

 8 Introduction to ADC, DAC and Timers

 1. Objectives

The aims of this experiment is Learned how to digitalize an analog signal,

generate an analog signal from a digital value , and Understanding how to use

timers with interrupts to obtain the needed resolution .

 2.Overview

Analog-to-digital converters (ADCs) are needed in all those applications which, interfacing with

the analogue world, exploit the digital processing of data. As digital processing is more and more

gaining ground over analogue signal processing, the importance of ADCs correspondingly

increases.

 Digital signal processing systems are generally designed by considering analogue-to-digital

converters (ADC's) as ideal components affected only by quantization and sampling errors.

Viceversa, the effect of the ADC actual working conditions modifies the expected digital values

and could compromise the effectiveness of the digital signal processing as a whole. ADC's are

among the components that mostly influence metrological performance of digital measurement

systems. ADC errors limit system dynamic, its frequency band and so on, by adding distortion

and error effects to the output. Therefore, a deeper insight into the ADC characteristics is needed.

2.1 ADC
An analog-to-digital converter (abbreviated ADC, A/D or A to D) is a device that converts a

continuous physical quantity (usually voltage) to a digital number that represents the quantity's

amplitude. The conversion involves quantization of the input, so it necessarily introduces a small

amount of error. The inverse operation is performed by a digital-to-analog converter (DAC).

Instead of doing a single conversion, an ADC often performs the conversions ("samples" the

input) periodically. The result is a sequence of digital values that have converted a continuous-

time and continuous-amplitude analog signal to a discrete-time and discrete-amplitude digital

signal.

http://en.wikipedia.org/wiki/Quantization_%28signal_processing%29
http://en.wikipedia.org/wiki/Digital-to-analog_converter
http://en.wikipedia.org/wiki/Sampling_%28signal_processing%29
http://en.wikipedia.org/wiki/Analog_signal
http://en.wikipedia.org/wiki/Discrete-time
http://en.wikipedia.org/wiki/Digital_signal
http://en.wikipedia.org/wiki/Digital_signal

Figure 2.1 ADC: From the Analog Signal to the Digital Value

A successive-approximation ADC uses a comparator to successively narrow a range that contains

the input voltage. At each successive step, the converter compares the input voltage to the output

of an internal digital to analog converter which might represent the midpoint of a selected voltage

range. At each step in this process, the approximation is stored in a successive approximation

register (SAR) shows in figure.2.3. For example, consider an input voltage of 2 V and the initial

range is 0 to 5 V. For the first step, the input 2 V is compared to 2.5 V (the midpoint of the 0–5 V

range). The comparator reports that the input voltage is less than 2.5 V, so the SAR is updated to

narrow the range to 0–2.5 V. For the second step, the input voltage is compared to 1.25 V

(midpoint of 0–2.5). The comparator reports the input voltage is above 1.25 V, so the SAR is

updated to reflect the input voltage is in the range 1.25 -2.5 V, and so on. The steps are continued

until the desired resolution is reached.

Figure 2.2: 12 bits ADC, resolution DV = Vmax/4096

http://en.wikipedia.org/wiki/Successive_Approximation_ADC
http://en.wikipedia.org/wiki/Digital_to_analog_converter

Figure 2.3 Successive approximation register (SAR)

2.2 DAC

In electronics, a digital-to-analog converter (DAC or D-to-A) is a device that converts a digital

(usually binary) code to an analog signal (current, voltage, or electric charge). An analog-to-

digital converter (ADC) performs the reverse operation. Signals are easily stored and transmitted

in digital form, but a DAC is needed for the signal to be recognized by human senses or other

non-digital systems.

A common use of digital-to-analog converters is generation of audio signals from digital

information in music players. Digital video signals are converted to analog in televisions and

mobile phones to display colors and shades. Digital-to-analog conversion can degrade a signal, so

conversion details are normally chosen so that the errors are negligible.

Due to cost and the need for matched components, DACs are almost exclusively manufactured on

integrated circuits (ICs). There are many DAC architectures which have different advantages and

disadvantages. The suitability of a particular DAC for an application is determined by a variety of

measurements including speed and resolution.

http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Analog_signal
http://en.wikipedia.org/wiki/Current_%28electricity%29
http://en.wikipedia.org/wiki/Voltage
http://en.wikipedia.org/wiki/Electric_charge
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Senses
http://en.wikipedia.org/wiki/Digital_audio_player
http://en.wikipedia.org/wiki/Television
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Electronic_components
http://en.wikipedia.org/wiki/Integrated_circuits
http://en.wikipedia.org/wiki/Hardware_architecture
http://en.wikipedia.org/wiki/Resolution_%28audio%29

Figure 2.4 DAC: From the Digital Value to the Analog Signal

2.3 MBED Functions of the AnalogIn Class

Figure 2.5 shows MBED analog Read functions, where figure 2.6 shows the write functions.

Figure 2.4 AnalogRead Functions

Figure 2.6 AnalogWrite Functions

2.4 Timers and interrupts

Many embedded systems need high precision timing control and the ability to respond

urgently to critical requests. For example an automotive system needs to be able to

respond rapidly to a crash detection sensor in order to activate the passenger airbag.

Interrupts in embedded systems can be thought of as functions which are called by

specific events rather than directly in code. Interrupts allow code execution to be halted

while another, higher priority section of software executes. ISR can be programmed to

execute on timed events or by events that occur externally in hardware.

The Timer interface is used to create, start, stop and read a timer for measuring small

times (between microseconds and seconds). Figure 2.7 shows public member functions of

the Timer object to perform scheduled programming.

Hardware interrupts: Microprocessors can be set up to perform specific tasks when

hardware events are incident. This allows the main code to run and perform its tasks,

and only jump to certain subroutines or functions when something physical happens.

Figure 2.8 shows public member functions of the external interrupt.

Figure 2.7: timer object

Figure 2.8 functions of the external interrupt

With scheduled programming, we need to be careful with the amount of code and how

long it takes to execute. For example, if we need to run a task every 1 ms, that task must

take less than 1 ms second to execute, otherwise the timing would overrun and the

system would go out of sync.

3.Procedure

3.1 Reading an Analog Input

3.1.1 Connect input as per connections given in Figure 3.1

Figure 3.1: connect an analog input to mbed

Remark:- Range for analog inputs data should be in the range of 0.1 to 1.0 Volts only.

3.1.2 Write the desired C++ program and compile it using mbed compiler.

3.2 Using Timer Object

Create a square wave output using scheduled programming and verify the timing

accuracy with an oscilloscope. Write the following C++ program and compile it using

mbed compiler

3.3 Using Timeout interface

The Timeout interface is used to setup an interrupt to call a function after a specified

delay. Write a simple program to setup a Timeout to invert an LED after a given time

3.4 Using Ticker interface

The Ticker interface is used to setup a recurring interrupt to repeatedly call a function at a

specified rate. Write a simple program to setup a Ticker to invert an LED repeatedly.

#include "mbed.h"

Timer timer1; // define timer object

DigitalOut output1(X); // digital output

//You have to find a digital output pin and

assign it to variable X

void task1(void); // task function prototype

//*** main code

int main() {

timer1.start(); // start timer counting

while(1) {

if (timer1.read_ms()>=200) // read time in ms

{

task1(); // call task function

timer1.reset(); // reset timer

}

}

}

void task1(void){ // task function

output1=!output1; // toggle output

}

#include "mbed.h"

Timeout flipper;

DigitalOut led1(LED1);

DigitalOut led2(LED2);

void flip() {

 led2 = !led2;

}

int main() {

 led2 = 1;

 flipper.attach(&flip, 2.0); // setup flipper t

o call flip after 2 seconds

 // spin in a main loop. flipper will interrupt

 it to call flip

 while(1) {

 led1 = !led1;

 wait(0.2);

 }

}

3.5 External interrupts on the mbed

Use the mbed InterruptIn library to toggle an LED whenever a digital pushbutton input

goes high.

TODO: Combine the timer and hardware interrupt programs to show that a scheduled

program and an event driven program can operate together. Flash a LED at rate defined

by a timer and allow a hardware interrupt to write your name on LCD when a pushbutton

is pressed.

#include "mbed.h"

Ticker flipper;

DigitalOut led1(LED1);

DigitalOut led2(LED2);

void flip() {

 led2 = !led2;

}

int main() {

 led2 = 1;

 flipper.attach(&flip, 2.0); // the address of

the function to be attached (flip) and the interva

l (2 seconds)

 // spin in a main loop. flipper will interrupt

 it to call flip

 while(1) {

 led1 = !led1;

 wait(0.2);

 }

}

#include "mbed.h"

InterruptIn button(p5); // Interrupt on

digital pushbutton input p5

DigitalOut led1(LED1); // digital out to

LED1

void toggle(void); // function prototype

int main() {

button.rise(&toggle); // attach the

address of the toggle

} //

function to the rising edge

void toggle() {

led1=!led1;

}

