
I

Faculty of Engineering & Technology

Electrical & Computer Engineering Department

ENCS411

Project Report

Arduino in Tinkercad

Prepared by : Tareq Shannak

ID Number : 1181404

Instructor : Dr. Abdallatif Abuissa

Teaching Assistant : Ziad Adeela

Section : 1

Date : 23/11/2020

II

Abstract
 In this project, we will use Tinkercad to implement a circuit that connect two Arduinos

using serial cable and dealing with different components which help us in display a result,

sensor the temperature, generate a power, sound a tone and etc. the circuit surely have

resistors and some little components.

III

Table of Contents
Theory .. IV

Arduino ... IV

Breadboard ... IV

LCD ... V

H-Bridge Motor Driver ... VI

DC MOTOR .. VI

Temperature Sensor ... VII

Buzzer... VII

Project Idea .. VII

Design and Implementation ... VIII

Circuit .. VIII

Arduino 1... VIII

Explicit Code .. IX

Arduino 2.. X

Explicit Code ... X

Testing .. XI

Simulation ... XI

Testing Results.. XV

Conclusion .. XVI

References ... XVII

Appendix .. XVIII

Arduino 1... XVIII

Arduino 2.. XX

IV

Theory

Arduino

Arduino is an open-source hardware and software

company, project and user community that designs

and manufactures single-board microcontrollers and

microcontroller kits for building digital devices. It’s a hardware

products are licensed under a CC-BY-SA license, while software

is licensed under the GNU Lesser General Public License (LGPL)

or the GNU General Public License (GPL). permitting the

manufacture of Arduino boards and software distribution by

anyone. Arduino boards are available commercially from the

official website or through authorized distributors. A simple

Arduino is shown in Figure1.

Breadboard

A breadboard is a solderless device for temporary prototype with electronics and test

circuit designs. Most electronic components in electronic circuits can be interconnected by

inserting their leads or terminals into the holes and then making connections through wires

where appropriate. The breadboard has strips of metal underneath the board and connect the

holes on the top of the board. The metal strips are laid out as shown below in Figure 2. Note

that the top and bottom rows of holes are connected horizontally and split in the middle while

the remaining holes are connected vertically.

Figure 2 - Breadboard

Figure 1 - Simple Arduino

V

LCD

The LCDs have a parallel interface, meaning that the microcontroller has to manipulate

several interface pins at once to control the display. The LiquidCrystal library allows you to

control LCD displays that are compatible with the Hitachi HD44780 driver. There are many of

them out there, and you can usually tell them by the 16-pin interface. It looks like Figure 3.

Figure 3 – LCD

There are two modes in LCD: 8-bit mode: 8 bits of a byte are sent at the same time in

pin D0 to D7. 4-bit mode: 8 bits of a byte is sent two times, each time 4 bits in pin D4 to D7. 8-

bit mode is faster than the 4-bit mode, but use more pins than 4-bit mode. We uses 4-bit mode,

which is the most common-used. Table 1 shows LCD pins in 4-bit mode as we used.

LCD PIN Connected to

GND GND

VCC 5V

VO 5V

RS Arduino’s Pin

RW GND

EN Arduino’s Pin

D0 – D3 Not Connected

D4 – D7 Arduino’s Pin

A 5V

K GND
Table 1 - LCD pins in 4-bit mode

VI

H-Bridge Motor Driver

The L298N Motor Driver Module is a high power motor driver module for driving DC and

Stepper Motors. This module consists of an L298 motor driver IC and a 78M05 5V

regulator. L298N Module can control up to 4 DC motors, or 2 DC motors with directional and

speed control. Figure 4 shows a nearly shape of the H-Bridge, we will use it in controlling the DC

motor in our project.

Figure 4 - L298N

DC MOTOR

 A DC motor as in Figure 5 (Direct Current motor), is the most

common type of motor. DC motors normally have just two leads, one

positive and one negative. If you connect these two leads directly to a

battery, the motor will rotate. If you switch the leads, the motor will

rotate in the opposite direction. We cannot drive the motor directly

from Arduino board pins. This may damage the board, so we used a

driver Circuit like H-Bridge.

Figure 5 - DC Motor

VII

Temperature Sensor

The Temperature Sensor LM35 series are precision integrated-circuit

temperature devices with an output voltage linearly proportional to the

Centigrade temperature. The LM35 device has an advantage over linear

temperature sensors calibrated in Kelvin, as the user is not required to subtract a

large constant voltage from the output to obtain convenient Centigrade scaling.

The LM35 device does not require any external calibration or trimming to

provide typical accuracies of ±¼°C at room temperature and ±¾°C over a full

−40°C to 150°C temperature range. The Temperature Sensor LM35 has 3 pins as

shown in Figure 6: ground, Vcc and pin to read the value in Arduino.

Buzzer

 Buzzer is an alarm that we will use in our project, we can send a high byte to the buzzer

for sounding a sound, or we can send a tone in certain frequency to sound it.

Project Idea

 We can use Tinkercad or any other tool we want to implement the project, there are

two Arduinos which are connected using serial cable: Arduino#1 is connected to the following

components: LCD, DC motor, Temperature Sensor and Arduino#2 is connected to a Buzzer and

LED, and there are other components like resistors, etc.

The system should do read the temperature every 1.5 seconds without using ‘Delay’.

Starting at t=6 seconds, calculate the average temperature (Tavg) during the last 6 seconds.

Repeat this process every 1.5 seconds (moving average). LCD will show Tavg every 1.5 second. If

the Tavg is larger than 29 ̊C, drive a DC motor (fan) with 20% duty cycle. And then increase the

speed of the fan with 10% for every 2 ̊C increase above 29. If the temperature goes below 27 C,

turn the DC motor off. If the Temperature become more than 35 ̊C, then the alarm will work on

Arduino#2 and the LED will be ON.

Figure 6 - LM35

VIII

Design and Implementation

Circuit

Figure 7 shown how we connect the components with each other. There is a wire

between T pin from Arduino#1 to R pin in Arduino#2 and they are been connected with a gnd

wire to be serial cable. LCD connected as shown in the figure and as we explained before in 4-

bit pin mode. The temperature sensor connected with A0 pin in Arduino#1. DC motor

connected with H-Bridge which connected with Arduino#1. The buzzer is connected with

Arduino#2 and also a LED with resistors.

Figure 7 – Circuit

Arduino 1

Figure 8 shows the code in Arduino 1, and the appendix includes it.

Figure 8 - Arduino Code

IX

Explicit Code

Lines (1 - 8): Defines a library and variables to use them, also define LCD with its pins.

Line (12): Store the current time in a variable in milliseconds.

Lines (15 - 19): Define 3 pins as an output to the dc motor using H-Bridge, there is a low logic

pin and high logic pin, these two pins select the direction of rotation, so we need to make them

fixed because we don’t need to change the direction. The third pin select the speed of DC

motor with ration in duty cycle.

Lines (22 - 26): define a pin to the LCD in low logic to enable displaying on the LCD, set the initial

cursor on zero and where to begin.

Line (29): define a pin to the temperature sensor to read the temperature.

Line (31): setting up the baud rate.

Line (37): check if a 1.5 second has been passed or not.

Lines (39 - 41): update the current time in the variable and increment the number of checks.

Lines (44 -47): if a 6 seconds has not been passed, store the new check in the empty array.

Lines (49 - 54): if more than 6 seconds has been passed, shift the array to make an empty place

to the new check.

Lines (58 - 62): It’s an extra instructions from me to display the temperature average even a 6

seconds has not been passed.

Lines (63 - 68): calculate the temperature average of the full array elements.

Lines (71 - 73): if the average is more than 35 ̊C, the serial will print and send the string “ON”.

Lines (74 - 93): if the average is less than 35 ̊C, the serial will print and send the string “OFF”. If

the average is more than 29 ̊C, turn on the DC motor with speed 20% of the duty cycle and

increase by 10% on every 2 ̊C above the degree 29 ̊C. If the average is less than 27 ̊C, turn off the

DC motor.

Lines (96 - 99): update the info on the LCD with the new temperature average (it happens every

1.5 seconds).

X

Arduino 2

Figure 9 shows the code in Arduino 2, and the appendix includes it. These Arduino is

connected with a buzzer, LED and it supply the breadboard with supply power 5V and GND.

Figure 9 - Arduino Code

Explicit Code

Lines (1 - 8): setup the Arduino, define two output pins, one for the buzzer and the other for the

LED and setting up the baud rate.

Lines (14 - 15): read the message from the first Arduino and print it

Lines (16 - 20): if the message is ON, turn on the LED and make a tone in the buzzer with

frequency 1K.

Lines (21 - 26): if the message is OFF, turn off the LED and delete the tone in the buzzer.

XI

Testing

Simulation

I had recorded a video screen to the simulation and take screenshots from the video as I

attached below, and there is a table after the figures explain the results.

Figure 10 - t=0

Figure 11 - t =1.5 sec

XII

Figure 12 - t = 3 sec

Figure 13 - t = 4.5 sec

Figure 14 - t = 6 sec

XIII

Figure 15 - t = 7.5 sec

Figure 16 - t = 9 sec

Figure 17 - t = 10.5 sec

XIV

Figure 18 - t = 12 sec

Figure 19 - t = 13.5 sec

Figure 20 - t = 15 sec

XV

Testing Results

 The results in Table 2 are reasonable and correct.

Time(sec) Temperature(̊C) Tavg DC motor(rpm) Buzzer LED

T = 0.0 25 - 0 OFF OFF

T = 1.5 25 25.00 0 OFF OFF

T = 3.0 50 37.74 0 OFF OFF

T = 4.5 77 51.30 0 OFF OFF

T = 6.0 10 41.05 6477 ON ON

T = 7.5 32 43.13 8432 ON ON

T = 9.0 32 38.84 6864 ON ON

T = 10.5 32 27.57 6636 OFF OFF

T = 12.0 21 30.26 2631 OFF OFF

T = 13.5 21 27.20 2434 OFF OFF

T = 15.0 21 24.14 0 OFF OFF

Table 2 - Results

XVI

Conclusion

The results that were obtained from the previous testing agree with the theoretical

results. Moreover, we conclude that we can construct a lot of jobs using Arduino, we learned

how to treat with Arduino and how much it useful in sending signals and deal with the other

components.

The following objectives were completed: understand how the devices work, how we

can connect the buzzer and LED, how to send a tone to the buzzer, how to deal with the

temperature sensor and read the degree, how to control the DC motor using H-Bridge, treat

with Tinkercad to simulate circuits and designs, know the basic concepts of serial

communication and to practically apply it using Arduino.

We learned how to deal with the time without using DELAY function. Instead, we used

MILLIS() that returns how much milliseconds from the beginning of the simulation to the

current time, we become more familiar with coding for serial monitor and familiar with the

functions.

I tried too hard to understand this part of the lab because I’m not familiar with this

material and neither in ENCS338 nor ENCS238 it had been teached to me. I can’t put the

project’s link in references because it will stay private for prevent cheating from other students.

XVII

References

 https://core-electronics.com.au/tutorials/use-lcd-arduino-

uno.html Accessed on 23/11 12:56PM

 https://create.arduino.cc/projecthub/trduunze/temperature-sensor-

36c420 Accessed on 23/11 2:10PM

 https://arduinogetstarted.com/tutorials/arduino-temperature-

sensor-lcd Accessed on 23/11 2:12PM

 https://www.programmingelectronics.com/an-easy-way-to-make-noise-

with-arduino-using-tone/ Accessed on 23/11 3:14PM

 https://drive.google.com/drive/folders/1btqPqSjwu9DLWGUNQ5wxYmYjr

8iB_ZD4 Accessed on 23/11 9:21PM

 https://www.ardumotive.com/how-to-use-a-buzzer-en.html Accessed

on 23/11 10:02PM

 https://en.wikipedia.org/wiki/Arduino Accessed on 24/11 12:13AM

 http://wiring.org.co/learning/tutorials/breadboard/ Accessed on

24/11 12:33AM

 https://arduinogetstarted.com/tutorials/arduino-lcd Accessed on

24/11 12:19AM

 https://components101.com/modules/l293n-motor-driver-module

Accessed on 24/11 12:40AM

 https://www.tutorialspoint.com/arduino/arduino_dc_motor.htm

Accessed on 24/11 1:00AM

 Micro Lab Manual

 Barry B. Brey - The Intel Microprocessors-Prentice Hall (2008)

 ENCS338 Lecture Notes And Slides

 Recorded videos of the experiments

https://core-electronics.com.au/tutorials/use-lcd-arduino-uno.html
https://core-electronics.com.au/tutorials/use-lcd-arduino-uno.html
https://create.arduino.cc/projecthub/trduunze/temperature-sensor-36c420
https://create.arduino.cc/projecthub/trduunze/temperature-sensor-36c420
https://arduinogetstarted.com/tutorials/arduino-temperature-sensor-lcd
https://arduinogetstarted.com/tutorials/arduino-temperature-sensor-lcd
https://www.programmingelectronics.com/an-easy-way-to-make-noise-with-arduino-using-tone/
https://www.programmingelectronics.com/an-easy-way-to-make-noise-with-arduino-using-tone/
https://drive.google.com/drive/folders/1btqPqSjwu9DLWGUNQ5wxYmYjr8iB_ZD4
https://drive.google.com/drive/folders/1btqPqSjwu9DLWGUNQ5wxYmYjr8iB_ZD4
https://www.ardumotive.com/how-to-use-a-buzzer-en.html
https://en.wikipedia.org/wiki/Arduino
http://wiring.org.co/learning/tutorials/breadboard/
https://arduinogetstarted.com/tutorials/arduino-lcd
https://components101.com/modules/l293n-motor-driver-module
https://www.tutorialspoint.com/arduino/arduino_dc_motor.htm

XVIII

Appendix

Arduino 1
#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

int numOfTmpChecks = 0;

unsigned int lastMillis = 0;

float TmpChecks[4];

float tavg;

int baseDutyCycle;

int Extra;

void setup() {

 lastMillis = millis();

 //DC motor pinmodes

 pinMode(10, OUTPUT);

 pinMode(9,OUTPUT);

 pinMode(8,OUTPUT);

 digitalWrite(9,HIGH);

 digitalWrite(8,LOW);

 // LCD pin mode

 pinMode(7,OUTPUT);

 digitalWrite(7,LOW);

 // LCD settings

 lcd.begin(16, 4);

 lcd.setCursor(0, 0);

 //TMP pinmode

 pinMode(A0, INPUT);

 Serial.begin(9600);

}

void loop() {

 //for every 1.5 seconds been past

 if(millis() - lastMillis >= 1500){

 lastMillis = millis();

 //if 6 seconds have not been past, increment numOfTmpChecks

 numOfTmpChecks++;

XIX

 //if 6 seconds has not been passed since the start of program

 if(numOfTmpChecks < 5){

 //store the temperature read to array

 TmpChecks[numOfTmpChecks - 1] = ((analogRead(A0)/1020.0) * 500) - 50;

 }

 //if 6 seconds has been passed since the start of program

 else{

 //shift the temperature array to left by 1

 for(int i = 0; i < 3; i++)

 TmpChecks[i] = TmpChecks[i + 1];

 TmpChecks[3] = ((analogRead(A0)/1020.0) * 500) - 50;

 }

 //This 'if condition' just to calculate tavg and display it,

 //only when the first 6 seconds hasn't been passed

 if(numOfTmpChecks <= 3){

 tavg = 0;

 for(int i = 0 ; i < numOfTmpChecks ; i ++)

 tavg += TmpChecks[i];

 tavg /= numOfTmpChecks;

 }else{ //after 6 seconds, for every past 1.5 seconds find out the average temperature

 //calculating avg temperature

 tavg = 0;

 for(int i = 0 ; i < 4 ; i ++)

 tavg += TmpChecks[i];

 tavg /= 4;

 //if average temperature us greater than 35

 if(tavg > 35){

 //send ON string to arduino2 connected serially

 Serial.print("ON\n");

 }else{

 //send OFF string to arduino2 connected serially

 Serial.print("OFF\n");

 }

 //if average temperature is greater than 29..

 if(tavg > 29){

 //base duty cycle of DC fan is 20%

 baseDutyCycle = 0.20 * 255;

 //for each increase by 2 degree in tavg temp above 29

 // increment the base duty cycle of fan by 10%

 Extra = 0.10 * 255 * ((tavg - 29)/2);

 //set the duty cycle of fan to baseDutyCycle

 analogWrite(10, baseDutyCycle + Extra);

 }

XX

 //if average temperature is less than 27

 else if(tavg < 27){

 //stop the DC motor or set the duty cycle to 0%

 analogWrite(10, 0);

 }

 }

 //clearing the lcd

 lcd.clear();

 //showing the avg temperature on lcd

 lcd.print("Tavg = " + String(tavg) + "C");

 }

}

Arduino 2
void setup() {

 //buzzer and led pinmodes

 pinMode(12, OUTPUT);

 pinMode(13, OUTPUT);

 Serial.begin(9600);

}

void loop() {

 if(Serial.available() > 0){

 String str = Serial.readStringUntil('\n');

 Serial.println(str);

 if(str == "ON"){

 //turn on

 digitalWrite(13, HIGH);

 tone(12, 1000);

 }else if(str == "OFF"){

 //turn off

 digitalWrite(13, LOW);

 noTone(12);

 }

 }

}

