PROCESSING is an open source programming language and environment for people
who want to program images, animation, and interactions. It is used by students, artists,
designers, researchers, and hobbyists for learning, prototyping, and production. It is
created to teach fundamentals of computer programming within a visual context and to
serve as a software sketchbook and professional production tool.

Processing has come to be used for more advanced production-level work in addition to
its sketching role. Originally built as a domain-specific extension to Java targeted
towards artists and designers, Processing has evolved into a full-blown design and
prototyping tool used for large-scale installation work, motion graphics, and complex
data visualization. Processing is based on Java, but because program elements in
Processing are fairly simple, you can learn to use it even if you don't know any Java.

There are many reasons Processing makes you more productive when using Arduino:
e Free to download and open source.
e Interactive programs with 2D, 3D, or PDF output.
e OpenGL integration for accelerated 2D and 3D.
e For GNU/Linux, Mac OS X, and Windows
e Over 100 libraries extend the core software.

e Well documented, with many books available.

https://www.processing.org/reference/
https://www.processing.org/books/

You can install Processing from the following link (https://www.processing.org).

ano LoadDisplaylmage | Processing 1.0.3
File Edit Sketch Tools Help Menu
Toolbar
LoadDisplayimage Tabs
void setupl) {
e, 280) map Ty
P it Pyt el ik e Text editor
o = |cadlwage(*jelly.jpa"};
noLoopl b; Hak T
h
void dr aly

|l---. .(l:l.. :B. éljl: .

imaga{a, 108, 8, a.width/Z, a.height /20

Message area

Console

https://www.processing.org/

A Processing program is called a sketch. The idea is to make Java-style programming feel
more like scripting, and adopt the process of scripting to quickly write code. Sketches are
stored in the sketchbook, a folder that's used as the default location for saving all of your
projects. Sketches that are stored in the sketchbook can be accessed from File —
Sketchbook. Alternatively, File — Open... can be used to open a sketch from elsewhere
on the system.

sketch_160826a | Processing 3.2.1
Edit | Sketch | Debug Tools Help

sketch_160826a

import processing.serial.+;

el void setup()

{
B println{"Hello, World!");
-

vold draw()

Hello, World!

EM cConsole A\ Errors

[3] sketch_160826a | Processing 3.2.1 =
File Edit Sketch Debug Toeols Help

sketch_160826a

H

dmport processing.serial.*;
PImagze Timage;

void setup()

i
size(l204,664) ;
Aimage=loadImage("E:\image.jps");:
background (image) ;

T

void draw()

i

ellipse{lo@, 1008, 80, 150);
rect{(300, 100, 108, 120);

stroke (200) ;

line(400, 480, 588, T7jPO);:

H

[[R TV N]

53]

EM consocle A En

Output:

o sketch 1606262 - cEE

o sketch_160826a | Processing 3.2.1 = =
File Edit Sketch Debug Toels Help

° o Stop Java ¥

sketch_160826a

=
>

el float x=50;
el float xDelta=l;
EN float y=50;
[oid setup() {

zize(500,100) ;
frameRate(60) ;

s Iy

0 =

RN void draw() {

bl background{@);

ey fill({255,@,08);

Y =troke(@,255,8);

il =trokewWeight(&8);

il cllipse(x,y,25,25);
il «=x+xDelta;

=l T (x=500)

1 {
wbelta=-1;
1 .
SRS T4c)]
{
24 wDelta=1;
1
1
- W
£ >

EM conscle A Er

Output:

o sketch_160826a =

Let’s start with the Arduino side of things. We’ll show you the basics of how to set up
your Arduino sketch to send information over serial.

1- Open Arduino software and type the following:

sketch_aug26a | Arduino 1.611 = O [HEN
File Edit Sketch Tools Help

sketch_aug2Ga

vold setup() ~
{

ffinitialize serial commuanications at a 9600 baud rate
Serial.begin(9600);

I}
vold loop()

i

ff3end "Hello, world!' ower the serial port
Serial.println("Hello, world!™}):

ffwait 100 milliseconds

delay {100} ;

}

nuino Uno an COMA

2- Plug in your Arduino board, select your board type (under Tools -> Board Type)
and your Serial port (under Tools -> Serial Port) and hit the ‘upload’ button to
load your code onto the Arduino.

3- Open Processing software and type the following.

€ sketch_161205a | Processing 3.2.3 = O >
File Edit Sketch Debug Tools Help

sketch_161205a

dmport processing.serial.+;
Serial myPort;

String wval;

vold setup()

s I

String portMame="COM4";
7 myPort=new Serial{this,portMame,9600) ;
2 i
2 void draw()
{
if(myPort.available()>0)
1
val=myPort.read5tringUntil{''n');

B

if{wal != null)
print{val);

El cConsole

4- If you hit the ‘run’ button (and your Arduino is plugged in with the code on the
previous page loaded up), you should see a little window pop-up, and after a sec
you should see “Hello, World! “appear in the Processing console.

We’ve sent data from Arduino to Processing, but what if we want to send data the other
way - from Processing to Arduino. The following example show how to send data from
Processing to Arduino by click on mouse.

1- Open Processing software and type the following:

@

File Edit Sketch Debug Tools Help

sketch_161205b

dmport processing.serial.®;
serial myPort;
e void setup()
4 I
s1ze(200,200);
String portName="COM4";
] myPort=new Serial{this,portName,3600) ;
.-_

vold draw()

N .

if(mousePressed ==true)
{

myPort.write{'l');
lelse
myPort.write('0');

B

In our draw() loop, we send whatever we want over the serial port by using the
write method from the Processing Serial library. For this sketch, we will send a ‘1’
whenever we click our mouse in the Processing window. We’ll also print it out on
the console, just to see that we’re actually sending something. If we aren’t clicking
we’ll send a ‘0’ instead.

If you run this code, you should see a bunch of 1’s appear in the console area
whenever you click your mouse in the window.

2- Open Arduino software and type the following:

€% sketch_dec05a | Arduine 1.6.12 - O >
File Edit Sketch Tools Help

Serial Monitor

sketch_dec05a

int wal: ~
int ledPin=11;

vold setup() |

Serial.begin(9600);

pinMode {ledPin, OUTPUT) -

}

void loop({) |
if{Serial.available({))
{

va1=Seria1.:eaﬂ{?ﬂ
if(wval == "1")

digitalWrite (ledPin, HIGH) ;

{
digitalWrite (ledPin, LOW)

IIf we load up this code onto our Arduino, and run the Processing sketch from the
previous page, you should be able to turn on an LED attached to pin 11 of your Arduino,
simply by clicking within the Processing canvas.

The following section show how to run Pong game using Processing and Arduino.

1- Open Arduino software and type the following:

sketch_dec(8a | Arduino 1.6.11

File Edit Sketch Tools Help

sketch_dec0B8a g

vold setup() {

vold loop() {
JF4 read the inputs

int leftPaddlelUp = analogRead (A0);
int leftPaddleDown = analogRead(Al):
int rightPaddleUp = analogRead (A2);

int rightPaddleDown nalogRead (A3) -

Serial.print{leftPaddlelp):

Serial.printc{™,™}): S add a comma
Serial.print{leftPaddleDown)

Serial.printc{™, ™)

Serial.print{rightPaddlelUp):

Serial.printc{™, ™)

Serial.println{rightPaddleDown)

delay (10} Pf delay before sending the next set

Serial.kegin{9600); S/ initialize serial communication

2- Open Processing software and type the contant of file Player2.txt.

10

3- Connect the following circuit.

for our Game we have four inputs (two photocells per player).The
Controller code works both with the one player mode and two player
mode of the pong game, and it is fairly straightforward. The code
reads the values which are output by the photocells and sends each
value by serial communication to the processing engine.

4-Run Arduino and Procesing softwares.the follwing screen should be appear.

o sketch_161210a - = ‘

11

You can play with one player by open Processing and type Playerl.txt file instead of
Player2.txt file. The following screen should be appear.

[+] sketch_161210a

This part will be given to you by the teacher assistant in the lab time.

12

