

[image:]

Faculty of Information Technology
Computer Systems Engineering Department
COMPUTER DESIGN LAB #ENCS411
EXP #5

 Programmable Interrupt Controller Application

Name : Mohammad Modallal
ID : 1120174

Section# : 3
Dr. Khader Mohammad
Date:30/3/2015

Contents
1	Abstract	3
2	Introduction to Interrupt	4
 2.1 Defnition of Interrupt	4
 2.2 Type of Interrupt	4
 2.3 Interupt Vector	4
 2.4 The Operation of a Real Mode Interrupt	6
 2.5 Initialization command words	7
 2.6 operation command words	8
3 Procedure	9
3.1	User Defined Software Interrupts	9
3.2	8259a Interrupt Control (Polling Technique)	10
3.3	8259a Interrupt Control (Interruption Technique)	13
3.4	8259a Interrupt Control (Interruption Technique) (C Code)	15
4	Conclusion	16
5	References	17

1.Abstract

 The aim of this experiment is to understand the 8086 Interrupt capabilities using Programmable Interrupt Controller [PIC 8259] that includes reviewing 8259 PIC control, its initialization[ICW] and operational modes[OCW].

2.Introduction
2.1 Definition
When a Process is executed by the CPU and when a user Request for another Process then this will create disturbance for the Running Process. This is also called as the Interrupt[1].

2.2 Types of Interrupts
Generally there are three types o Interrupts :
 1) Internal Interrupt
2) Software Interrupt.
3) External Interrupt.
2.3 Interrupt Vectors
The interrupt vectors and vector table are crucial to an understanding of
hardware and software interrupts. The interrupt vector table is located in the first 1024 bytes of memory at addresses 000000H–0003FFH. It contains 256 different four-byte interrupt vectors.An interrupt vector contains the address (segment and offset) of the interrupt service procedure[2].
Figure 2–1 illustrates the interrupt vector table for the microprocessor. The first five interrupt vectors are identical in all Intel microprocessor family members, from the 8086 to the Pentium. Other interrupt vectors exist for the 80286 that are upward-compatible to the 80386, 80486, and Pentium–Core2, but not downward-compatible to the 8086 or 8088. Intel reserves the first 32 interrupt vectors for their use in various microprocessor family members. The last 224 vectors are available as user interrupt vectors. Each vector is four bytes long in the real mode and contains the starting address of the interrupt service procedure. The first two bytes of the vector contain the offset address IP and the last two bytes contain the segment address CS[2].
Each interrupt has physical address 20 bits wide and is computed from the 16-bit contents of IP and CS. For finding an interrupt address vector, the IP and CS position must be found. For example, for the interrupt type n :
The table address for IP=4×n and The table address for CS=4×n+2.
[image: C:\Users\Mohammad\Desktop\10469093_983676954995431_374804111025828951_n.jpg]

2.4 The Operation of a Real Mode Interrupt
When the microprocessor completes executing the current instruction, it determines whether an interrupt is active by checking :
(1) instruction executions
(2) single-step
(3) NMI
(4) coprocessor segment overrun
(5) INTR
(6) INT instructions
If one or more of these interrupt conditions are present, the following sequence of events occurs[2]:
1. The contents of the flag register are pushed onto the stack.
2. Both the interrupt (IF) and trap (TF) flags are cleared. This disables the INTR pin and the trap or single-step feature.
3. The contents of the code segment register (CS) are pushed onto the stack.
4. The contents of the instruction pointer (IP) are pushed onto the stack.
5. The interrupt vector contents are fetched, and then placed into both IP and CS so that the next instruction executes at the interrupt service procedure addressed by the vector.

2.5 Initialization Command Words
There are four initialization command words (ICWs) for the 8259A that are selected when the A0 pin is a logic 1. When the 8259A is first powered up, it must be sent ICW1, ICW2, and ICW4. If the 8259A is programmed in cascade mode by ICW1, then we also must program ICW3. So if a single 8259A is used in a system, ICW1, ICW2, and ICW4 must be programmed. If cascade mode is used in a system, then all four ICWs must be programmed[2].
Figure 2–2 lists the binary bit patterns for all four initialization command words of the 8259A.
[image: C:\Users\Mohammad\Desktop\images.png]
2.6 Operation Command Words
The operation command words (OCWs) are used to direct the operation of the 8259A once it is programmed with the ICW[2]. The OCWs are selected when the A0 pin is at a logic 0 level, except for OCW1, which is selected when A0 is a logic 1. Figure 2–3 lists the binary bit patterns for all three operation command words of the 8259A.
[image: C:\Users\Mohammad\Desktop\images.png]

3.Procedure
3.1 User Defined Software Interrupts
Setp1: I write the following code and save it to an Assembly file(.asm).
The following code make INT21h work as addition operation wich add the content of BX to AX and store the result in AX.This done by store the address of add instruction in the Interrupt vector table(IP=OFFSET INT_SER , CS=0) .
[image: C:\Users\Mohammad\Desktop\images.png]
Step2: I Compile and build this ASM file and execute it on MDA-8086 kit.
The content of AX after executing the code is AX=AX+BX=1234+6789=79BD

3.2 8259a Interrupt Control (Polling Technique)
Srep1:I initialize command words using this information
1. ICW4 is needed [ICW1]
2. Edge triggered mode [ICW1]
3. An address interval of 8 [ICW1]
4. Single mode [ICW1]
5. Interrupt vector of 40H [ICW2]
6. Normal end of interrupt [ICW4]
7. Non-buffered mode [ICW4]
8. Not SFNM[ICW4]
The I/O ports for the 8259 if direct addressing mode is used with only 8086 A4 being “1” and 8086 A1 being connected to A0 of 8259:
Address of I/O ports are 10H(start address) and 12H(end address).
[image:]
By using figure 2_2 the ICW`s are:
[image:]
[image:]
[image:]

By using figure 2_3 the OCW`s are:
[image:]

Setp2: I write the following code and save it to an Assembly file(.asm).I Compile and build this ASM file and execute it on MDA-8086 kit.
The following code will control the LEDs such that only one LED is lit(ON) every time i pressed the push button(send interrupt to the CPU by requesting a service via the IR2 input to the 8259 controller).
[image: C:\Users\Mohammad\Desktop\images.png]

EOI(End Of Interrupt)command: Reset interrupt in PIC after accepted by ISR.
 Polling[1]
· Polling is the process where the computer waits for an external device to check for it readiness.
· The computer does not do anything else than check the status of the device
· Polling is often used with low-level
3.3 8259a Interrupt Control (Interruption Technique)
Setp1: I write the following code and save it to an Assembly file(.asm).I Compile and build this ASM file and execute it on MDA-8086 kit.

· The following code control the seven-segment display .when i pressed the push button, the seven segment display will be incremented until it reached 9 it will go to zero again, and so 8259a used to control the lighting sequence, through software interrupts.

· The code in part 2 and 3 are checking the interrupt occurrence in different ways. In part 3 i use the interrupt to check that, since i write the ISR for INT 24H in my code. The Micro Processor remains idle (we use the infinite loop with ‘nop’ instruction) until it is interrupted (using IR2 of PIC). but in part 2,the interrupt occurrence is checking using polling command.

· How come results changes on the Seven Segment while the CPU enters an infinite loop?
The run of program stay in loop until interrupt occur.

[image: C:\Users\Mohammad\Desktop\images.png]
3.4 8259a Interrupt Control (Interruption Technique) (C Code)
Setp1: I write the following code and save it to an Assembly file(.asm).I Compile and build this ASM file and execute it on MDA-8086 kit.
· The following code is a C code to implement the same previous function but, it will count from A-F.
· asm used to insert lines of assembly language code into a C program.
· INTERRUPT_IN used to push all registers.
[image: C:\Users\Mohammad\Desktop\images.png]

4.Conclusion
In this experiment i learned the interrupt and how it implement in the interrupt vectors table(two byte for IP&to byte for CS) . Also, I learned how to defined software interrupts and how to change it`s function .I learn how to program the PIC (ICWs and OCWs). I learn how to convert the assembly code into C code and how to write assemble instructions in C code .

5.Reference
[1] http://ecomputernotes.com/fundamental/input-output-and-memory/what-is-interrupt-types-of-interrupts
[2]The Intel Microprocessors by Barry.B.Bary (Eighth Edition)
[3] http://dis-dpcs.wikispaces.com/6.5.3+Interrupts+and+Polling

	

2

image2.jpeg
FIGURE 2-1 (a) Tho inter-
uptvector bl for the micro-
processor and (b)tho con-
tonts of an intorrupt

vector.

o]

oacH

=

o]

oz

oz

oz

otcH

ot

ota]

o]

ooci

oo

oo

—

ha———

Type 22 255
Use ntamptvectors

Tie 1a—3t
Feserac

L=
—

Type 16
oprocessoramor
Type 15
Unassigned

Type 14
Page fout
Type 13
Gensrlpotecion
Typs 12
‘Stack sogmeed ovemn
Type 11
‘Sogmentnotprasent
Type 10
vtk st segment
Tes
| Coprocescr Segren verun

a5
Do it

Tyed
Overiow (NT0)
o3
e broapoint
Type2
N
Type 1
Siglesep

Type0
s e

Ao termupt vector

Sogment ih)

Segent (ow)

Ot ih)

et (o)

@

®

image3.png
cw1

A D7 D8 D5 D4 D3 D2 DI 0o

0 0 0 1 LTIM | 0 |SNGL| Ic4
FIGURE 2 - 2 The 8250A ini-
tialization command words

(ICW). (Courtesy of Intel
Corporation.)

0=IR input does not have
ICW3 (Slave Device) L asave

A0 D7 D6 D5 D4 D3 D2 DI 0o

1 0 0 0 o [0 [m2 [[0
SLAVED 1
1 01234567
01010101
“— 00110011
00001111
lcwa
A o7 D6 D5 Di_ D3 D2 DI DO
1 o o 0 | SFNM[BUF | ms |AEOl | Pm
["1 =for x86
0 =for 8085
[1= spec. fully 1 =auto EOI
nested mode | 0 =normal EOI
0= not sp. fully
nested mode

x
| 0 | buffered mode siave
1

image4.png
A o7 o6 D5 D4 D3 D2 DI DO FIGURE 2- 3 Tnhe8250A
1 M7 [M6 | M5 Ma [M3 | M2 | M1 | MO operation command words
(OCW). (Courtesy of Intel
T I I I I T I T Corporation,
Interrupt Mask
7 1 =Mask Set
0 =Mask Reset
A0 o7 D Ds Da D3 D2 D1 0O
o R st | €ol | o o 2 [u o

| Nonspecific EOI command
Specific EOI command

Rotate on nonspecific EOI command
Rotate in automatic EOI mode (set)

| Rotate in automatic EOI mode (clean) |
 Rotate on specific EOI command

110 | Set priority command

0710 | No operation |

[IR Lovel to Be

ocwa
A0 o7 D6 DS D4 D3
o 0 ESMM| SMM o 1
Special M |
01] |
—o0lo 1 I
Noaction Reset | Set = =
s Special Comma
i oty 1 0= No Poll Command

image5.png
(CODE SEGMENT
ASSUME CS:CODE, DS:CODE ES:CODE,S5:CODE

V_TAB EQU 21H*4
SEG_D EQU 0000H

ORG 1000H
MOV AX,SEG_D

MOV DS,AX

MOV BX,V_TAB

MOV AX,OFFSET INT_SER
MOV WORD PTR[BX],AX
INC BX

INC BX

MOV DX,0

MOV WORD PTR[BX],DX
MOV AX,1234H

MOV BX,6789

INT 21H
NOP
NOP
INT3
INT_SER: ADD AX,BX
IRET
CODE ENDS
END

image6.png
A0

Al

0/1

A2

155}

A4

AS

A6

A7

image7.png
ICW1=13H

D7

D6

D5

D4

D2

D1

DO

image8.png
ICW2 = 40H

D7

D6

D4

D2

Do

image9.png
ICW4=01H

D7

D6

D4

D2

Do

image10.png
OCW1 =FBH

D7 D6 D5 D4 D3 D2 D1 DO
1 1 1 1 1 0 1 1
OCW2=20H
D7 D6 D5 D4 D3 D2 D1 Do
0 0 1 0 0 0 0 0
OCW3 =0CH
D7 D6 D5 D4 D3 D2 D1 Do
0 0 0 0 1 1 0 0

image11.png
(CODE SEGMENT
ASSUME CS:CODE , DS:CODE, ES:CODE ,55:CODE
PPIC_C EQU 1FH
PPIC EQU 1DH

PPIB EQU 1BH
PPIAEQU 19H

INTA EQU 10H
INTA2 EQU 12H
ORG 1000H
CALLINIT

MOV AL, 80H

OUT PPIC_CAL
MOV AL,000000008
OUT PPIC AL

MOV AH,111100018
OUT PPIB AL

L2: MOV AL, 0CH jocw3 enable poll
OUT INTA AL

IN ALINTA

TEST AL, 80H

iz

SHLAH,1

TEST AH, 000100008
INZ L1

OR AH 111100008
IMP L3

L1: MOV AH , 111100018
L3: MOV ALAH

OUT PPIB AL

MOV AL20H

OUT INTA AL

IMP L2

INIT PROC NEAR
MOV AL13H

OUT 10H,AL

MOV AL, 40H

OUT 12H,AL

MOV AL, 01H

OUT 12H,AL

mov al ,0fbh

out 12H,al

RET

INIT ENDP

CODE ENDS

END

image12.png
CODE SEGMENT
ASSUME CS:CODE, DS:CODE,ES:CODE, S5:CODE
PPIC_C EQU 1FH

PPIC EQU 1DH

PPIB EQU 1BH

PPIA EQU 19H

INTA EQU 10H

INTA2 EQU 12H

INT_V EQU 42H*4
STACK EQU 540H

ORG 1000H

XOR BX,BX

MOV ES,BX

MOV DS,AX

MOV 55,8X

MOV sP,STACK

MOV AX,OFFSET INT_SER
MOV BX,INT_V

MOV WORD PTR ES:[BX],AX
XOR AX,AX

MOV WORD PTR ES:[BX+2],AX
CALLINIT

MOV AL8OH

OUT PRIC_CAL

MOV SI,0FFSET DATA
MOV ALBYTE PTR CS:[s]
OUT PRIAAL

sl

12:NOP.

VP 12

INT_SER:

MOV ALBYTE PTR CS:[s]
CMP ALOOH

INZL3

MOV SI,0FFSET DATA
IMP INT_SER

13: OUT PPIA AL

INCSI

MOV AL20H

OUT INTA, AL

sl

IRET

INIT PROC NEAR

MOV AL 13H

OUT INTA AL

MOV AL40H

OUT INTA2,AL

MOV ALO1H

OUT INTA2,AL

RET

INIT ENDP

DATA : DB 0COH,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H,00H
CODE ENDS

END

image13.png
#include "mde8086.h"

#define INT_V 0x42

int data[7] = {0x88,0x80,0XC6, OXCO,0x86,0X8E }; //data
charachters from A-F

nt index =0 ;

void wait(long del) //time delay

{

while(el);

i

J¥interrupt routine*/

void int_ser(void)

{

INTERRUPT_IN;

index ++;

if(index >= 6) index =0 ; //incremant until character F
outporth(PPI1_A, data[index]);

outporth{ INTA, 0x20);

‘asm pop ds;//restore the value of regesters
asm pop es;

asm pop dx;

asm pop cx;

asm pop
asm iret;

main{void)

unsigned long far *intvect_ptr;
ned long far *)0);

outportb(INTA, 0x13); /ncwi
outportb(INTA2, 0x40);//ICW2
outportb(INTA2, 0x01);//ICW4
outportb(INTA2, Oxfb);//Interrupt mask
/finitial 8255

outporth(PPI1_CR, 0x80);

outporth(PPI1_B, 0xf0);

outportb(PPI1_C, 0x00);

outportb(PPI1_A, 0xCC) ;
*(intvect_ptr+INT_V) = (unsigned long)int_ser;//define interrupt
vector

asm STI;//set interrupt flag

while(1);

N

image1.png
,‘ - , *x = ¢ .
fﬁé},‘" ’ fbv/cv"/‘
*» < ‘ Y ¢ ~ L 2

BIRZEIT UNIVERSITY

