[image: C:\Users\Mohammad\Desktop\10410807_755646877803815_7821079462490035665_n.jpg]
 Faculty of Information Technology
Computer Systems Engineering Department
COMPUTER DESIGN LAB #ENCS411
EXP #8
Programmable Interval Timer
MDA-8086 Kit – PPI Application
Name : Mohammad Modallal
ID : 1120174

Section# : 3
Dr. Khader Mohammad
Date:27/4/2015

Contents
1	Abstract	3
2	Introduction to PIT	4
 2.1 Defnition of PIT	4
 2.2 Features 	4
 2.3 Examples of usage	4
 2.4 8253/4 Functional Description	5
 2.5 Programming the 8254	6
3 Procedure	7
3.1	Configuring PIT on PC	7
3.2	assembly program	8
3.3	Configuring PIT on MDA-8086 Kit	9
3.4	increase the delay by a factor of 5 times	11
4	Conclusion	14
5	References	15

1.Abstract
The aim of this experiment is to understanding , configuring and testing the Programmable Interval Timer (PIT) devices[8253/4] on the MDA_8086 kit and Personal Computers.

2.Introduction
2.1 Definition
The Intel 8253 /4 are Programmable Interval Timers (PITs), which perform timing and counting functions. They were primarily designed for the Intel 8080/8085-processors, but later used in x86-systems. They (or an equivalent circuit embedded in a larger chip) are found in all IBM PC compatibles[1].

2.2 Features
The programmable interval timer consists of three independent 16-bit programmable counters (timers). Each counter is capable of counting in binary or BCD[2].
2.3 Examples of usage[2]
The programmable interval timer is useful wherever the microprocessor must control real time events.for examples , motor speed and direction control, and for clock and an events counter.
The timer also appears in the personal computer decoded at ports 40H–43H to do the following:
1. Generate a basic timer interrupt that occurs at approximately 18.2 Hz.
2. Cause the DRAM memory system to be refreshed.
3. Provide a timing source to the internal

2.4 8253/4 Functional Description
Figure 2–1 shows the pin-out of the 8254, and a diagram of one counter. Each counter contains a CLK input, a gate input, and OUT pins. The clock input is the timing source for each of the internal counters. This input is often connected to the PCLK signal from the microprocessor system bus controller, the gate pin controls the timer in some modes, and the OUT pin is where we obtain the output of the timer[2].
[image: C:\Users\Mohammad\Desktop\Ww.jpg]
There are many pins that connect to the microprocessor :data bus pins (D7–D0) and address inputs A1, A0. The address inputs select one of four internal registers within the 8254(Table 2–1) [3] .
[image: C:\Users\Mohammad\Desktop\Ww.jpg]
The personal computer contains an 8253 timer or its equivalent, decoded at I/O ports 40H–43H. Timer zero is programmed to generate an 18.2 Hz signal that interrupts the microprocessor at interrupt vector 8 for a clock tick. The tick is often used to time programs and events in DOS. Timer 1 is programmed for 15 μs, which is used on the personal computer to request a DMA action used to refresh the dynamic RAM. Timer 2 is programmed to generate a tone on the personal computer speaker[2].

2.5 Programming the 8254
Each counter is individually programmed by writing a control word, followed by the initial count (Figure 2–2). The control word allows the programmer to select the counter, mode of operation, and type of operation (read/write). The control word also selects either a binary or BCD count. Each counter may be programmed with a count of 1 to FFFFH.or to 10000 in BCD[2].

[image: C:\Users\Mohammad\Desktop\Ww.jpg]
The minimum count of 1 applies to all modes of operation except modes 2 and 3, which have a minimum count of 2.

3.Procedure
3.1 Configuring PIT on PC
Setp1: I Using Dos Command prompt and I start debuging.
Setp2: I type the following instructions:
O 43 B6 // Program the command register mode3 (show fig 3.1)
O 42 11 // send the count 11h to least_segnificant byte of counter 2
O 42 11 // send the count 11h to most_segnificant byte of counter 2
O 61 33 // send 33 to port B (the port that controls the speaker) to enable G2 speaker
O 61 32 // send 32 to port B (the port that controls the speaker) to disable G2 speaker
O 42 55
O 42 3F
O 43 B0 // Program the command register mode 0 (show fig 3.2)
O 42 11 // send the count 11h to least_segnificant byte of counter 2
O 42 11 // send the count 11h to most_segnificant byte of counter 2
O 42 FF
O 42 FF
From the previous code , the output Frequency = = 272Hz. (note 1111H =4369)
[image: C:\Users\Mohammad\Desktop\Ww.jpg]
Figure 3.1
[image: C:\Users\Mohammad\Desktop\Ww.jpg]
Figure3.2
3.2 assembly program that enables the speaker with the tone frequency
Step1: I write the following code and save it to an Assembly file(.asm).
The following code enable the speaker with a tone frequency of 5 KH [the count = 238].
To make the output frequency to equal 5KH , 7 KH, 12KH :
 = = .

 = = .

 = = .
[image: C:\Users\Mohammad\Desktop\Ww.jpg]
3.3 Configuring PIT on MDA-8086 Kit
Srep1: I connected the P2 using a jumper cap as shown in (Fig3.3).

[image:]

 Figure 3.3
Setp2: I write the following code and save it to an Assembly file(.asm).I Compile and build this ASM file and execute it on MDA-8086 kit.
[image:]The following code contain ISR to control four LEDs to light, and we used the PIC by connecting the output of counter 1 to IR0 using P2.
[image: C:\Users\Mohammad\Desktop\Ww.jpg]
[image: C:\Users\Mohammad\Desktop\Ww.jpg]
The above code use PIT(counter 1) , PIC(IR0) ,P2 and PPI (port B) to light the LEDs.I send the value ffffH to the counter 1 .after the counter reach FFFFH+1 the interrupt is occur and the next LEDS is light and so on…
When I press the GATE1 the LEDs are stoping continue lighting since the GATE1 connected to the ground.The counter is stoped work when G=0.
 [image: C:\Users\Mohammad\Desktop\Ww.jpg]
3.4 increase the delay by a factor of 5 times.
Srep1: I connected the P2 using a jumper cap as shown in (Fig3.4).
[image: C:\Users\Mohammad\Desktop\Ww.jpg]
 Figure 3.4
Setp2: I write the following code and save it to an Assembly file(.asm).I Compile and build this ASM file and execute it on MDA-8086 kit.
The following code contain ISR to control four LEDs to light(figure below), and i used the PIC by connecting the output of counter 2 to IR1 using P2 and i connecting the output of counter one to the clk of counter2 .
Each time the counter1 count up to 5 the counter 2 incremant by 1
so the total count=FFFFH*5.
[image:]
[image: C:\Users\Mohammad\Desktop\Ww.jpg]
[image: C:\Users\Mohammad\Desktop\Ww.jpg]

4.Conclusion
[bookmark: _GoBack]In this experiment i learned the Programmable Interval Timer [PIT]and how it work in MDA-8086 Kit . I study the implementation of PIT which consist of three independent counter(timer).I learned how I can use the PIT counter`s to control real-time event .I use the PIT to light the LEDs and I change the speed of lighting by decreasing frequency.

5.Reference
[1] http://en.wikipedia.org/wiki/Intel_8253
[2] The Intel Microprocessors by Barry.B.Bary (Eighth Edition).
[3] Experement#8 lab manual.

	

14

image2.jpeg
ao
UNTER|a—— carea
3
ouro
4 o
A Neowwrer,
i ours
b
oz
S D
B
oors
W
@ (b

FIGURE 2-1 The 8254 programmable interval timer. (a) Internal structure and (b) pin-out.
(Courtesy of Intel Corporation.)

image3.jpeg
TABLE 2-1 Address

selection inputs to the 8254. Ay Ao Function
0 0 Counter 0
0 ! Counter 1
i 0 Counter 2
1 1 Control word

image4.jpeg
FIGURE 2-2 The control
word for the 8254-2 timer.

76 s 4.3 2 1 o
sci]sco e wa] vz [wi | o faco]

|
[H

I I_
Selects a BCD when a logic |
Selects the mode (mode 0 mode 5)
Read/write control
00 = counter latch command
01 = read/write least-significant
byte only
10= read/write most-significant
byte only
11 = read/write least-significant
byt firs, followed by the
most-significant byte

Selects counter

image5.jpeg
L I J L
Selectsa binary

Selects the mode (mode 3)
Readfwrite control

11 = read/write least-significant
by firs, followed by the
most-sienificant bvie

Selects counter
e

image6.jpeg
[

oo

L
Selects a binary

Selects the mode (mode 0)
Read/wrice control

read/write least-significant
byte first, followed by the
most-significant byie

Selects counter
10 = counter 2

image7.jpeg
MODEL SMALL
_STACK 1000H

_DATA

COUNTEQU 238 ;counter value
TIME EQU 30000 ;delay

.CODE
START:

MOV ALOB6H ;send the control word to register(show fig 3.1)
OUT43H,AL ;43h the address of CONTROL REGISTER

MOV AX,COUNT ;sentd the count to AX
OUT42H,AL ;send the LSB byte to COUNTER2

MOV ALAH ;send the MOS byte to COUNTER2
OUT 42H,AL

INAL61H ;READ PORTB
OR AL,00000011B
OUT61H,AL ;enable G2 TO SPEAKER BY SENDING 03H TO PORT B

MOV CX,TIME ; delay

DELAY1:

PUSH CX

MOV €X,30000 ;counter of 30000
DELAY2:

LOOP DELAY2

POP CX

LOOP DELAY1

IN AL61H
AND AL,11111100B
OUT 61H,AL ;disable G2 SPEAKER by sending FCH TO PORT B

MOV AX,4CH
INT 21H

END START

image8.png

image9.png
®e
®®

®®
®©®

e®
®®

e®

image10.jpeg
CODE SEGMENT
ASSUME CsS: CODE, DS: CODE, ES: CODE, SS: CODE

PPIC_.C EQU 1FH
PPIC EQU 1DH
PPIB EQU 1BH
PPIA EQU 19H

CTC1 EQU O0BH ; counter 1

CTCC EQU OFH ; control register
INTA EQU 10H ; address of the PIC

INTA2 EQU INTA+2 ;PICaddress
INT.V EQU 40H*4 interrupt number 40H

ORG 1000H

XOR BX, BX
MOV ES, Bx

MOV AX, OFFSET INT_SER
MOV BX, INT_V
MOV WORD PTR ES: [BX], AX

XOR AX, AX
MOV WORD PTR ES: [BX+2], AX

image11.jpeg
; The segment is zero here
CALL INIT
CALL P_INIT

8255 Initialization
MOV AL, 100000008 ;all port are output
OUT PPIC_C, AL

MOV AL, 111111118
OUT PPIA, AL

MOV AL, 000000008
OUT PPIC, AL

MOV AH, 111100018
MOV AL, AH

OUT PPIB, AL

STI

L2: NOP
IMP 12

INT3

; The Interrupt Service Routine
INT_SER:
SHL AH, 1
TEST AH, 000100008
INZ L1
OR AH, 111100008
IMP 13
; LED out
L1: MOV AH, 111100018
13: MOV AL AH
OUT PPIB, AL
PUSH AX repeate itself
MOV AX, OffFFH
OUT CTC1, AL
MOV AL, AH
OUT CTC1, AL
POP AX
; EOl command
MOV AL, 001000008
OUT INTA, AL
sTI
IRET
; 8253 Initialization
P_INITPROC NEAR
PUSH AX
MOV AL,011100008B ;The command register such that counterl,mode O,binary count
OUT CTCC, AL
MOV AX, OfFFFH the value of counter=FFFFH
OUT CTC1, AL
MOV AL, AH
OUT CTCLAL
POP AX
RET
P_INIT ENDP
; 8259 Initialization
INIT PROC NEAR
;1cw1
MOV AL, 000100118
OUT INTA, AL
; ICW2 interrupt vector
MOV AL, 40H; the address of RO
OUT INTA2, AL
;1cw4
MOV AL, 000000018;
OUT INTA2, AL
; interrupt mask
MOV AL, 111111108; mask all bits except IR
OUT INTA2, AL
RET
INIT ENDP

CODE ENDS
END

image12.jpeg
Mode 0

OouT

Count of 7 loaded

image13.jpeg

image14.jpeg
ASSUME CS: CODE, DS: CODE, ES: CODE, S5: CODE
PPIC_CEQU 1FH

PPIC EQU 1DH

PPIB EQU 1BH

PPIA EQU 19H

cTc1 EQU
cTcc EQU
INTA EQU 10H;

INTA2EQU INTA+2;

INT_VEQU 41H*4; //interrupt number 41H since | use IR1
ORG 1000H

XOR BX, BX;

MOV ES, BX;

MOV AX, OFFSET INT_SER;

MOV BX, INT_V;

MOV WORD PTRES: [BX], AX

XOR AX, AX;

MOV WORD PTRES: [BX+2], AX;

CALL INIT

CALL P_INIT

MOV AL, 100000008;

OUT PPIC_C, AL

MOV AL, 111111118

OUT PPIA, AL;

MOV AL, 000000008

OUT PPIC, AL; port C to allow the diodes to be in forward bias
MOV AH, 11110001B; turn on the first led

MOV AL, AH

OUT PPIB, AL

sTI;

12: NOP

IMP L2

INT 3

; The Interrupt Service Routine

INT_SER:

SHL AH,1

TEST AH, 000100008

INZ L1

OR AH, 111100008

IMP 13

; LED out

image15.jpeg
L1: MOV AH, 111100018
[EH MOV AL AH

OUT PPIB, AL

; EOl command

MOV AL, 001000008

OUT INTA, AL

STl

IRET

; 8253 Ini ation
P_INITPROC NEAR
PUSH AX

MOV AL,011101108B; //The command register such
OUT CTCC,AL that counterl,mode 3,binary count
MOV AX, OFFFFH
ouT cTCL, AL
MOV AL AH

OUT CTCLAL

mov al,10110110b

out ctec,al

mov ax,0005

out 0dH,al

mov al,ah

out 0dH,al

POP AX

RET

P_INIT ENDP

;8259 Initialization
INIT PROC NEAR
S1CW1

MOV AL, 000100118
OUT INTA, AL

3 1ICW2 interrupt vector
MOV AL, 40H

OUT INTA2,AL
;lcwa

MOV AL, 000000018;
OUT INTA2,AL

; interrupt mask

MOV AL, 111111018
OUT INTA2,AL
RET

INIT ENDP

CODE ENDS

END

image1.jpeg

