10 Digital Inputs/Outputs

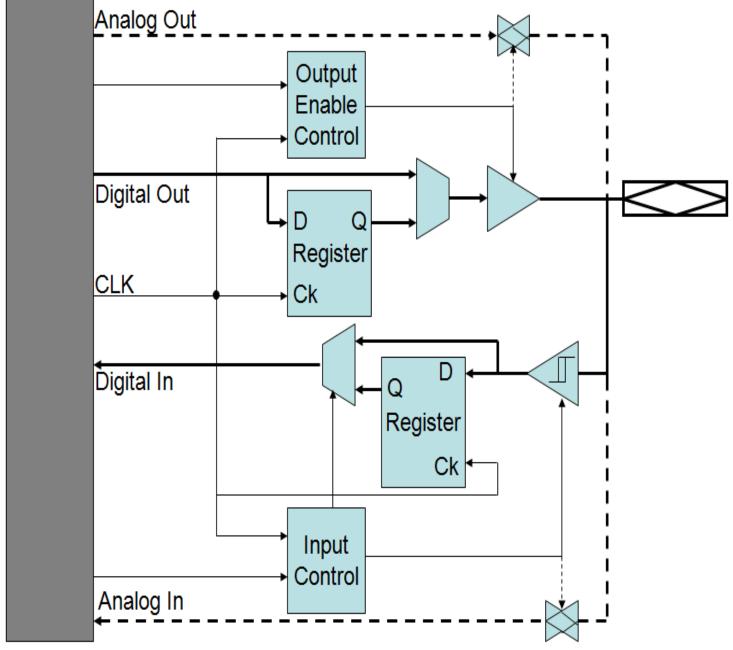


Figure 1 I/O functional pin configuration

1.Objective

Learn how to solve a combinatorial equation, a combinatorial system, and evaluate the response-time of a system, then program a sequential system as states machine.

2. Overview

DigitalOut DigitalOut DigitalOut DigitalOut DigitalOut DigitalOut DigitalOut DigitalOut DigitalOut DigitalOut DigitalOut DigitalOut DigitalOut DigitalOut	Gnd Vin Vb nR 5 6 7 8 9 10 11 12 13 14 15 16 17 13 14 15 16 17 17 18 19 20	Vout Vu IF- RD- RD- TD- TD- D- D- D- 30 29 28 27 26 25 24 25 24 23 22 21	DigitalOut DigitalOut DigitalOut DigitalOut DigitalOut DigitalOut DigitalOut DigitalOut DigitalOut DigitalOut DigitalOut	Digitalin Digitalin Digitalin Digitalin Digitalin Digitalin Digitalin Digitalin Digitalin Digitalin Digitalin Digitalin Digitalin Digitalin	Gnd Vin Vb 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	mbed Microcontroller	Vout Vu IF- IF+ RD- TD- TD+ D- D+ 30 29 28 27 26 25 24 23 22 21	Digitalin Digitalin Digitalin Digitalin Digitalin Digitalin Digitalin Digitalin Digitalin
--	---	---	--	--	---	----------------------	---	---

2.1 Input Pin

	DigitalIn (PinName pin, const char *name=NULL)
	Create a DigitalIn connected to the specified pin.
int	read ()
	Read the input, represented as 0 or 1 (int)
void	mode (PinMode pull)
	Set the input pin mode.
	operator int ()
	An operator shorthand for read()

Example code:

- 1. DigitalIn input1 (p5);
- 2. a = input1.read(); //or a= input1

LSB

MSB

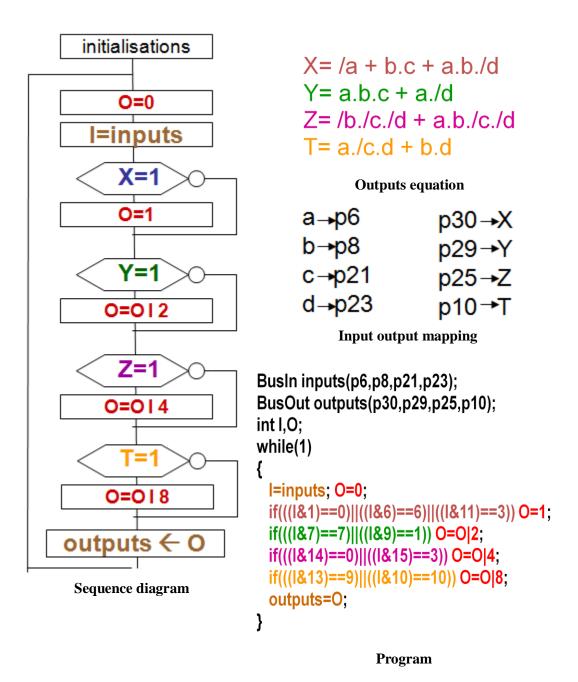
2.2 Input bus

 Busin (PinName p0, PinName p1=NC, , PinName p15=NC, const char *name=NULL)

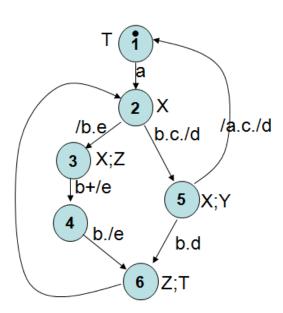
 Create an Busin , connected to the specified pins.

 int
 read ()

 Read the value of the input bus.


 operator int ()

 A shorthand for read()


Example codes.

- 1. BusIn inputs(p5, p6, p11, p23);
- a=inputs.read();
- 3. if(inputs & 0x07==0x05).....;

2.3 Combinatorial system "Successive evaluation method"

1.3 Sequential system "States Machine"


```
X = /a + b.c + a.b./d
Y = a.b.c + a./d
Z= /b./c./d + a.b./c./d
T=a./c.d+b.d
```

Outputs equation

а	p6	p30	Х
b	p8	p29	Υ
С	p21	p25	Ζ
d	p23	p10	Т
е	р5	·	

Input output mapping

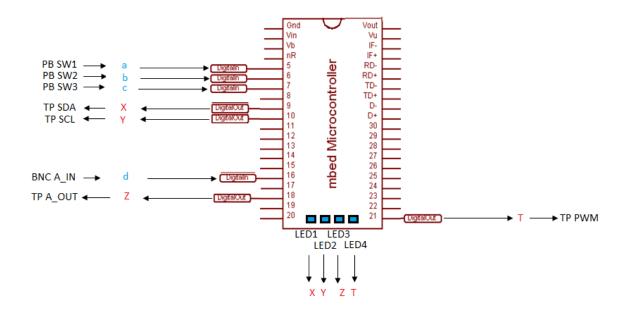
```
#include "mbed.h"
```

}

```
BusIn inputs(p6,p8,p21,p23,p5);
BusOut outputs(LED4,LED3,LED2,LED1);
int I; char ST=1;
```

```
int main() {
   while(1) {
       I=inputs;
        switch(ST)
        {
         case 1: outputs=0x8;
                 if((I&0x01)==0x01) ST=2; break;
         case 2: outputs=0x1;
                 if((I&0x12)==0x10) ST=3;
                 else
                 if((I&0x0e)==0x06) ST=5; break;
         case 3: outputs=0x5;
                 if(((I&0x02)==0x02) ||
                    ((I&0x10)==0x00))ST=4; break;
         case 4: outputs=0x0;
                 if((I&0x12)==0x02) ST=6; break;
         case 5: outputs=0x3;
                 if((I&0x0a)==0x0a) ST=6;
                 else
                 if((I&0x0d)==0x04) ST=1; break;
        case 6: outputs=0xc;
                 if((I&0x1a)==0x00) ST=2; break;
         }
   }
```

FSM


Program

3.Procedure

The mbed module is supplied by the USB interface (no need of external power supply). The supply jumper has to be in the position "USB".

We will use combinatorial variables a, b, c, d, X, Y, Z and T connected to the following table:

	INPUTS				OUTPUTS			
Name	а	b	С	d	Х	Y	Z	Т
MBED Pin	P5	P6	P7	P16	Р9	P10	P18	P21
Board	PB SW1	PB SW2	PB SW3	BNC A_IN	TP SDA	TP SCL	TP A_OUT	TP PWM

Remark: there are no external pull up resistors in inputs p5, p6, p7, and p16.

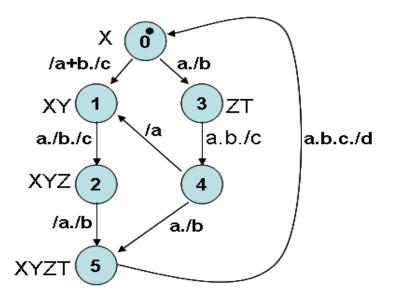
1. Combinatorial equation

Using the DigitalIn and DigitalOut classes, write the program solving the equation:

X = /a.b.c + a./b./c.d + a.c.d

- Test the program using the push buttons and watching the LED1.
- Connect a square wave function generator to BNC input corresponding to variable d.IF the buttons are not pushed, a=b=c=1 and X=d. Observe simultaneously d and X with an oscilloscope. Measure the delay between the rising edges of d and X.

2. Combinational system


Using BusIn and BusOut classes, and the successive evaluation method, write the program solving the system:

- X = /a.b.c + a./b./c
- Y = a.b.c.d + /a./b./c.d
- Z = a./c
- T = /b.d + c./d

Test the program using the push buttons and watching the LEDs.

3. Sequential system : state machine

3.1 Write and test the program corresponding to the following specifications:

3.2 we will display on the LCD the number of active state.