
1

Experiment #11

Serial Communication with Arduino

Birzeit University

Faculty of Engineering and Technology

Department of Electrical and Computer Engineering

Objectives:
The objectives of this experiment are getting to know the basic concepts of serial communication and to

practically apply it using Arduino.

2

Theoretical Introduction

I. UART

UART stands for Universal Asynchronous Receiver/Transmitter. It’s not a communication protocol like SPI and

I2C, but a physical circuit in a microcontroller, or a stand-alone IC. A UART’s main purpose is to transmit and

receive serial data.

In UART communication, two UARTs communicate directly with each other. The transmitting UART converts

parallel data from a controlling device like a CPU into serial form, transmits it in serial to the receiving UART,

which then converts the serial data back into parallel data for the receiving device. Only two wires are needed

to transmit data between two UARTs. Data flows from the Tx pin of the transmitting UART to the Rx pin of the

receiving UART.

UARTs transmit data asynchronously, which means there is no clock signal to synchronize the output of bits

from the transmitting UART to the sampling of bits by the receiving UART. Instead of a clock signal, the

transmitting UART adds start and stop bits to the data packet being transferred. These bits define the beginning

and end of the data packet so the receiving UART knows when to start reading the bits.

When the receiving UART detects a start bit, it starts to read the incoming bits at a specific frequency known as

the baud rate. Baud rate is a measure of the speed of data transfer, expressed in bits per second (bps). Both

UARTs must operate at about the same baud rate.

Figure 1: Serial Communication

• START BIT

The UART data transmission line is normally held at a high voltage level when it’s not transmitting data. To start

the transfer of data, the transmitting UART pulls the transmission line from high to low for one clock cycle.

When the receiving UART detects the high to low voltage transition, it begins reading the bits in the data frame

at the frequency of the baud rate.

3

• DATA FRAME

The data frame contains the actual data being transferred. It can be 5 bits up to 8 bits long if a parity bit is used. If

no parity bit is used, the data frame can be 9 bits long. In most cases, the data is sent with the least significant bit

first.

• PARITY

Parity describes the evenness or oddness of a number. The parity bit is a way for the receiving UART to tell if any

data has changed during transmission. Bits can be changed by electromagnetic radiation, mismatched baud rates, or

long-distance data transfers. After the receiving UART reads the data frame, it counts the number of bits with a

value of 1 and checks if the total is an even or odd number. If the parity bit is a 0 (even parity), the 1-bits in the data

frame should total to an even number. If the parity bit is a 1 (odd parity), the 1-bits in the data frame should total to

an odd number. When the parity bit matches the data, the UART knows that the transmission was free of errors. But

if the parity bit is a 0, and the total is odd; or the parity bit is a 1, and the total is even, the UART knows that bits in

the data frame have changed.

• STOP BITS

To signal the end of the data packet, the sending UART drives the data transmission line from a low voltage to a

high voltage for at least two-bit durations.

4

II. Serial communication with Arduino [Tx, Rx]

Serial communication on pins TX/RX uses TTL logic levels (5V or 3.3V depending on the board). Don't connect

these pins directly to an RS232 serial port; they operate at +/- 12V and can damage your Arduino board.

Serial is used for communication between the Arduino board and a computer or other devices. All Arduino boards

have at least one serial port (also known as a UART or USART): Serial. It communicates on digital pins 0 (RX)

and 1 (TX) as well as with the computer via USB. Thus, if you use these functions, you cannot also use pins 0 and

1 for digital input or output.

You can use the Arduino environment's built-in serial monitor to communicate with an Arduino board. Click the

serial monitor button in the toolbar and select the same baud rate used in the call to begin().

In order to handle the serial communication, a lot of built-in functions are implemented to make your life easier.

The following functions are used mainly. For extra information, please refer to this link.

• Serial.available()
Get the number of bytes (characters) available for reading from the serial port. This is data that’s already arrived

and stored in the serial receive buffer.

• Serial.begin()
Sets the data rate in bits per second (baud) for serial data transmission. For communicating with Serial Monitor,

make sure to use one of the baud rates listed in the menu at the bottom right corner of its screen. You can,

however, specify other rates - for example, to communicate over pins 0 and 1 with a component that requires a

particular baud rate. [Must be used in setup()]

An optional second argument configures the data, parity, and stop bits. The default is 8 data bits, no parity, one

stop bit.

Syntax:

Serial.begin(speed)

Serial.begin(speed, config)

Where:

speed: in bits per second (baud). Allowed data types: long. [ex: 4800, 9600, 19200]

config: sets data, parity, and stop bits. Valid values are:

No Parity:

SERIAL_5N1

SERIAL_6N1

SERIAL_7N1

SERIAL_8N1 (the default)

SERIAL_5N2

SERIAL_6N2

SERIAL_7N2

SERIAL_8N2

Even Parity:

SERIAL_5E1

SERIAL_6E1

SERIAL_7E1

SERIAL_8E1

SERIAL_5E2

SERIAL_6E2

SERIAL_7E2

SERIAL_8E2

Odd Parity:

SERIAL_5O1

SERIAL_6O1

SERIAL_7O1

SERIAL_8O1

SERIAL_5O2

SERIAL_6O2

SERIAL_7O2

SERIAL_8O2

https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://www.arduino.cc/reference/en/language/functions/communication/serial/available
https://www.arduino.cc/reference/en/language/functions/communication/serial/begin/

5

Read Data:

• Serial.read()

Reads incoming serial data.

Returns: The first byte of incoming serial data available (or -1 if no data is available). Data type: int.

• Serial.readBytes(buffer, length)
Reads characters from the serial port into a buffer. The function terminates if the determined length has been

read, or it times out.

Returns: The number of bytes placed in the buffer. Data type: size_t.

• Serial.readString()
Reads characters from the serial buffer into a String. The function terminates if it times out.

Returns: A String read from the serial buffer

• Serial.parseInt()
Looks for the next valid integer in the incoming serial.

• Serial.parseFloat()
returns the first valid floating-point number from the Serial buffer. It is terminated by the first character that is

not a floating-point number

Write Data:

• Serial.print()
Prints data to the serial port as human-readable ASCII text. This command can take many forms. Numbers are

printed using an ASCII character for each digit. Floats are similarly printed as ASCII digits, defaulting to two

decimal places. Bytes are sent as a single character. Characters and strings are sent as is.

• Serial.write()
Writes binary data to the serial port. This data is sent as a byte or series of bytes; to send the characters

representing the digits of a number use the print() function instead.

https://www.arduino.cc/reference/en/language/functions/communication/serial/read/
https://www.arduino.cc/reference/en/language/functions/communication/serial/readbytes/
https://www.arduino.cc/reference/en/language/functions/communication/serial/readstring/
https://www.arduino.cc/reference/en/language/functions/communication/serial/parseint/
https://www.arduino.cc/reference/en/language/functions/communication/serial/parsefloat/
https://www.arduino.cc/reference/en/language/functions/communication/serial/parsefloat/
https://www.arduino.cc/reference/en/language/functions/communication/serial/print/
https://www.arduino.cc/reference/en/language/functions/communication/serial/write/

6

Procedure

The following parts are different applications on using Serial communication between 2 devices.

Part1: Basic communication between Arduino & PC

The idea of this part is sending a simple information between the Arduino & PC [“Hello World!”] in order to

become familiar with the connections & the setup.

I. Required Components:

• PC

• Arduino UNO Board

• USB Cable

II. Circuit

III. Code

The following code will receive data from the PC and then write it back to the serial port.

/* Use a variable called byteRead to temporarily store
 the data coming from the computer */
byte byteRead;

void setup() {

// Turn the Serial Protocol ON
 Serial.begin(9600);
}

void loop() {

 /* check if data has been sent from the computer: */
 if (Serial.available()) {
 /* read the most recent byte */
 byteRead = Serial.read();
 /*ECHO the value that was read, back to the serial port. */
 Serial.write(byteRead);
 }

}

7

IV. Download & Run

• Connect the Arduino with the PC using the USB cable and then download the code.

• Open the serial monitor.

• Send a value to Arduino as seen in the following screenshot

8

Part2: Basic communication between 2 Arduinos

The idea of this part is sending a simple information between the 2 Arduinos [“Hello World!”] in order to

become familiar with the connections & the setup.

I. Required Components:

• Arduino UNO Board X 2

• Jumper Wires

II. Circuit

Figure 2: Connecting 2 Arduinos using TX & RX

 We connect TX in the First Arduino with RX in the second one and Vice versa [TX1 ↔ RX2 & RX1 ↔ TX2]. The

ground must be common between both of them.

9

III. Code

Since we are dealing with 2 Arduinos, a code for each is needed.

Sender Code:

The sender will be responsible of sending “Hello World!” to the receiver Arduino. First, we should specify the

serial communication Setup [Baud rate, stop bits, …] and then send!

Receiver Code:

The receiver will be responsible of receiving the data and then displaying it. First, we should specify the serial

communication Setup [Baud rate, stop bits, …] and then read the data!

IV. Download & Run

• Download Both codes on the Transmitter & Receiver Arduinos.

Note: If it shows error while uploading code to Arduino. Then, disconnect the connection between

Arduino and try to upload program on it.

• Open Serial monitor on the receiver and observe the printed data.

void setup() {
 // Setup the Serial at 9600 Baud
 Serial.begin(9600);

}

void loop() {
 Serial.println("Hello World!"); //Write the serial data
 delay(1000);
}

void setup() {
 // Begin the Serial at 9600 Baud
 Serial.begin(9600);

}

void loop() {
 if (Serial.available()) {
 String data = Serial.readString();//Read the serial data and store in var
 Serial.println(data);//Print data on Serial Monitor
 }

}

10

Part3: Push Button & LED using 2 Arduinos

The idea of this part is to connect a push button with Arduino1 and whenever it’s pushed, the value 1 is sent to the

Arduino2. In its part, Arduino2 receives the data and whenever logic 1 is read, a LED will be turned on.

I. Required Components:

• Arduino UNO Board X 2

• Push Button

• LED

• Resistance X 2

II. Circuit

Figure 3: Arduino1 connected with Push button

Figure 4: Arduino2 connected with Led

Note: We connect TX in the First Arduino with RX in the second one and Vice versa [TX1 ↔ RX2 & RX1 ↔ TX2].

The ground must be common between both of them.

11

III. Code

Sender Code:

Arduino1 should send 1 to Arduino2 whenever the push button is pushed. If not pushed, nothing should be sent.

Receiver Code:

Arduino2 should receive 1 from Arduino1 whenever the push button is pushed. In this case, the Led must be

turned on.

IV. Download & run

• Download Both codes on the Transmitter & Receiver Arduinos.

• Open the Serial monitor to make sure that the receiver sends the data correctly.

void setup() {
 // TODO[1]: Setup the Serial at 9600 Baud

}
void loop() {
 // TODO[2]: Check if the push button is pushed & Send 1 if pushed

}

void setup() {
 // TODO[1]: Setup the Serial at 9600 Baud

}

void loop() {
/* Check if data has been sent from the computer: */
 if (Serial.available()) {
 // TODO[2]: Check if 1 is sent, and turn on the LED if yes.

 }
}

12

Part4: Visualization of serial communication using Serial Plotter

The idea of this part is to see how the serial data are transferred as start-data-parity-stop bits. This can be done

using Serial plotter in Arduino IDE.

I. Required Components:

• Arduino UNO Board X 2

• PC

• USB Cable

• Wires

II. Circuit

Figure 5: Arduino1 TX connected with Arduino2 PIN_7 with common GND

13

III. Code

Sender Code:

The sender will be responsible of sending a character to the receiver Arduino. First, we have to setup the Baud

Rate to be very small [for example, 300] and then sending a character with a delay.

Receiver Code:

The receiver will be responsible of reading the data sent using digitalRead with one of the digital pins in order to

plot the serial data as bits. A high Baud rate was used in order to capture the bits.

IV. Download & run

• Download Both codes on the Transmitter & Receiver Arduinos.

• Open the Serial Plotter [Tools -> Serial Plotter] in the Receiver to observe the bits received.

void setup() {
 // Setup the Serial at 300 Baud
 Serial.begin(300);
}

void loop() {
 Serial.write('A'); //Write the character A => will be transmitted as Byte [41H]

 delay(500);
}

int readPin = 7;
void setup() {
 // Begin the Serial at 19200 Baud
 Serial.begin(19200);
 pinMode(readPin, INPUT);

}

void loop() {
 Serial.println(digitalRead(readPin));
}

14

V. Tasks

• Draw the theoretical waveform for the start-data-parity-stop bits and compare it with what is

plotted.

• Try Sending different data. [Read the data from the user]

• Try changing the serial setup:

o Even Parity

o Odd Parity

15

References:

• https://www.arduino.cc/reference/en/language/functions/communication/serial/

https://www.arduino.cc/reference/en/language/functions/communication/serial/

