
1

Computer System Engineering Department

ENCS 511

Computer Lab

Section No: 1

Report for Experiment No.6

Interrupts

Prepared for

Dr. EMAD HAMADA

ENG. Anas Abdelraziq

By

MU'EZ ZABEN 1061287

MAHMOUD QUR’AN 1060095

2

Procedure:

A. Activating the interrupt service routine automatically:

To check the interrupt that relates to the error "Division on zero" which is an example of

the interrupts ,we used the commands like that on figure (1) :

Figure 1

When we executed the command by the order "G" the output was "Divide overflow",

because in the code we divided some number on zero .

B.Activating the interrupt service routine manually:

We can test the interrupts each one by it self by typing it then using interrupt 3 as a break

point, like what we did in figure (2) :

Figure 2

3

C.Activating the interrupt service routine manually (another way):

Another way to use the interrupt is to call it by it's IP and CS ,which are in the figure (3) :

Figure 3

To call an interrupt we must inter it's IP and CS as shown in figure (3)m then we can

execute it by the order "G", and the address on INT F in IVT is (F*4)H=(60)H=3CH.

D. Writing my own interrupt service routine :

We can define any interrupt that we want .

In this part we changed the message that appears when interrupt zero executes .

At first the message which was "AAAA" was defined ,then we relate the interrupt zero

which we know it's IP and CS to the IP and CS of the message "AAAA" then we run

some code that had the error that relates to interrupt zero as shown in figure (4) :

Figure 4

4

E-Installing a interrupt service routine using TASM

On this example, a new interrupt service routine (62) was defined, but to understand this

code we went back to interrupt 21H function that depends on the value stored on the AH

register, on this code we need the following function numbers which are shown on

table.1, which was taken from reference[2].

Int 10H Function 02H “select cursor position”

Entry

AH = 02H

BH=page number(usually 0)

DH =row number(beginning with zero)

DL= column number(beginning with zero)

Exit Change cursor to new position

Int 10H Function 09H “ write attribute

character/at current cursor position”

Entry

AH =09H

AL=ASCI character code

BH=page number

BL= character attribute

CX=number of characters to write

notes This function call normally displays data

on the video display

Int 21H Function 25H “ set interrupt vector”

Entry

AH =25H

AL= interrupt vector number

DS:DX address of new interrupt procedure

Int 21H Function 31 H “Terminate and stay

resident TSR”

Entry

AH =33H

AL = The DOS return code

BH = Number of paragraphs to reserve for

program
Table 1

 The code of figure. code was saved as 2.asm, and then executed by writing the

following command on the ms-dos window:

 C:\>TASM MATRIX_2.ASM; open tasm assembler

 C:\>TLINK MATRIX_2.OBJ; convert from .asm to .exe

 C:\>exe2bin MATRIX_2.EXE; convert from.exe to bin

 C:\>bin2hex MATRIX_2.BIN MATRIX_1.HEX; convert from bin to hex

5

6

After that we write the following to execute it following these steps:

 C:\>TASM MATRIX_3.ASM; open tasm assembler

 C:\>TLINK MATRIX_3.OBJ; convert from .asm to .exe

And the result was that it prints the string “WECLOME TO 511 LAB” in red color, this

is what happens on the lab, but when I try this at home, it prints only the character W,

although I used the same code, I tried to find error, but I didn’t find.

 On the next part we have written the following code and then executed it, and the

result was the same as the previous code.

.model small

.stack 100

.code

int 62h

mov ah,4ch

int 21h

end

Figure 5 Figure 5

7

PARTB:

 User defined interrupt:

On the first part of this experiment, the interrupt 21H was adjusted to do a summation

process instead of its original function, this is done by defining our special routine that

add the content of two register, this was done by storing this ISR address on the IVT

corresponding to INT 21H, so when we call it, it will point to our code.

The code is shown below on figure.1; the comments clarify how this code works.

Figure 6

8

 This code was saved as 1.asm, and then executed by writing the following

command on the ms-dos window:

 C:\>TASM MATRIX_1.ASM; open tasm assembler

 C:\>TLINK MATRIX_1.OBJ; convert from .asm to .exe

 C:\>exe2bin MATRIX_1.EXE; convert from.exe to bin

 C:\>bin2hex MATRIX_1.BIN MATRIX_1.HEX; convert from bin to hex

After that, the WinCom program was opened, and the following instructions were follows:

L command was typed, after that we go to File >> send program and then choosing the hex

file1.hex the G command was typed and the program started.

 The result was that it added the content of AX and BX and stored the result in AX.

Note: this procedure of compilation was repeated for all parts of the experiments

 8259A INTERRUPT CONTROL:

In this part of the experiment, we will use PIC 8259a in a program that controls the

lighting sequence of 4 LED’s ,but befor that we were ordered in the prelab to review the

intel 8259a PIC and do the following:

1. what are the Modes of operation for 8259a?

a) Fully nested mode: (it’s the default mode)

IR0 has highest priority and IR7 is the lowest.[1]

b) Rotating priority mode.

c) Special masked mode.
xddc

d) Polled mode: (this mode will be used in the experiment)

the INT output is not used, the μp checks the status of interrupt request by issuing

a poll command, the microprocessor reads content of 8259A after issuing poll

command, during this read operation, the 8259A provides polled word and sets

ISR bits of highest priority active interrupt request format.[1].

9

2. What would be the I/O ports for the 8259 if direct addressing mode is used

with only 8086 A4 being “1” and 8086 A1 being connected to A0 of 8259?

Direct I/O address 8 bit address, A1 is connected to A0 of 8259

A7 A6 A5 A4 A3 A2 A1 A0

0 0 0 1 0 0 0/1 0

Address of I/O ports 10H and 12H.

3. Study the To Do items and write down the values for ICW1, ICW2, and ICW4?

In all to do in the experiment, the 8259 initialized on the same way, the data sheet

we used to set the ICW’s is reference [2 which is from Intel data sheet the

information was given to us was:

The 8259 is initialized with the following features:

1. ICW4 is needed---ICW1

2. Edge triggered mode---ICW1

3. An address interval of 8----ICW1

4. Single mode---ICW1

5. Interrupt vector of 40H ----ICW2

6. Normal end of interrupt---- ICW4 -D1

7. Non-buffered mode---ICW4 - D3

8. Not SFNM ----ICW4

ICW1 = 13H

D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 1 0 0 1 1

ICW2 = 40H

D7 D6 D5 D4 D3 D2 D1 D0

0 1 0 0 0 0 0 0

10

ICW4 =01H

D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 1

Note: ICW3 is note needed since there is no cascaded 8259a’s.

4. What values of OCWs are needed?

OCW1 = FBH

D7 D6 D5 D4 D3 D2 D1 D0

1 1 1 1 1 0 1 1

OCW2 = 20

D7 D6 D5 D4 D3 D2 D1 D0

0 0 1 0 0 0 0 0

OCW3 = 0CH

D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 1 1 0 0

the interface of 8289a on the system:

 Figure 8

11

The LED’s is connected to ports PB0-PB3, as shown on figure.2, so we must use PPI

 port B to send data, and the others are in active.

Note: it’s observed that IR2 pin is connected to a push button to generate an

interrupt.

After understanding the interface of 8259 and 8255 on the system, and after writhing the

appropriate command words and knowing its address, the code below can be completed

and under stood well.

The comments clarify how this code works.

12

After writing this code, it was compiled following the same steps of the previous code,

but the MDA 8086 kit is turned on, after that it’s observed that when we pressed the push

button, the next LED is on, and after when LED#4 is on, LED #1 is on …and so forth,

and so 8259a used to control the lighting sequence, through a software interrupts.

Note: although the interrupt is generated by push button, its considered a software

interrupt, because within the code the 8259 is programmed in polled mode, i.e.it

checks all the pins until an interrupt occurs at one of these pins, so the software

controls the interrupts.

Figure 9

13

 On the next part, a program will be written to control the count of a seven segment

display from 0-9 using a push button also.

The code is shown below, and the comments clarify how this code works.

14

 Figure 10

15

After writing this code, it was compiled following the same steps of the previous code,

after that it’s observed that when we pressed the push button, the seven segment display

will be incremented until it reached 9 it will go to zero again, and so 8259a used to

control the lighting sequence, through software interrupts.

 After that we were ordered to write a C code to implement the same previous function

but, it will count from A-F, the code is shown below, and the comments clarified how

this code works.

16

 After writhing the previous code ,we choose send a program from wincom

program, and the file 1.c was located after insuring that we are on the “C code”

mode not “ assembly 8086”, these steps will generate the exe file, after that we

used the exe2bin and bin2hex soft ware to get the hex file by writing the following

command on the MS-DOS window:

 C:\>exe2bin 1.EXE; convert from.exe to bin

 C:\>bin2hex 1.BIN 1.HEX; convert from bin to hex

Then the code was downloaded to the board using WinCom program, and it’s

observed that the 7 segment counts from A-F successfully.

Note: I lost the code that I was did on the lab, so there might be errors that I

couldn’t check

Figure 11

17

Conclusion:

 In this experiment, we introduced the two types of Interrupts; Hardware and software

interrupts and there characteristics.

 Hardware interrupts are not included in this excrement, but they occurre in fault cases

such as power failure

 We learned how to make a pre- defined interrupt to do another function that we want

it to do, by simply exchanging the address stored on the IVT with our routine address.

 The system interrupts are loaded by the OS at the beginning of the program, and the

address of this IVT is the same to all computers.

 In this experiment PIC 8259A was used as a controller for simple functions like

lighting LED or incrementing 7 segment displays.

 Soft ware polling minimizes time to handle an interrupt, especially in case when the

CPU is executing a simple function, and has no other thing to do like what happens on

this experiment.

References:

[1]MICROPROCESSORS, GODSE

[2]THE INTEL MICROPROCESSOR, BARRY BRAY

