
1

ENCS 411 x86 Computer System Lab

MDA-8086 LCD Applications

Birzeit University

Information Technology Faculty

Computer Systems Engineering Department

Abstract

This experiment aims at understanding, configuring and testing the LCD used on the MDA 8086 kit.
Experiment includes applications such as displaying the outcome of an Analog to Digital Converter
ADC804 as a Volt Meter on the LCD.

2

PART I Theoretical and Technical Introduction

1.1 The LCD Display

1.1.1 Introduction

The LCD display is Liquid Crystal Display used to provide readable information for the user on the kit.

The LCD that we will be using in this experiment is 16 character x 2 lines. This means 16 characters per

line by 2 lines and 20 characters per line by 2 lines, respectively.

The LCD has three control lines are referred to as EN, RS, and RW.

The EN line is called "Enable." This control line is used to tell the LCD that you are sending it data. To

send data to the LCD, your program should make sure this line is low (0) and then set the other two

control lines and/or put data on the data bus. When the other lines are completely ready, bring EN high

(1) and wait for the minimum amount of time required by the LCD datasheet (this varies from LCD to

LCD), and end by bringing it low (0) again.

The RS line is the "Register Select" line. When RS is low (0), the data is to be treated as a command or

special instruction (such as clear screen, position cursor, etc.). When RS is high (1), the data being sent is

text data which should be displayed on the screen. For example, to display the letter "T" on the screen

you would set RS high.

The RW line is the "Read/Write" control line. When RW is low (0), the information on the data bus is

being written to the LCD. When RW is high (1), the program is effectively querying (or reading) the LCD.

Only one instruction ("Get LCD status") is a read command. All others are write commands--so RW will

almost always be low.

3

1.1.2 PIN Connection

The LCD has the following PIN Connection. Usually the LCDs has the same pins structure.

4

1.1.3 INSTRUCTIONS

5

1.1.4 INITIALIZING SEQUENCE

SEQUENCE
POWER ON

⇓
Wait till VCC is 4.5V min

⇓
RS = 0, WRITE 38H * (Execution time : 40 ㎲)

⇓
RS = 0, WRITE 0EH (Execution time : 40 ㎲)

⇓
RS = 0, WRITE 08H (Execution time : 40 ㎲)

⇓
RS = 0, WRITE 02H (Execution time : 1.64 ㎳)

⇓
RS = 0, WRITE 01H (Execution time : 1.64 ㎳)

⇓
RS = 0, WRITE ADDR. ** (Execution time : 40 ㎲)

⇓
RS = 1, WRITE DATA ** (Execution time : 40 ㎲)

* . Should use this instruction only once in operation.
* *. ADDR is the setting data cursor position to debug. In data, MSB(D7) should be "1" and other 7 bits

(D0～D6) are cursor position.
*** . DATA mean the ASCII codes.

1.1.5 LCD Interface

Study the schematics shown for the LCD interface on the MDA-8086 kit.

6

1.1.6 CHARACTER FONT TABLE

NOTE : CGRAM is a CHARACTER GENERATOR RAM having a storage function of character pattern which
enable to change freely by users program

7

PART III Practices

3.1 PRACTICE I: SCROLLING A MESSAGE ON LCD in ASM

WARNING: Don’t touch any exposed wiring or the pins of any of the ICs.

Step1: Write the following code and save it.

CODE SEGMENT
ASSUME CS:CODE,DS:CODE,ES:CODE,SS:CODE
;
; STACK EQU 0540H
;
LCDC EQU 00H
LCDC_S EQU 02H
LCDD EQU 04H
;
1000 ORG 1000H
;

XOR AX,AX
MOV SS,AX
MOV SP,STACK

;
CALL ALLCLR

;
CALL ENTMODE

 L1:
CALL CUSOR1
MOV SI,OFFSET DATA
 CALL STRING
JMP L1

;
DATA DB '8086 Training Kit Good !',00H
;
; LCD instruction
ALLCLR:

MOV AH,01H
JMP LNXX

;
ENTMODE:

MOV AH,00000111B
JMP LNXX

;
CUSOR1:

8

MOV AH,90H
;
LNXX:

CALL BUSY
MOV AL,AH
OUT LCDC,AL
RET

; busy flag check
BUSY:

IN AL,LCDC_S
AND AL,10000000B
JNZ BUSY
RET

;
; 1 char. LCD OUT
; AH = out data
CHAROUT:

CALL BUSY
;

MOV AL,AH
OUT LCDD,AL
RET

;
STRING:

MOV AH,BYTE PTR CS:[SI]
CMP AH,00H
JE STRING1

; out
CALL BUSY
CALL CHAROUT
INC SI
CALL TIMER
JMP STRING

STRING1:

RET
;

TIMER:

MOV CX,1
TIMER2: PUSH CX
MOV CX,0

TIMER1:
NOP
NOP

9

NOP
NOP
LOOP TIMER1
POP CX
LOOP TIMER2
RET

;
CODE ENDS
END

TASKS:

1. Explain how the code works?

2. What is the purpose of code under the LNXX label?
3. Modify the code above to display your name.

10

3.2 PRACTICE II: DISPLAY ON LCD in C

Step1: Write the following code and save it, and upload it to the Kit.

#define _LCD /* You must define it, because using LCD Function in the HeaderFile. */
#include "mde8086.h"

/* To the LCD Output String(Delay One character) */
void string(char *str)
{

while(*str) {
LCD_putch(*str);
str ++;
wait(10000);

 }
}

void main(void) /*my not need this line if compiled in Linux*/
{

LCD_init; /* LCD Initial */
string("Serial monitor !");
LCD_LN21;
string("Midas 335-0964/5");
do {

LCD_DISPOFF;
wait(20000);
LCD_DISPON;
wait(20000);

 } while(1);
}

TASKS:

1. Explain how the code works?

2. What is the purpose of following instructions:
a. LCD_init
b. LCD_DISPOFF
c. LCD_DISPON

3. Modify the code above to display your name.
4. Write a code that emulates the result of the assembly code in Secion 3.1 . Use the help of the

following fuctions.
a. LCD_init;
b. LCD_ALLCLR;
c. LCD_puts("TEXT");
d. LCD_RShift;
e. wait(#);

11

3.3 PRACTICE III: DISPLAY OUTPUT of ADC804 on LCD

The ADC804 is an 8-bit analog to digital converter with a resolution (step voltage) of

 -Vref / 255

NOTE: Students are expected to review their course material on ADC804 as well as DAC830

converters. This part only deals with the ADC804 as it uses the LCD. Lab instructor may demo the

usage of the DAC830 as well if time permits.

The ADC schematics portion is shown below;

Execute the following steps:

1. Set the DIP2 switch near ADC0804 as follow (i.e. switch 4 is ON)

12

2. Move the jumpers on P6 as follow;

3. Execute the C code below, then

4. Turn volume resister (VR2), potentiometer, around and observe the changes on the LCD

CODE TO EXECUTE:

#define _LCD

#include "mde8086.h"

/* Output Fixed Point

 v : Output Data

 max : Output Location(Integer Inclusion)

 point : Point Location

*/

void LCD_putf(long v, int max, int point)

{

 char temp[20];

 char temp1[20];

 int len, i;

 ltoa(v, temp, 10);

 memset(temp1, '0', max);

 temp1[max] = 0;

 len = strlen(temp);

 memmove(temp1+(max-len), temp, len);

13

 /* Output Integer */

 for(i = 0; i < max-point; i ++) LCD_putch(temp1[i]);

 LCD_putch('.');

 LCD_puts(temp1+i);

}

void main(void)

{

 long v;

 char buf[20], temp[10];

 int i;

 LCD_init;

 LCD_puts(" Volt Meter");

 do {

 outportb(ADC, 0xff);

 wait(20000);

 v = inportb(ADC)*(500000I/256);

 v /= 100;

 LCD_Iout(0xc5);

 LCD_putf(v, 4, 3);

 LCD_puts(" V");

 } while(1);

}

TASKS:

1. Explain the following lines of the do loop:

v = inportb(ADC)*(500000I/256);

 v /= 100;
 LCD_Iout(0xc5);

14

 LCD_putf(v, 4, 3);
 LCD_puts(" V");

2. Make changes to display the outcome in milli-volt, i.e. mV.

