.
BIRZEIT UNIVERSITY

Computer System Engineering Department
ENCS 511
Computer Lab

Section No: 1

Report for Experiment No.6
Interrupts
Prepared for
Dr. EMAD HAMADA

ENG. Anas Abdelraziq

By

MU'EZ ZABEN 1061287

MAHMOUD QUR’AN 1060095

Procedure:

A. Activating the interrupt service routine automatically:
To check the interrupt that relates to the error "Division on zero" which is an example of
the interrupts ,we used the commands like that on figure (1) :

e CAWINDOWS\system32\cmd.exe

Microzoft Windows XP [Verszion 5.1.2688]
CC> Copyright 1785-2001 Microsoft Corp.

C:“Documents and Settings“The Mel debug

MOU AX.1234
MOU CL.@
DIV CL

INT 3

Divide owverflow

C:\DOCUME™“1~THEME™1 >y

Figure 1

When we executed the command by the order "G" the output was "Divide overflow",
because in the code we divided some number on zero .

B.Activating the interrupt service routine manually:

We can test the interrupts each one by it self by typing it then using interrupt 3 as a break
point, like what we did in figure (2) :

AWINDOWS\system32\cmd.exe

Microsoft Windows XP [Version 5.1.26881
(C> Copyright 1985-2801 Microszoft Corp.

C:“Documents and Settings“The MeXdebug
—A

13IBE:P18@ INT @

13IBE:P1A2 INT 3

13BB:P183

Bl

Divide overflow

C : \DOCUME~1~THEME™1 >

Figure 2

C.Activating the interrupt service routine manually (another way):
Another way to use the interrupt is to call it by it's IP and CS ,which are in the figure (3) :

AWINDOWS\system32\cmd. exe

Microzsoft Windows XP [Uersion 5.1.266801
(C» Copyright 1985-2801 Microsoft Corp.

uments and Settings>The Me>Debug
a:

BB-16
A2-408
B2-34
A3-n2
B2-AA
B2-C4
B2-1F
Fa-37

Divide owverflow

C:\DOCUME~1~THEME™1>_

Figure 3

To call an interrupt we must inter it's IP and CS as shown in figure (3)m then we can
execute it by the order "G", and the address on INT F in IVT is (F*4)H=(60)H=3CH.

D. Writing my own interrupt service routine :
We can define any interrupt that we want .
In this part we changed the message that appears when interrupt zero executes .

At first the message which was "AAAA" was defined ,then we relate the interrupt zero
which we know it's IP and CS to the IP and CS of the message "AAAA" then we run
some code that had the error that relates to interrupt zero as shown in figure (4) :

oo CAWINDOWS\system32\cmd.exe - DEBUG

MOU CX.4
MOU DL.41
MOU AH.6
INT 21
LOOP 183
INT 3

68.800 18.81 A7.BB 0@.13

MOU CL.@
MOU AX.5843
DIU CL

INT 3

A
AX=0641 BX-00B8 CX-000@ DX-B041 SP-FFEBE BP-BA0A SI-0088 DI-A000
DS=13BB ES=13BB $S5=13BB CS=13BB IP-818B NU UP DI PL NZ HA PO NC
13BB:818B CC INT 3

Figure 4

E-Installing a interrupt service routine using TASM

On this example, a new interrupt service routine (62) was defined, but to understand this
code we went back to interrupt 21H function that depends on the value stored on the AH
register, on this code we need the following function numbers which are shown on
table.1, which was taken from reference[2].

Int 10H | Function 02H “select cursor position”
AH = 02H

Entry BH=page number(usually 0)

DH =row number(beginning with zero)
DL= column number(beginning with zero)
Exit Change cursor to new position

Int 10H | Function 09H “ write attribute
character/at current cursor position”
AH =09H

AL=ASCI character code

Entry BH=page number

BL= character attribute

CX=number of characters to write

notes This function call normally displays data
on the video display

Int 21H | Function 25H “ set interrupt vector”
AH =25H

AL= interrupt vector number

Entry DS:DX address of new interrupt procedure
Int 21H | Function 31 H “Terminate and stay
resident TSR”

AH =33H

AL = The DOS return code

Entry BH = Number of paragraphs to reserve for
program

Table 1

e The code of figure. code was saved as 2.asm, and then executed by writing the
following command on the ms-dos window:

CA\>TASM MATRIX_2.ASM; open tasm assembler

C:\>TLINK MATRIX_2.0BJ; convert from .asm to .exe

C:\>exe2bin MATRIX_2.EXE; convert from.exe to bin

C:\>binZhex MATRIX 2.BIN MATRIX_1.HEX; convert from bin to hex

[S VR I L% I S

=] & Ln

I R
[0 TR - T T % T e e B R o v

=
1

[

=

Y]

]
-]

Y S T o T e N W O o S [o T o 1 Y S o O L Y

~1 @ tn

[T ¥ Ry w v

U Y - Y . SO S 7 N VS TN 7% N N % T o Y S T T ST o T % T S O e Y S T e Y S T S T S T % T L

Ly k2

MODEL TINY

. CODE

.8BTRCE 100h: set €5=100h

MOV B, CFFSET MESS : get offset address of the messege

MOV DL, 20

Haisiaisher FU PV P e

Ll:

MOV AL, CS: [BX]: move the Ist charachter of the string messege into AL register
CMP AL,'S':

JZ L2

Raisialaie? VU PV Pl el

PUSH EBX WE WILL NEED IT

MOV BH, O : 10H. AH=2. set crusure position
MOV AH,Z

MOV DH, 20: row number

INC DL: column number

INT 10H

aisiaiale? SV 7 VI Y dai

MOV AH, 5H: write attribute character/at current cursor pasition, INT 10 FUNCTION AH=%
MOV EH, O: poge number

MOV BL, 2 4H; charachter attribute

MOV 2, 1:number of charachters to write
INT 10H

POP EIC get back the value of BX

INC B to point to 2nd charachter

JMP INSTATLL

Raitisialel VUV VUV isiaisiiaiinl

MESS DE "WELCOME To 511 LAE 5" the messege we want o display
MYTNT EFROC

JMP L1

L2:

IRET

MYTNT ENLE

LS

= MOV
41 MOV
49 MOV
MOV
MOV
INT

W k= o

i

en

M
INT
END

|

n o n n n n N en

45 INSTALL:

Hdh

44 TMNSTALL NEW INTERRUPT VECTOR.

: INT 21H WITH AH =256 FUNCTIOMN :5ET VECTOR
: interrupt vector number
5 :DS5:DX is the address of the interrupt number

CEFFSET MYINT

: call interrupt 21H +o do the specified function set vector table

s IMT 21H WITH AH =31H FUNCTIOM : Terminate and stay resident.

Figure 5

After that we write the following to execute it following these steps:

C\>TASM MATRIX_3.ASM; open tasm assembler
C\>TLINK MATRIX_3.0BJ; convert from .asm to .exe

And the result was that it prints the string “WECLOME TO 511 LAB” in red color, this
Is what happens on the lab, but when | try this at home, it prints only the character W,

although I used the same code, I tried to find error, but I didn’t find.

e On the next part we have written the following code and then executed it, and the

result was the same as the previous code.

.model small
.stack 100
.code

int 62h

mov ah,4ch
int 21h

end

PARTB:

User defined interrupt:

On the first part of this experiment, the interrupt 21H was adjusted to do a summation
process instead of its original function, this is done by defining our special routine that
add the content of two register, this was done by storing this ISR address on the IVT
corresponding to INT 21H, so when we call it, it will point to our code.

The code is shown below on figure.1; the comments clarify how this code works.

97 T T R T T % B % T L% |

[Te]

Lad B3

V TLB EQU 21H#%4 addrees locatiolof int21h ISR onthe IVT

D EQH initialize segment

MOV AX,SEG D

MOV DS, A s initialize DS
MOV BX,V TAB
MOV AX OFFSET INT SER

e move the adreess of INT_SER to 21H*4 and replce it with the original ISR of inf 21H***
MOV WORD PTR [BX] , AN move of fset address (IP) to Lst 2 bytes of TVT 2th*4 address[1]

INC
INC

e =

¥ :increment by 2 to store C5 value since IP fakes 2 bytes

MOV DI
MOV WORD PTE [BX] ,Dx:move the base address (C5)to to IVT 21h*4 addressto 2nd 2 bytes of IVT 21h™4 address[1]

MOV A, ;insert ist number

MOV BIX, sinsert second number
INT ; call int 21h fo add thes numbers
HOP

HOP

INT 3;terminate and stop execution

INT SER: ADD A3, BX: routing to add 2 numbers stored in AX BX

CODE

IRET
END3
END

Figure 6

7

e This code was saved as 1.asm, and then executed by writing the following
command on the ms-dos window:

C\>TASM MATRIX_1.ASM; open tasm assembler

C\>TLINK MATRIX_1.0BJ; convert from .asm to .exe

C:\>exe2bin MATRIX_1.EXE; convert from.exe to bin

C:\>bin2hex MATRIX_1.BIN MATRIX_1.HEX; convert from bin to hex

After that, the WinCom program was opened, and the following instructions were follows:
L command was typed, after that we go to File >> send program and then choosing the hex
filel.hex the G command was typed and the program started.

e The result was that it added the content of AX and BX and stored the result in AX.
Note: this procedure of compilation was repeated for all parts of the experiments

e 8259A INTERRUPT CONTROL:

In this part of the experiment, we will use PIC 8259a in a program that controls the
lighting sequence of 4 LED’s ,but befor that we were ordered in the prelab to review the
intel 8259a PIC and do the following:

1. what are the Modes of operation for 8259a?

a) Fully nested mode: (it’s the default mode)

IR0 has highest priority and IR7 is the lowest.[1]

b) Rotating priority mode.

¢) Special masked mode.
xddc

d) Polled mode: (this mode will be used in the experiment)

the INT output is not used, the up checks the status of interrupt request by issuing
a poll command, the microprocessor reads content of 8259A after issuing poll
command, during this read operation, the 8259A provides polled word and sets
ISR bits of highest priority active interrupt request format.[1].

2. What would be the 1/O ports for the 8259 if direct addressing mode is used
with only 8086 A4 being “1” and 8086 A1 being connected to A0 of 8259?

Direct I/0O address =» 8 bit address, Al is connected to AO of 8259

A7 A6 A5 A4 A3 A2 Al A0

0 0 0 1 0 0 0/1 0

Address of 1/0 ports 10H and 12H.
3. Study the To Do items and write down the values for ICW1, ICW2, and ICW4?

In all to do in the experiment, the 8259 initialized on the same way, the data sheet
we used to set the ICW’s is reference [2 which is from Intel data sheet the
information was given to us was:

The 8259 is initialized with the following features:

. ICW4 is needed---ICW1

. Edge triggered mode---ICW1

. An address interval of 8----ICW1

. Single mode---ICW1

. Interrupt vector of 40H ----ICW2

. Normal end of interrupt---- ICW4 -D1
. Non-buffered mode---ICW4 - D3

. Not SFNM ----ICW4

coO~NoOOOlTh WN -

ICW1=13H

D7 D6 D5 D4 D3 D2 D1 Do

0 0 0 1 0 0 1 1

ICW2 = 40H

D7 D6 D5 D4 D3 D2 D1 Do

0 1 0 0 0 0 0 0

ICW4 =01H

D7

D6

D5

D4

D3

D2

D1

DO

0

0

Note: ICW3 is note needed since there is no cascaded 8259a’s.

4. What values of OCWs are needed?

OCW1 =FBH
D7 D6 D5 D4 D3 D2 D1 DO
1 1 1 1 1 0 1 1
OoCw2=20
D7 D6 D5 D4 D3 D2 D1 DO
0 0 1 0 0 0 0 0
OCW3=0CH
D7 D6 D5 D4 D3 D2 D1 DO
0 0 0 0 1 1 0 0
LEDs FARM
the interface of 8289a on the system: =z s0e1
ABCOEFGP "
h AEENEPLE b
APPLICATION PORT | p
Mes
% RY Y "
- = t;“)
TR ") % 2
| & N % o [z
s = 3] g 2 : :
m’L ,': 1 s B
DATA BUS = ﬁ LED10 8255A
. N i’a 2 LED11—PB0
w oo f& 'J‘j LED12— PB1
Al '3% - LED13— PB2
3 2
R LED14—PB3
s
PO
"
558

Figure 8

10

The LED’s is connected to ports PB0-PB3, as shown on figure.2, so we must use PPI
port B to send data, and the others are in active.

Note: it’s observed that IR2 pin is connected to a push button to generate an
interrupt.
After understanding the interface of 8259 and 8255 on the system, and after writhing the
appropriate command words and knowing its address, the code below can be completed
and under stood well.

The comments clarify how this code works.

[e B ¢

(VT T T 1L T L T % T T T T T T T T R R B

[TV S

[T T %

[T T %

Y S U T

&L

(S Te IS]

[TV

CCDE SEGMENT
BS55TTME (CE

FFIC C EQU
FFIC EQU
PPIE EQU
FFIA EQU
INTA EQU
INTRZ EQU

CALL INIT

MOV AL,
OUT PFIC C,AL

MOV AL,

OUT EBEIA,AL
MOV AL,

OUT EBPIC,AL
MOV AH,

MOV AL, AH

O0T PPIEB,AL

: MOV AL,

L2
OUT INTA,AL
IN AL,INTA
TEST AL,
JZ L2

5:CODE ,DS:CODE ,E5:CODE, 55: CODE

;control word address of the PPT
;port C address
;port B address

port A address

:1st address of PIC 5259 command word

;2nd address of 8252 command word

; go to the procedure that initializes
; the command word of the 82529
; define all the ports as output ports

;disable port A . not used

;disable port €, not used

; enable the 15t LED by sending 1 to PRO

; Enable Poll command on interrupts (OCW3)

;this is explained on the prelab at the 1st of the report

;read the status of 8259, this is usually done after making OCW 3 in polled mode
;from intel 8259 data sheet D7 mus be 1 wheh there is an interrupt request
:keep loop here while there is not inferrupt

11

oy L
" -
==}

[

B

; shift the on bit to the left to light the next LED
;keep shift until rech portPBS

(W

2
55}
-
[

; if shifted bit reach PB4 go to L1 to reset the coun again and start fromPBO

G0 L L LA L
s 1
=] =1 '
= =]

w

=]
E

Y

=

;because bits of PB4-PBT must be 1's since they are not connected
LED out

3

L1l: MOV AH,
L3: MOV AL, AH

OUT PFIB,AL ; send the shifted value to PPB to light next LED
.EOT command

s
T I T

b
o o
b

[

:send non-specific EOT (OCW2)
27 OUT INTI&,AL ; interrupt request must be reset
48 JMF L2
50 INIT PROC HEAR ;this procedure initialize the 8259
L1 MOW AL, :send the value of TCW1
52 OUT INTZ , AL

5 MOV AL, ;send the value TCW2 inferrupt vector
OUT INTAZ , AL

1
N s

57 MOV AL, :send the value of TCW4
S8 OUT INTAZ , AL
5 MOV AL, ;interrupt mask, since IRZ is connected to the push buiton which creats the interrupt
60 OUT INTA ,AL
6l EET
62 INIT ENDFE
64 COCDE ENDS
65 END
Figure 9

After writing this code, it was compiled following the same steps of the previous code,
but the MDA 8086 kit is turned on, after that it’s observed that when we pressed the push
button, the next LED is on, and after when LED#4 is on, LED #1 is on ...and so forth,
and so 8259a used to control the lighting sequence, through a software interrupts.

Note: although the interrupt is generated by push button, its considered a software
interrupt, because within the code the 8259 is programmed in polled mode, i.e.it
checks all the pins until an interrupt occurs at one of these pins, so the software
controls the interrupts.

12

e On the next part, a program will be written to control the count of a seven segment
display from 0-9 using a push button also.

The code is shown below, and the comments clarify how this code works.

1 F_'.DDE SEGMENT
2 RS55TUME CS5:CODE,DS:CODE,ES:CODE,S5:CODE
4 PFPIC C EQU 1FH scontrol word address of the PPT
5 PPIC ;port C address
& PPIE ;port B address
7 EPPIZ ;port A address
3 INTA EQU 10h :1st address of PIC 8252 command word
10 INTA2 EQU 1Zh ;2nd address of 825% command word
12 INT_ W EQU a2H*4 sadderss of INT 42H ISR on the IVT
14 STACK EQU 540H : since we need apermanent storage...we define our stack
15 :
16 CRG 1000H
18 HOR BX,BX sset BX to zero, Xor is used because it requiers less time than mov operatoin
E MOV ES,BX ;set ES to zero, Xor is invalid for segment regisiters
0 MOV DS, A set S to zero, Xor is invalid for segment regisiters
MOV SS,BX :set 55 to zero, Xor is invalid for segment regisiters
MOV SP,STACK : make the stack pointer SP point to the top of the stack i.e the starting of the stack

Frrrrarara**here we will define the address of the ISR in the memory to locate it wehen calling interrept 42H***

=] o N s L R

MOV AX,CFFSET INT_SER .getthe of fset address of the routine (porcedure) that we want INT 42H to perform
BX,INT_V smove the caculated address of TNT 42H fo B
MOV WORD FTE ES: [BX] ,AX storethe of fset address ((IP)) of the INT 42H ISR on the location

oW

LF L L D G B3 ORD RS ORI ORI RS ORI ORI RS R

1 ; pointed by the content of BX ([42H*4)) which is usually done
2 ;when we call an inferrupt
;! HOR AX, A ; reset AX
35 MOV WORD FTR ES: [BM+2] ,AX storthe base address ((CS5=0 in this code))
36 :
3 CALL INIT ; call the procedure that initializes the PIC 825%a
38 MOV AL, S0H
40 OUT PPIC C,AL ; set all PPT ports as output ports
11
42 MO AL ,OFOH
43 OUT FFIE,AL Sturn of £ PRO-PES which connected to LED we dont need them.
14 MOV AL, O0H
45 OUT PPIC,AL furn of f port €
46 B
47 MOV SI,CFFSET DATA ;get of fset address of DATA | 5T is used as apointer to this array

13

48
49 MOV AL, BYTE FTR CS: [SI]: pointtothe array that contains the code for #'s from 0-2 on 7-seg display
=

51 OUT FPPIA,AL: send the values to port A which is connected to 7-seqg display

52 B
= STI :setinterrupt flag

5! L2: HOP

& JMEP L2 : stay inthis loop until interrupt came

56 B

SF :

58 INT SER:

59 MOV AL,BYTE PTR CS: [SI]:move the 7-seg code. addresses by Cs and the

&0 ccontent of 5T to AL

61 CMP AL,0O0H ‘keep in moving data until reach #9 then we must stop and count again

62 ;50 we copare the last element of the array with it self then we repeat again
3 JHE L3

64 MOV S5I,0FFSET DATA

65 JMP INT_ SER

66

67 L3: OUT PPIA,AL :sendthe code tothe 7-seg through port A

68 INC SI:increment SIto pointto next code

69 B

71 o #*=EQT command®®~*

73 MOV AL,00100000B :send non-specific EOL (QCW2)
OUT INTA,AL : interrupt request must be reset
5TI
IRET ;return T

INIT FROC HEAR

1 ;this procedure initialize the 8259

-]

1 ;this procedure initialize the 8252
INTA,AL :send the value of TCW1

o
F [;
=]
[=]
=]

[57]
Fa

MOV AL, 40H :send the value TCW?2 interrupt vector
OUT INTAZ, AL

(S5 I &)

MOV AL ,0LH ;send the value of ICW4
OUT INTAZAZ , AL

4
&
&

MOV AL,0OFEBH

cinterrupt mask bet £3 = 0. since IR2 is connected to the push button which creats the inferrupt

50 OUT INTARZ,AL
91 sinterrupt mask
92
25 RET
594 INIT ENDF
215 ;
96
97 DATA: DE
98 DB
L LE
100 DE 10110000E#3 on seven segment display
101 DE 10011001E#4 onseven segment display
DE 10010010E#5 on seven segment display
DB 1000 E:#6 on seven segment display
DB 1111 E:#7 on seven segment display
DB
DB #9 on seven segment display
DB OO0H : all segmnets are on
CCDE ENDS
109 END

Figure 10

14

After writing this code, it was compiled following the same steps of the previous code,
after that it’s observed that when we pressed the push button, the seven segment display
will be incremented until it reached 9 it will go to zero again, and so 8259a used to
control the lighting sequence, through software interrupts.

e After that we were ordered to write a C code to implement the same previous function
but, it will count from A-F, the code is shown below, and the comments clarified how
this code works.

1 o LnoWs b B

=]

o \D

1 &y N L R

[=s]

[== Vs

1 &y LN oo L B

[as]

I VT BT SS FU R (- T C R s B o]

[as]

(=TT

(IS T Y - U T

[s]

#include "mded086.R"
fdefine INT ¥ 0x42

int datal[c] = { R R R B B } ; /*data to view chrachters from A-F respectively */

int index = 0;

wvold wait (long del)/* time delay™/

{
T while(del--) ;

13

/™ Process Interrupt Routine =/

wvoid int ser(void)

=

INTERRUPT IN;

index +4+;
if(index >=) index = 0;/" increment until reach the sixth charachter F then reset and start from A~/

outportb (PPI1 &, data[index]);

/= eoi command ~/
outporthb (INTAZ,) 7 /*send non-specific EQOT (OCW2)*/

/™ interrupt request must be reset™/

/*restor the values of regesters after finishing interrupts becouse program mus return to routine befor interrupt™/
asm pop ds;

asm pop es;

asm pop dx;

asm pop cCX;

asm pop bx;

asm pop ax;

asm pop di;

asm pop sSi;

asm iret;

void main{void)
{

unsigned long far *intvect_ptr;
intwvect_ptr = ((unzigned long far *)0);

/= Init 8259 ~/

asm CLI ;/" clear interrupt flag™/

15

e
s

[RN]

outportb (INTA,) : S Towt */

1 outportbh ({ INTZZ,): /= TOWZ interrupt Vector =/
2 ocoutportb (INTAZ,) ; S TOWS *f
3 ocoutportbh (INTRZ,) ; /™ inferrupt mask *!

%

Ln

/* 8266 Initial =/

nononoLnooLnonooenoLnoenooon

outportb (FPPFI1_CR,) ;/™send control word all ports are output ports™/
7 outportk (PPI1 B,) ;/* turn off port B/
a8 outportb (PPI1 C,) ;/™not used...furn of £/
5 outportb (PPI1_&, | B il

=

/* befine Interrupt Vector Table =/

[R o R]

* (intvect ptr+INT V) = (unsigned long)int ser;
- asm STI;/" set interrupt flag™/
6o while (1) ;
7 1
Figure 11

e After writhing the previous code ,we choose send a program from wincom
program, and the file 1.c was located after insuring that we are on the “C code”
mode not ““ assembly 80867, these steps will generate the exe file, after that we
used the exe2bin and bin2hex soft ware to get the hex file by writing the following
command on the MS-DOS window:

C:\>exe2bin 1.EXE; convert from.exe to bin

C:\>binZhex 1.BIN 1.HEX; convert from bin to hex
Then the code was downloaded to the board using WinCom program, and it’s
observed that the 7 segment counts from A-F successfully.

Note: I lost the code that | was did on the lab, so there might be errors that |
couldn’t check

16

Conclusion:

e In this experiment, we introduced the two types of Interrupts; Hardware and software
interrupts and there characteristics.

e Hardware interrupts are not included in this excrement, but they occurre in fault cases
such as power failure

e We learned how to make a pre- defined interrupt to do another function that we want
it to do, by simply exchanging the address stored on the IVT with our routine address.

e The system interrupts are loaded by the OS at the beginning of the program, and the
address of this IVT is the same to all computers.

¢ In this experiment PIC 8259A was used as a controller for simple functions like
lighting LED or incrementing 7 segment displays.

e Soft ware polling minimizes time to handle an interrupt, especially in case when the
CPU is executing a simple function, and has no other thing to do like what happens on
this experiment.

References:

[1]MICROPROCESSORS, GODSE

[2]THE INTEL MICROPROCESSOR, BARRY BRAY

17

