUT INTA2,AL
103
         RET
104
             ENDP
     INIT
105
         5
106 CODE
             ENDS
107
         END
```

#### Figure 3 Code 1

**Step2:** Compile and build this ASM file and execute it on MDA-8086 kit. (How? Review Exp#1 Intro. To MDA Kit)

**P.S.** The purpose of the code is to turn on a different LED after a certain amount of time, as follows:



#### TASKS:

- 1. Explain what does this code do?
- 2. Does it match the pattern described above?
- 3. What happens when you press the GATE1 button? Explain.
- 4. Which counter are we using in the 8253?
- 5. Under which mode is the counter working?
- 6. Knowing that the input clock frequency (PCLK) is 2.5MHz, what is the delay produced by the counter?
- 7. Try changing to the other modes.

**P.S.** You may press the RESET key of the MDA-8086 kit to stop the program.

8. Change the code (and the jumpers on connector P2) to increase the delay by a factor of 5 times. (Hint: Use Timer 1 to divide the input clock frequency by 5 and feed it to Timer 2). Also, answer the questions from 1- 7 above, after completing this part.

# Bibliography

Tech., MEDAS. 2008. MDA 8086 Kit User Manual. Korea : s.n., 2008.