Processes

Process Concept

Process Scheduling
Operations on Processes
Interprocess Communication
Examples of IPC Systems

e Communication in Client-Server
Systems

Process Concept

* An operating system executes a variety of programs:

— Batch system —jobs
— Time-shared systems —user programs or tasks
* Textbook uses the terms job and process almost
interchangeably
* Process —a program in execution; process execution
must progress in sequential fashion
e A process includes:
— program counter
— Stack
— data section

3/26/2014

3/26/2014

Process in Memory

max
stack

heap

data

text

Process State

* As a process executes, it changes state
— new: The process is being created
— running: Instructions are being executed

— waiting: The process is waiting for some event to
occur

— ready: The process is waiting to be assigned to a
processor

— terminated: The process has finished execution

Process State

admitted interrupt terminated

I/O or event completion schedumier dispekch I/O or event wait

Process Control Block (PCB)

* Information associated with each process
— Process state
— Program counter
— CPU registers
— CPU scheduling information
— Memory-management information
— |/0O status information

3/26/2014

Process Control Block (PCB)

process state
process number

program counter

registers

memory limits
list of open files

process Py operating system process P,

interrupt or system call

exacuting ﬂ
T save state inlo PCB,
reload state from PCB, i

idle interrupt or system call exacuting

vy
save state into PCB,

J reload state from PCB,
executing U\

idle

idle

3/26/2014

Ready Queue And Various 1/0

ready
queue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

terminal
unit 0

queue header PCB, PCB,
head ~———— —_
tail « | registers registers
v .
head 2
i fail 2
head 2
0 PCB, PCB,, PCB,
///;;, — —_— ™=
head
L ._/-/
PCB;
head —=
il |
.

Representation of Process Scheduling

ready queue

» CPU

1/O queue -

/O request [«

time slice
expired

child

executes

fork a
child

interrupt

occurs

b

wait for an
interrupt

10

3/26/2014

3/26/2014

Schedulers

* Long-term scheduler(or job scheduler) —
selects which processes should be brought
into the ready queue

e Short-term scheduler(or CPU scheduler) -
selects which process should be executed
next and allocates CPU

Schedulers

e Short-term scheduler is invoked very frequently
(milliseconds) (must be fast)

e Long-term scheduler is invoked very infrequently
(seconds, minutes) (may be slow)

* The long-term scheduler controls the degree of
multiprogramming

* Processes can be described as either:

— 1/0-bound process—spends more time doing 1/0 than
computations, many short CPU bursts

— CPU-bound process—spends more time doing
computations; few very long CPU bursts

Context Switch

When CPU switches to another process, the
system must save the state of the old process
and load the saved state for the new process
via a context switch

Context of a process represented in the PCB

Context-switch time is overhead; the system
does no useful work while switching

Time dependent on hardware support

Process Creation

Parent process create children processes, which, in
turn create other processes, forming a tree of
processes

Generally, process identified and managed via a
process identifier (pid)

Resource sharing

— Parent and children share all resources

— Children share subset of parent’s resources

— Parent and child share no resources

Execution

— Parent and children execute concurrently

— Parent waits until children terminate

14

3/26/2014

Process Creation

e Address space
— Child duplicate of parent
— Child has a program loaded into it
e UNIX examples
— Fork system call creates new process

— Exec system call used after a forkto replace the
process’ memory space with a new program

15

Process Creation

parent y wait resumes
A -

16

3/26/2014

C program - fork

#include <stdio.h>
#include <stdlib.h>

int main()
{
int i, pid;
printf("My process ID is %d\n", getpid());

for(i=0;i<3;i++){
pid = fork();

if (pid !=0){

printf("1 am the parent => PID = %d, child ID = %d\n", getpid(), pid);

}
else {
printf("l am the child => PID = %d\n", getpid());

}

}
while(1);

return(0);

}

17

C program - fork

#include <stdio.h>

int main()
{
inti, pid;

printf("My process ID is %d\n", getpid());

for(i=0;i<3;i++){
pid = fork();

if (pid==0){
printf("1 am the child => PID = %d\n", getpid());
while(1);

}

else

printf("1 am the parent => PID = %d, child ID = %d\n", getpid(), pid);

}
while(1);
return(0);

}

18

3/26/2014

C program - fork

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
int main()
{

inti, status;

pid_t pid, pid_array[3];

printf("My process ID is %d\n", getpid());
for(i=0;i<3;i++){
pid = fork();
if (pid==0){
printf("l am the child => PID = %d\n", getpid());
while(1);
}
else {
printf("l am the parent => PID = %d, child ID = %d\n", getpid(), pid);
pid_array[i] = pid;
}
}
//while(1){
for(i=0;i<3;i++){
if (pid = wait(&status)) {
printf("Process ID %d has terminated\n", pid);
}

19

i

C program - fork

int main()
{
pid_t pid;

/* fork another process */

pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
exit(-1);

}
else if (pid == 0) { /* child process */
execlp("/bin/Is", "Is", NULL);

}
else { /* parent process */

/* parent will wait for the child to complete */
wait (NULL);

printf ("Child Complete");

exit(0);

}
}

20

3/26/2014

10

Process Creation —win32

BOOL CreateProcess(
LPCTSTR IpApplicationName, // name of executable module
LPTSTR IpCommandlLine, // command line string

LPSECURITY_ATTRIBUTES IpProcessAttributes, //SD
LPSECURITY_ATTRIBUTES IpThreadAttributes, //SD

BOOL finheritHandles, // handle inheritance option
DWORD dwcCreationFlags, // creation flags

LPVOID IpEnvironment, // new envirnment block
LPCTSTR IpCurrentDirectory, // current directory name

LPSTARTUPINFO IpStartuplnfo, // startup information

LPPROCESS_INFORMATION IpProcessinformation // process
information

);

21

Process Creation —win32

STARTUPINFO Si;

PROCESS_INFORMATION pi;
ZeroMemory(&si,sizeof(si));
si.cb=sizeof(si);
ZeroMemory(&si,sizeof(pi));

char szExe[MAX_PATH] = “mspaint.exe";
///// HINSTANCE hinstance = GetModuleHandle(NULL);
//// GetModuleFileName(hlnstance, szExe, MAX_PATH);
if(!CreateProcess(0, szExe, 0, 0, FALSE, 0, 0, 0, &si, &pi))
{ printf(“Create Process failed”); return -1;
}
// optionally wait for process to finish
WaitForSingleObject(pi.hProcess, INFINITE);
printf(“Child complete”);
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);

22

3/26/2014

11

3/26/2014

Process Termination

* Process executes last statement and asks the operating
system to delete it (exit)
— Output data from child to parent (via wait)
— Process’ resources are deallocated by operating system
e Parent may terminate execution of children processes
(abort)
— Child has exceeded allocated resources
— Task assigned to child is no longer required
— If parent is exiting

¢ Some operating system do not allow child to continue if its parent
terminates

¢ —All children terminated -cascading termination

Interprocess Communication

¢ Processes within a system may be independent or cooperating

¢ Cooperating process can affect or be affected by other
processes, including sharing data

* Reasons for cooperating processes:

— Information sharing

— Computation speedup

— Modularity

— Convenience
¢ Cooperating processes need interprocess communication (IPC)
e Two models of IPC

— Shared memory

— Message passing

24

12

Communications Models

process A process A

shared

process B 4] process B

Ll

kernel

I |

kernel

(a) (b)

25

Cooperating Processes

* Independent process cannot affect or be
affected by the execution of another process

» Cooperating process can affect or be affected
by the execution of another process
* Advantages of process cooperation
— Information sharing
— Computation speed-up
— Modularity
— Convenience

26

3/26/2014

13

Signals

A signal is a limited form of inter-process
communication used in Unix, Unix-like, and other POSIX-
compliant operating systems.

It is an asynchronous notification sent to a process or to a
specific thread within the same process in order to notify it
of an event that occurred.

When a signal is sent, the operating system interrupts the
target process's normal flow of execution. Execution can be
interrupted during any non-atomic instruction. If the
process has previously registered a signal handler, that
routine is executed. Otherwise the default signal handler is
executed.

Signals have been around since the 1970s Bell Labs Unix
and are more recently specified in the POSIX standard.

Signals

examples of Linux signal types:

— SIGINT : interrupt from keyboard

— SIGFPE : floating point exception

— SIGKILL : terminate receiving process

— SIGCHLD : child process stopped or terminated
— SIGSEGV: segment access violation

Signals are not presented to the process

immediately when they are generated. They must
wait until the process is running again.

If a process has specified its own signal handler.
The Kernel must call the signal handler The
program counter is set to the signal handling
routine and the Farameters to the routine are
added to the call frame or registers.

28

3/26/2014

14

Handling signals

Signal handlers can be installed with the signal() system
call.

If a signal handler is not installed for a particular signal,
the default handler is used. Otherwise the signal is
intercepted and the signal handler is invoked.

The process can also specify two default behaviors,
without creating a handler: ignore the signal (SIG_IGN)
and use the default signal handler (SIG_DFL).

There are two signals which cannot be intercepted and
handled: SIGKILL and SIGSTOP.

29

Signals - example

#include <stdio.h>
#include <signal.h>
//#include <unistd.h>
int ctrl_c_count =0;

void (* old_handler)(int);
void ctrl_c(int);

void main () {

intc;

old_handler = signal (SIGINT, ctrl_c);

while ((c = getchar()) !="\n');

printf("ctrl_c count = %d\n", ctrl_c_count);
(void) signal (SIGINT, old_handler);

for (;;);

void ctrl_c(int signum) {

(void) signal (SIGINT, ctrl_c); // signals are automatically reset
++ctrl_c_count;

} //see also the POSIX sigaction() call - more complex but better 30

3/26/2014

15

Masking signals with sigprocmask()

e the (modern) "POSIX" function used to mask signals in the global context, is
the sigprocmask() system call. It allows us to specify a set of signals to block, and returns the
list of signals that were previously blocked. This is useful when we'll want to restore the
previous masking state once we're done with our critical section.

e Note: each process on a unix system has its own signals mask, which is used by the operating
system to specify which signals should be delivered to the proces, and which should be
blocked. The sigprocmask system call is used to take a signals mask we created in user space,
and update the one in stored in the kernel, using this user-space mask. The mask stored in
the kernel is the one later considered by the operating system, when deciding whether to
deliver a signal to the process, or block it.

e sigprocmask() accepts 3 parameters:

e int how defines if we want to add signals to the current process's mask (SIG_BLOCK), remove
them from the current mask (SIG_UNBLOCK), or completely replace the current mask with
the new mask (SIG_SETMASK).

e constsigset_t *setThe set of signals to be blocked, or to be added to the current mask, or
removed from the current mask (depending on the 'how' parameter).

e sigset_t *oldsetlf this parameter is not NULL, then it'll contain the previous mask. We can
later use this set to restore the situation back to how it was before we called sigprocmask().

31

Example — signals masking

void catch_int(int sig_num) {
sigset_t mask_set; /* used to set a signal masking set. */
sigset_t old_set; /* used to store the old mask set. */

/* re-set the signal handler again to catch_int, for next time */
signal(SIGINT, catch_int);

/* block any further signals while we're inside the handler. */
sigfillset(&mask_set);

sigprocmask(SIG_SETMASK, &mask_set, &old_set);
/// signal handling code
/* restore old mask */
sigprocmask(SIG_SETMASK, &old_set, &mask_set,);

3/26/2014

16

Implementing Timers Using Signals

#include <unistd.h>
#include <signal.h>
char user[40]; /* buffer to read user name from the user */ /* define an alarm signal handler. */
void catch_alarm(int sig_num) {
printf("Operation timed out. Exiting...\n\n"); exit(0); }
.. /* and inside the main program... */ ..
/* set a signal handler for ALRM signals */

signal(SIGALRM, catch_alarm);

/* prompt the user for input */

printf("Username: ");

fflush(stdout);

/* start a 30 seconds alarm */

alarm(30);

/* wait for user input */

gets(user);

/* remove the timer, now that we've got the user's input */
alarm(0);

.. /* do something with the received user name */

"Do" and "Don't" inside A Signal Handler

Make it short
Proper Signal Masking

Careful with "fault" signals

Careful with timers - only use one timer at a time

Signals are NOT an event driven framework

How to send Signals to another process? Kill(..)

3/26/2014

17

pipes

e Pipe is an effective way of communication
between process. Pipe has descriptors. One
descriptor is used for reading while other end is
used for writing.

Usage of pipe is to have communication between
child and parent process. We also use pipe to
redirect of output of a process to another
process. We often use pipe in our shell scripts.

Unidirectional, FIFO, unstructured data stream
Fixed maximum size

Simple flow control

pipe() system call creates two file descriptors.
Why?

Implemented using filesystem, sockets or
STREAMS (bidirectional pipe).

3/26/2014

18

Implementation

¢ In most Unix-like systems, all processes of a pipeline are started at
the same time, with their streams appropriately connected, and
managed by the scheduler together with all other processes
running on the machine.

¢ Animportant aspect of this, setting Unix pipes apart from other
pipe implementations, is the concept of buffering: for example a
sending program may produce 5000 bytes per second, and a
receiving program may only be able to accept 100 bytes per second,
but no data is lost. Instead, the output of the sending program is
held in a queue.

¢ When the receiving program is ready to read data, the operating
system sends its data from the queue, then removes that data from
the queue. If the queue buffer fills up, the sending program is
suspended (blocked) until the receiving program has had a chance
to read some data and make room in the buffer. In Linux, the size of
the buffer is 65536 bytes.

example- Using a pipe to send data
from parent to a child

#include <stdio.h>

#include <unistd.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[])

int f_des[2];
static char message[BUFSIZ];

if (argc!=2){
fprintf(stderr, "Usage: %s message\n", *argv);
exit(1);

}

if (pipe(f_des) ==-1){
perror("Pipe");
exit(2);

}

switch (fork()) {

case -1:
perror("Fork™);
exit(3);

3/26/2014

19

Example- cont.

case O: /* In the child */

close(f_des[1]);

if (read(f_des[0], message, BUFSIZ) !=-1) {
printf("Message received by child: [%s]\n", message);
fflush(stdout);

}

else {
perror("Read");
exit(4);

}

break;

default: /* In the parent */

close(f_des[0]);

if (write(f_des[1], argv[1], strlen(argv[1])) '=-1){
printf("Message sent by parent: [%s]\n", argv[1]);
fflush(stdout);

}

else {
perror("Write");
exit(5);

}

exit(0);
} 39

Named Pipes (FIFOs - First In First Out)

A named pipe works much like a regular pipe, but does
have some noticeable differences.

* Named pipes exist as a device special file in the file
system.

* Processes of different ancestry can share data
through a named pipe.

* When all I/O is done by sharing processes, the
named pipe remains in the file system for later use.

3/26/2014

20

Creating a FIFO

e To create a FIFO in C, we can make use of the
mknod() system call:

* PROTOTYPE:

int mknod(char *pathname, mode_t mode, dev_t dev);
RETURNS: O on success, -1 on error:

mknod("/tmp/MYFIFO", S_IFIFO|0666, 0);

FIFO Operations

* |/O operations on a FIFO are essentially the
same as for normal pipes, with once major
exception. An “open' system call or library
function should be used to physically open up
a channel to the pipe.

3/26/2014

21

fifoserver.c

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#tinclude <unistd.h>
#include <linux/stat.h>
#define FIFO_FILE "MYFIFO"
int main(void) {
FILE *fp;
char readbuf[80]; /* Create the FIFO if it does not exist */
umask(0);
mknod(FIFO_FILE, S_IFIFO| 0666, 0);
while(1) {
fp = fopen(FIFO_FILE, "r");
fgets(readbuf, 80, fp);
printf("Received string: %s\n", readbuf);
fclose(fp); }
return(0); }

fifoclient.c

#include <stdio.h>
#include <stdlib.h>
#define FIFO_FILE "MYFIFO"
int main(int argc, char *argv(])
{ FILE *fp;
if (argc!=2){
printf("USAGE: fifoclient [string]\n");
exit(1); }
if((fp = fopen(FIFO_FILE, "w")) == NULL) {
perror("fopen"); exit(1); }
fputs(argv([1], fp);
fclose(fp);
return(0);

3/26/2014

22

Blocking Actions on a FIFO

* Normally, blocking occurs on a FIFO. In other
words, if the FIFO is opened for reading, the
process will "block" until some other process
opens it for writing. This action works vice-versa
as well.

e If this behavior is undesirable, the O_NONBLOCK
flag can be used in an open() call to disable the
default blocking action.

e Can you think of another way to have a non-
blocking FIFO?

Named Pipes —Win32

Here’s a quick overview of the steps required to create
and use a simple named pipe to send data from a
server program to a client program.

Server program:
— Call CreateNamedPipe(..) to create an instance of a named
pipe.

— Call ConnectNamedPipe(..) to wait for the client program
to connect.

— Call WriteFile(..) to send data down the pipe.

— Call CloseHandle(..) to disconnect and close the pipe
instance.

3/26/2014

23

Named Pipes —Win32

Client program:

— Call CreateFile(..) to connect to the pipe.
— Call ReadFile(..) to get data from the pipe.
— Output data to the screen.

— Call CloseHandle(..) to disconnect from the pipe.

For more details visit
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365590(v=vs.85).aspx

PIPE NAMES-WIN32

* You can name Win32 pipes almost anything
you like, as long as they start with the prefix

“N\.\pipe\”. In practice it becomes "\\\\.\\pipe\\”
e Everything after that in the name is up to you,
so long as you don’t use backslashes though

e don’t exceed 256 characters in total

3/26/2014

24

READ/WRITE MODES

There are two main modes of read/write operation available on
pipes: byte stream, and message. The difference is fairly small, but
can be very significant depending on your application.

Message mode simply makes a distinction between each set of data
sent down the pipe. If a program sends 50 bytes, then 100 bytes,
then 40 bytes, the receiving program will receive it in these
separate blocks (and will therefore need to read the pipe at least 3
times to receive everything).

On the other hand, byte stream mode lets all the sent data flow
continuously. In our example of 50, 100, then 40 bytes, the client
could happily receive everything in a single 190-byte chunk. Which
mode you choose depends on what your programs need to do

OVERLAPPED PIPE 10

By default, pipe operations in Win32 are synchronous, or
blocking. That means your program (or specifically the
thread which handles the pipe operations) will need to wait
for each operation to complete before it can continue.

Using overlapped pipe 10 means that pipe operations can
process in the background while your program continues to
do other things (including running other pipe operations in
some cases). This can be very helpful, but it means you
have to keep track of which operations are in progress, and
monitor them for completion.

An alternative to overlapped operation is to run
synchronous pipe operations in a separate thread. If your
pipe 10 needs are fairly simple then this may be a simpler
option.

50

3/26/2014

25

BUFFERED INPUT/OUTPUT

* When calling “CreateNamedPipe(..)” you can choose to
specify buffer sizes for outbound and inbound data.

* These can be very helpful for program performance,
particularly in synchronous operation.

* If your buffer size is 0 (which is entirely valid) then
every byte of data must be read from the other end of
the pipe before the write operation can be completed

* However, if a buffer is specified then a certain amount
of data can linger in the pipe before it gets read. This
can allow the sending program to carry on with other
tasks without needing to use overlapped pipe 10.

51

CreateNamedPipe

HANDLE hPipe;
hPipe = CreateNamedPipe(
g szPipeName, // pipe name

PIPE_ACCESS DUPLEX, // read/write access
PIPE_TYPE_MESSAGE | // message type pipe
PIPE_READMODE_MESSAGE | // message-read mode
PIPE_WAIT, // blocking mode

PIPE_UNLIMITED INSTANCES, // max. instances
BUFFER_SIZE, // output buffer size

BUFFER_SIZE, // input buffer size
NMPWAIT_USE_DEFAULT_WAIT, // client time-out
NULL); // default security attribute

52

3/26/2014

26

3/26/2014

Message Passing

* In a Message passing system there are no shared variables.
IPC facility provides two operations for fixed or variable
sized message:

— send(message)
— receive(message)

e If processes P and Q wish to communicate, they need to:
— establish a communication link
— exchange messages via send and receive

* Implementation of communication link
— physical (e.g., shared memory, hardware bus)
— logical (e.g., syntax and semantics, abstractions)

Implementation Questions

* How are links established?

e Can alink be associated with more than two processes?

¢ How are links made known to processes?

¢ How many links can there be between every pair/group of communicating processes?
e What is the capacity of a link?

¢ |Isthe size of a message that the link can accommodate fixed or variable?

¢ Isalink unidirectional or bi-directional?

27

Message Passing Systems

* Exchange messages over a communication link

* Methods for implementing the communication link and
primitives (send/receive):
1.Direct or Indirect communications (Naming)
2.Symmetric or Asymmetric communications
3.Automatic or Explicit buffering
4.Send-by-copy or send-by-reference
5.fixed or variable sized messages

Message Queues

* Message queues can be best described as an
internal linked list within the kernel's
addressing space. Messages can be sent to the
qgueue in order and retrieved from the queue
in several different ways. Each message queue
(of course) is uniquely identified by an IPC
identifier.

3/26/2014

28

3/26/2014

Internal and User Data Structures

* Message buffer : the msgbuf structurebe
thought of as a template for message data.

* Kernel msg structure : message details
* Kernel msqid_ds structure: queue details

* Kernel ipc_perm structure: permission
information for IPC objects.

Message buffer

e The msgbuf structure can be thought of as
a template for message data.

struct msgbuf {
long mtype; /* type of message */
char mtext[1]; /* message data*/

b

 Itis up to the programmer to define structures
of this type.

struct my_msgbuf {

long mtype; /* Message type */

long request_id; /* Request identifier */

struct client info; /* Client information structure */

b

29

SYSTEM CALL: msgget()

e In order to create a new message queue, or
access an existing queue, the msgget() system call
is used

e int msgget (key_t key, int msgflg);
— The first argument to msgget() is the key value (in our
case returned by a call to ftok()).
— the msgflg argument

¢ IPC_CREAT: Create the queue if it doesn't already exist in the
kernel.

¢ IPC_EXCL: When used with IPC_CREAT, fail if queue already
exists.

* Msgget() returns the message queue identifier

59

Example- open_queue()

int open_queue(key_t keyval)

{
int qid;
if((gid = msgget(keyval, IPC_CREAT | 0660)) == -1)
{
return(-1);
}

return(qid);
}

60

3/26/2014

30

SYSTEM CALL: msgsnd()

* Once we have the queue identifier, we can begin
performing operations on it. To deliver a message
to a queue, you use the msgsnd system call:

e int msgsnd (int msqid, struct msgbuf *msgp, int msgsz, int msgfig);

— RETURNS: 0 on success -1 on error
— msgsnd: queue identifier
— msgp: pointer to the message buffer.

— Msgsz: size of the message in bytes, excluding the
length of the message type (4 byte long).

— msgflg : 0 (ignored), or:

¢ IPC_NOWAIT If the message queue is full, then the message
is not written to the queue.

61

Example- send_message

int send_message(int qgid, struct mymsgbuf *qbuf)

{

int result, length;

/* The length is essentially the size of the structure minus
sizeof(mtype) */

length = sizeof(struct mymsgbuf) - sizeof(long);
if((result = msgsnd(qid, gbuf, length, 0)) == -1)
{
return(-1);

}

return(result);

62

3/26/2014

31

#include <stdio.h>
#include <stdlib.h>
#include <linux/ipc.h>
#include <linux/msg.h>
main() {

int qid;
key t msgkey;
struct mymsgbuf {
long mtype; /* Message type */
int request; /* Work request number */
double salary; /* Employee's salary */ } msg;
/* Generate our IPC key value */
msgkey = ftok(".", ‘m");
/* Open/create the queue */
if((gid = open_queue(msgkey)) == -1)
{ perror(*open_queue"); exit(1); }
/* Load up the message with arbitrary test data */
msg.mtype = 1; /* Message type must be a positive number! */
msg.request = 1; /* Data element #1 */
msg.salary = 1000.00; /* Data element #2 (my yearly salary!)*/

if((send_message(qid, &msg)) == -1)

{ perror("send_message"); exit(1); } }

63

* Retrieving the message from the queue is

SYSTEM CALL: msgrcv()

done using the msgrcv() system call:

int msgrev (int msqid, struct msgbuf *msgp, int msgsz, long mtype, int msgflg);

— RETURNS: Number of bytes copied into message buffer
— msqid,msgp and msgsz same as msgsnd()
— mtype: specifies the type of message to retrieve from the queue

— msgflg: IPC_NOWAIT is passed as a flag, and no messages are available, the
call returns ENOMSG to the calling process. Otherwise, the calling process

blocks

64

3/26/2014

32

Example- read_message()

int read_message(int gid, long type, struct mymsgbuf *gbuf)
{

int result, length;

/* The length is essentially the size of the structure minus
sizeof(mtype) */

length = sizeof(struct mymsgbuf) - sizeof(long);

If((result = msgrev(qid, gbuf, length, type, 0)) ==-1)
{ return(-1); }

return(result);

Example- peek _message()

int peek_message(int qid, long type)
{

int result, length;
if((result = msgrev(qid, NULL, O, type, IPC_NOWAIT)) == -1)
{
if(errno == E2BIG)
return(TRUE);

}
return(FALSE);

66

3/26/2014

33

SYSTEM CALL: msgctl()

e To perform control operations on a message
queue, you use the msgctl() system call.

¢ int msgctl(int msggid, int cmd, struct msqid_ds *buf);
— RETURNS: 0 on success

— cmd:

¢ IPC_STAT: Retrieves the msqid_ds structure for a queue, and
stores it in the address of the buf argument.

¢ IPC_SET: Sets the value of the ipc_perm member of the
msqid_ds structure for a queue. Takes the values from the
buf argument.

¢ IPC_RMID: Removes the queue from the kernel.

Example- remove_queue

int remove_queue(int gid)

{
if(msgctl(qid, IPC_RMID, 0) == -1)
{
return(-1);
}
return(0);
}

68

3/26/2014

34

Example- Server

#include.....

#tdefine KEY 500

struct msg

{
long int type;
char a[1024];
int pid;
p.p1;

int main()

{
intm;
m=msgget(KEY,0666 | IPC_CREAT);
p.type=1;
printf("\nEnter the msg");
scanf("%s",&p.a);
pid_t pid;
p.pid=getpid();
msgsnd(m,&p,sizeof(p),0);
msgrcv(m,&p1l,sizeof(p),p.pid,0);
printf("%s",p1.a);

69

Example- Client

#define KEY 500
struct msg
{
long int type;
char a[1024];
int pid;
Io;
int main()
{
int m,n,fd,m1;
m=msgget(KEY,0666 | IPC_CREAT);
while(1)
{
msgrcv(m,&p,sizeof(p),1,0);
printf("Filename from client %s\n",p.a);
fd=open(p.a,0_RDONLY);
n=read(fd,p.a,1024);
p.type=p.pid;
p.pid=getpid();
msgsnd(m,&p,sizeof(p),0);
1}

70

3/26/2014

35

Example- Output

Enter the msg strcmp.c
Filename from client strcmp.c
#include<stdio.h>
#include<unistd.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<stdlib.h>
#include<string.h>
int main(int argc,char *argv(])
{
if(strcmp(argv[1],argv[2])==0)
printf("The given strings are equal");
else
printf("The strings are not equal");

71

Mailslot — Win32

* Mailslot is used for one way inter-process
communications.

* There is a Mailslot server which will be read-only; it will

just read the client sent messages.

* The clients will be write-only clients, sending messages

to the server.

* Mailslot messages can be of around 400 bytes only.

* Mailslot can broadcast messages in a domain. If
processes in a domain create a mailslot with the same
name, then a message that is sent to that mailslot is
sent to all of these processes.

72

3/26/2014

36

Mailslot Win32 APIs

* Following are some of the Win32 APIs that are
used when working with Mailslot:
— CreateMailSlot()
— GetMailslotInfo()
— SetMailslotInfo()
— ReadFile()
— WriteFile()
— CloseHandle()

Mailslot name

* A Mailslot name needs to be in the following
format:
— \\ComputerName\mailslot\[path\]name
— \\DomainName\mailslot\[path\]name
— *\mailslot\[path\]name

3/26/2014

37

Demo

75

Shared Memory

Shared memory can best be described as the
mapping of an area (segment) of memory that
will be mapped and shared by more than one
process.

This is by far the fastest form of IPC.

information is mapped directly from a memory
segment, and into the addressing space of the
calling process

A segment can be created by one process, and
subsequently written to and read from by any
number of processes.

76

3/26/2014

38

Shared memory - unix

e the kernel maintains a special internal data
structure for each shared memory segment
which exists within its addressing space. This
structure is of type shmid_ds, and is defined
in linux/shm.h

* The shared memory is managed using four
system calls
— shmget()
— shmat()
— shmctl()
— shmdt()

SYSTEM CALL: shmget()

* In order to create a new shared memory, or access an
existing one, the shmget() system call is used.
* int shmget (key_t key, int size, int shmflg);
— RETURNS: shared memory segment identifier on success -1
on error

— key :the IPC key value (in our case returned by a call
to ftok()).

— the msgflg argument

¢ |IPC_CREAT: Create the segment if it doesn't already exist in the
kernel.

¢ IPC_EXCL: When used with IPC_CREAT, fail if segment already
exists.

78

3/26/2014

39

Example- open_segment

int open_segment(key_t keyval, int segsize)
{
int shmid;
if((shmid = shmget(keyval, segsize, IPC_CREAT | 0660)) ==-1)
{

return(-1);

}

return(shmid);

}

79

SYSTEM CALL: shmat()

e Once a process has a valid IPC identifier for a
given segment, the next step is for the process
to attach or map the segment into its own
addressing space

e int shmat (int shmid, char *shmaddr, int shmflg);

— RETURNS: address at which segment was attached to the
process, or -1 on error

— If the addr argument is zero (0), the kernel tries to find an
unmapped region

— if the SHM_RDONLY flag is OR'd in with the flag argument, then
the shared memory segment will be mapped in, but marked as
readonly.

3/26/2014

40

3/26/2014

Example- attach_segment

char *attach_segment(int shmid)

{
return(shmat(shmid, 0, 0));

SYSTEM CALL: shmctl()

int shmctl (int shmqid, int cmd, struct shmid_ds *buf);
e Commands:

— IPC_STAT Retrieves the shmid_ds structure for a segment, and stores it
in the address of the buf argument

— IPC_SET Sets the value of the ipc_perm member of the shmid_ds
structure for a segment. Takes the values from the buf argument.

— IPC_RMID Marks a segment for removal.

e The IPC_RMID command doesn't actually remove a segment
from the kernel. Rather, it marks the segment for removal.
The actual removal itself occurs when the last process
currently attached to the segment has properly detached it.
Of course, if no processes are currently attached to the
segment, the removal seems immediate.

41

SYSTEM CALL: shmdt()

int shmdt (char *shmaddr);

e After a shared memory segment is no longer
needed by a process, it should be detached by
calling this system call.

* this is not the same as removing the segment
from the kernel! After a detach is successful, the
shm_nattch member of the associates shmid_ds
structure is decremented by one. When this value
reaches zero (0), the kernel will physically remove
the segment.

83

shm_server.c

#include <sys/types.h>
#include <sys/ipc.h
#include <sys/shm.h>
#include <stdio.h>

#define SHMSZ 27

main() {

char c; int shmid; key_t key;

char *shm, *s;

key = 5678; /* * Create the segment. */

if ((shmid = shmget(key, SHMSZ, IPC_CREAT | 0666)) < 0)

{ perror("shmget"); exit(1); }

/* * Now we attach the segment to our data space. */

if ((shm = shmat(shmid, NULL, 0)) == (char *) -1)

{ perror("shmat"); exit(1); }

/* * Now put some things into the memory for the * other process to read. */
s =shm;
for (c='a"; c<="z"; c++) *s++ = ¢; *¥s = NULL;

/* * Finally, we wait until the other process * changes the first character of
our memory * to '*', indicating that it has read what * we put there. */

while (¥*shm I="*') sleep(1);

exit(0); } 84

3/26/2014

42

shm_client.c

;#define SHMSZ 27
main() {
char c; int shmid; key_t key;
char *shm, *s;
key =5678; /* * Locate the segment.. */
if ((shmid = shmget(key, SHMSZ, IPC_CREAT | 0666)) < 0)
{ perror("shmget"); exit(1); }
/* * Now we attach the segment to our data space. */
if ((shm = shmat(shmid, NULL, 0)) == (char *) -1)
{ perror("shmat"); exit(1); }
/* * Now read what the server put in the memory. */
for (s = shm; *s I= NULL; s++) putchar(*s);
putchar('\n');
/* * Finally, change the first character of the * segment to '*', indicating we have read * the segment. */

shm ="'; exit(0); } 8

Memory Mapped files — win32

* File mapping is an efficient way for two or
more processes on the same computer to
share data.

* In order to access the file's contents, the
processes uses virtual address space called file
view.

* Processes read from and write to the file view
using pointers, just as they would with
dynamically allocated memory.

86

3/26/2014

43

3/26/2014

Shared memory win32 APlIs

* Following are some of the Win32 APIs that are
used when working with shared memory
(memory mapped objects):

— CreateFileMapping() : create shared memory

— MapViewOfFile() : attach the process to the
shared segment

— UnMapViewOfFile() detach the process from the
shared segment

— CloseHandle()

CreateFileMapping()

HANDLE CreateFileMapping(
HANDLE hFiIe,// handle to file to map -- INVALID_HANDLE_VALUE, if only shared memory
LPSECURITY_ATTRIBUTES /pFileMappingAttributes,

DWORD flProtect, // protection for mapping object
DWORD dwMaximumSizeHigh,

DWORD dwMaximumSizelow,

LPCTSTR IpName// name of file-mapping object);
The flProtect argument can be one of the following.
— PAGE_READONLY - memory is readonly

— PAGE_READWRITE - memory is readable and writable

— PAGE_WRITECOPY - memory is readable, after memory has been
written too.

44

MapViewOfFile()

LPVOID MapViewOfFile(

HANDLE hFileMappingObject,// file-mapping object
DWORD dwDesiredAccess,// access mode
DWORD dwfFileOffsetHigh,// file offset
DWORD dwfFileOffsetLow,// file offset
DWORD dwNumberOfBytesToMap);

* Function maps a buffer referred to by the file mapping
object to the local process space of the current process.
The function returns NULL, if there was an
error. Otherwise, it returns a legal address. The
dwDesiredAccess has the following values:

— FILE_MAP_READ - mapping can only be read only
— FILE_MAP_WRITE - mapping can either be read or write

UnMapViewOfFile()

A file buffer that was mapped to the current
process space is realeased with this
function. The IpBaseAddress argument takes
the return value from
the MapViewOfFile function. The return
value of this function is TRUE on success.

* BOOL UnmapViewOfFile(LPCVOID /pBaseAddress);

3/26/2014

45

Example

struct TSharedMemory {
DWORD m_dwProcessID; // Process ID from client
CHAR m_cText[512]; // Text from client to server
UINT m_nTextLength; // Returned from client
L
m_hMap = ::CreateFileMapping(
(HANDLE) INVALID_HANDLE_VALUE,
NULL,
PAGE_READWRITE,
0,
sizeof(TSharedMemory),
“ApplicationSpecificSharedMem");
m_pMsg =
(TSharedMemory*)::MapViewOfFile(m_hMap,FILE_MAP_WRITE,0,0,sizeof(TS
haredMemory));

// read and write to the memory
::CloseHandle(m_hMap);

Semaphores

e Semaphores can best be described as counters
used to control access to shared resources by
multiple processes. They are most often used as a
locking mechanism to prevent processes from
accessing a particular resource while another
process is performing operations on it.

e think of them as resource counters

* itisimportant to realize that semaphores are
actually implemented as sets (Unix), rather than
as single entities.

3/26/2014

46

Semaphores- Unix

* As with message queues, the kernel maintains
a special internal data structure for each
semaphore set which exists within its
addressing space. This structure is of
type semid_ds

* sem structure exists for every semaphore in
the set and contains information like the
current count

SYSTEM CALL: semget()

e int semget (key_t key, int nsems, int semflg);

— RETURNS: semaphore set IPC identifier on success
-1 on error

— key :the IPC key value (in our case returned by a
call to ftok()).

— the msgflg argument

* IPC_CREAT: Create the semaphore set if it doesn't
already exist in the kernel.

¢ |IPC_EXCL: When used with IPC_CREAT, fail if
semaphore already exists.

3/26/2014

47

3/26/2014

Example - open_semaphore_set

int open_semaphore_set(key_t keyval, int numsems)
{
int sid;
if (! numsems)
return(-1);
if((sid = semget(mykey, numsems, IPC_CREAT | 0660)) ==-1)
{ return(-1); }
return(sid);

}

SYSTEM CALL: semop()

e int semop (int semid, struct sembuf *sops,
unsigned nsops);

— RETURNS: 0 on success (all operations performed) -1
on error

— The first argument to semget() is the key value (in our
case returned by a call to semget).

— The second argument (sops) is a pointer to an array
of operations to be performed on the semaphore set

— the third argument (nsops) is the number of
operations in that array.

48

struct sembuf {

ushort sem_num; /* semaphore index in array */ short sem_op; /*
semaphore operation */ short sem_flg; /* operation flags */

b

e If sem_op is negative, then its value is subtracted from the
semaphore. This correlates with obtaining resources that the
semaphore controls

e If sem_op is positive, then it's value is added to the semaphore.
This correlates with returning resources back to the application's
semaphore set

e if sem_op is zero (0), then the calling process will sleep() until the
semaphore's value is 0. This correlates to waiting for a semaphore
to reach 100% utilization.

example

struct sembuf acquire = {0, -1, SEM_UNDO},

release = {0, 1, SEM_UNDO};
semid = semget(ipc_key, 2, IPC_CREAT | IPC_EXCL | 0660)) ;

semop(semid, &acquire, 1);
/// use the shared recource
semop(semid, &release, 1);

3/26/2014

49

SYSTEM CALL: semctl()

int semctl (int semid, int semnum, int cmd, union semun arg);

IPC_STAT Retrieves the semid_ds structure for a set, and stores it in the
address of the buf argument in the semun union.

IPC_SET Sets the value of the ipc_perm member of the semid_ds structure for
a set. Takes the values from the buf argument of the semun union.

IPC_RMID Removes the set from the kernel.

GETALL Used to obtain the values of all semaphores in a set. The integer
values are stored in an array of unsigned short integers pointed to by
the array member of the union.

GETNCNT Returns the number of processes currently waiting for resources.
GETPID Returns the PID of the process which performed the last semop call.
GETVAL Returns the value of a single semaphore within the set.

GETZCNT Returns the number of processes currently waiting for 100%
resource utilization.

SETALL Sets all semaphore values with a set to the matching values contained
in the array member of the union.

SETVAL Sets the value of an individual semaphore within the set to
the val member of the union.

99

union semun {

int val; /* value for SETVAL */

struct semid_ds *buf; // buffer for IPC_STAT & IPC_SET
ushort *array; // array for GETALL & SETALL
struct seminfo *__buf; // buffer for IPC_INFO
void *__pad; };

int get_sem_val(int sid, int semnum)

{

return(semctl(sid, semnum, GETVAL, 0));

#define MAX_PRINTERS 5
printer_usage()

{

intx;
for(x=0; x<MAX_PRINTERS; x++)
printf("Printer %d: %d\n\r", x, get_sem_val(sid, x));

3/26/2014

50

e Consider the following function, which could
be used to initialize a new semaphore value:

void init_semaphore(int sid, int semnum, int initval)
{
union semun semopts;
semopts.val = initval;
semctl(sid, semnum, SETVAL, semopts);

101

Semaphores — Win32

CreateSemaphore() : create new or open
existing semaphore

WaitForSingleObject(): acquire semaphore

ReleaseSemaphore(): release semaphore
CloseHandle()

102

3/26/2014

51

CreateSemaphore()

HANDLE CreateSemaphore(
LPSECURITY_ATTRIBUTES
lpSemaphoreAttributes, LONG lInitialCount,
LONG IMaximumCount, LPCTSTR IpName);

103

WaitForSingleObiject()

DWORD WINAPI WaitForSingleObject(
HANDLE hHandle,
DWORD dwMiilliseconds);

104

3/26/2014

52

ReleaseSemaphore

BOOL WINAPI ReleaseSemaphore(
HANDLE hSemaphore,
LONG IReleaseCount,
LPLONG IpPreviousCount);

* |ReleaseCount The amount by which the semaphore
object's current count is to be increased. The value
must be greater than zero. If the specified amount
would cause the semaphore's count to exceed the
maximum count that was specified when the
semaphore was created, the count is not changed and
the function returns FALSE.

105

Introduction to Socket
Programming

106

3/26/2014

53

Server and Client

Server and Client exchange messages over the network through a

common Socket API

\/\

TCP/UDP

!

P

7
v

Ethernet Adapter

Clients

ports\@ @
/ \ /

N socketapi /| | TCP/UDP

!

P

Y
v

user
space

kernel
space

Ethernet Adapter } hardware

107

User Datagram Protocol(UDP):

An Analogy

UDP

Single socket to rec

Postal Malil

eive messages * Single mailbox to receive letters

No guarantee of delivery * Unreliable ©
Not necessarily in-order delivery * Not necessarily in-order delivery
Datagram — independent packets » Letters sent independently

Must address each

packet * Must address each reply

Example UDP applications
Multimedia, voice over IP

108

3/26/2014

54

Transmission Control Protocol
(TCP): An Analogy

TCP

Reliable — guarantee
delivery

Byte stream —in-order
delivery
Connection-oriented —
single socket per
connection

Setup connection followed
by data transfer

Telephone Call

Guaranteed delivery
In-order delivery
Connection-oriented

Setup connection followed by
conversation

Example TCP applications
Web, Email, Telnet

109

Network Addressing Analogy

Telephone Call

Network Programming

Professors at CMU
412-268-8000 @ @ 412-268-8000

ext.123 \ / ext.654

Applications/Servers

| Extension |

A
Telephone No

Central Number

® 6 0 o
Web Mail
Port 80 Port 25
| Port No. |
IP Address
Network No.

Exchange

Area Code
T

0000000
15-441 Students

Host Number

A
o000 00

Clients

110

3/26/2014

55

Concept of Port Numbers

—Port numbers are used to identify

“entities” on a host NTP | Web
—Port numbers can be daemon | server
¢ Well-known (port 0-1023) port 12?\ /port 80
¢ Dynamic or private (port 1024-65535) i
—Servers/daemons usually use well- TCP/UDP
known ports i
* Any client can identify the server/service P
 HTTP = 80, FTP = 21, Telnet = 23,

v
Ethernet Adapter

e /etc/service defines well-known ports

—Clients usually use dynamic ports
* Assigned by the kernel at run time

111

Names and Addresses

Each attachment point on Internet is given
unigue address

— Based on location within network — like phone
numbers

* Humans prefer to deal with names not
addresses
— DNS provides mapping of name to address
— Name based on administrative ownership of host

112

3/26/2014

56

Internet Addressing Data Structure

#include <netinet/in.h>

/* Internet address structure */
struct in_addr {

u_long s_addr; /* 32-bit IPv4 address */
3} /* network byte ordered */

/* Socket address, Internet style. */
struct sockaddr_in {
u_char sin_family; /* Address Family */
u_short sin_port; /* UDP or TCP Port# */
/* network byte ordered */
struct in_addr sin_addr; /* Internet Address */
char sin_zero[8]; /* unused */

}:

¢ sin_family = AF_INET selects Internet address family

113

Byte Ordering

union {
u_int32_t addr; /* 4 bytes address */
char c[4];
¥ un;
/* 128.2.194.95 */
un.addr = 0x8002c25f;
/* c[0] =72 */
c[0] c[1] c[2] c[3]
* Big Endian 128 2 194 95
—Sun Solaris, PowerPC, ...
e Little Endian 95 194 2 128
—i386, alpha, ...

* Network byte order = Big Endian

114

3/26/2014

57

Byte Ordering Functions

* Converts between host byte order and network byte
order

— ‘h’ = host byte order

— ‘n’ = network byte order

— ‘I =long (4 bytes), converts IP addresses

— ‘s’ = short (2 bytes), converts port numbers

#include <netinet/in.h>

unsigned short int htons(unsigned short int
hostshort);

unsigned long int ntohl(unsigned long int netlong);
unsigned short int ntohs(unsigned short int
netshort);

unsigned long int htonl(unsigned long int hostlong);

1T

Lecture Overview

e Background
— TCP vs. UDP
— Byte ordering
e Socket 1/O

— TCP/UDP server and client
— 1/0 multiplexing

116

3/26/2014

58

What is a Socket?

e Asocket is a file descriptor that lets an application read/write data from/to
the network

int fd; /* socket descriptor */

if ((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) }
perror(“socket™);
exit(1);

e socket returns an integer (socket descriptor)
— fd <O indicates that an error occurred
— socket descriptors are similar to file descriptors

e AF_INET: associates a socket with the Internet protocol family
¢ SOCK_STREAM: selects the TCP protocol
¢ SOCK_DGRAM: selects the UDP protocol

117

TCP Server
e For example: web server
Web Server
Port 80 * What does a web server
need to do so that a web
TCP client can connect to it?
i
IP
i
Ethernet Adapter

118

3/26/2014

59

Socket I/O: socket()

¢ Since web traffic uses TCP, the web server must create a socket of type
SOCK_STREAM

int fd; /* socket descriptor */

if((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror(“socket™);
exit(l);

}

* Socketreturns an integer (socket descriptor)

* fd <0 indicates that an error occurred
* AF_INET associates a socket with the Internet protocol family
* SOCK_STREAM selects the TCP protocol

119

Socket 1/O: bind()

¢ A socket can be bound to a port

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind(Q) */

/* create the socket */
srv.sin_family = AF_INET; /* use the Internet addr family */
srv.sin_port = htons(80); /* bind socket “fd” to port 80*/

/* bind: a client may connect to any of my addresses */
srv.sin_addr.s_addr = htonl (INADDR_ANY);

if(bind(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) {
perror("bind™); exit(l);
}

« Still not quite ready to communicate with a client...

120

3/26/2014

60

Socket 1/0: listen()

¢ listen indicates that the server will accept a connection

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */

/* 1) create the socket */
/* 2) bind the socket to a port */

if(listen(fd, 5) < 0) {
perror(*listen™);
exit(l);

}

« Still not quite ready to communicate with a client...

121

Socket 1/0: accept()

* accept blocks waiting for a connection

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */
struct sockaddr_in cli; /* used by accept() */

int newfd; /* returned by accept() */

int cli_len = sizeof(cli); /7* used by accept() */

/* 1) create the socket */
/* 2) bind the socket to a port */
/* 3) listen on the socket */

newfd = accept(fd, (struct sockaddr*) &cli, &cli_len);
if(newfd < 0) {
perror(*accept™); exit(1);

}

e acceptreturns a new socket (newfd) with the same properties as the

original socket (fd)
* newfd < 0 indicates that an error occurred

122

3/26/2014

61

Socket 1/0: accept() continued...

struct sockaddr_in cli; /* used by accept() */
int newfd; /* returned by accept() */
int cli_len = sizeof(cli); /* used by accept() */

newfd = accept(fd, (struct sockaddr*) &cli, &cli_len);
if(newfd < 0) {

perror('accept');

exit(l);

}

* How does the server know which client it is?
* cli.sin_addr.s_addr contains the client’'s /P address
e cli.sin_port contains the client's port number

* Now the server can exchange data with the client by
using read and write on the descriptor newfd.

* Why does accept need to return a new descriptor?

Socket I/O: read()

* read can be used with a socket

* read blocks waiting for data from the client but does not
guarantee that sizeof(buf) is read

int fd; /* socket descriptor */
char buf[512]; /* used by read() */
int nbytes; /* used by read() */

/* 1) create the socket */

/* 2) bind the socket to a port */

/* 3) listen on the socket */

/* 4) accept the incoming connection */

if((nbytes = read(newfd, buf, sizeof(buf))) < 0) {
perror(“read”); exit(l);

}

124

3/26/2014

62

* For example: web client

TCP Client

2 Web Clients

How does a web client
connect to a web server?

Ethernet Adapter

125

Dealing with IP Addresses

IP Addresses are commonly written as strings (“128.2.35.50”), but programs
deal with IP addresses as integers.

Converting strings to numerical address:

struct sockaddr_in srv;

srv.sin_addr.s_addr = inet_addr(“128.2.35.50);
if(srv.sin_addr.s_addr == (in_addr_t) -1) {

fprintf(stderr, "inet_addr failed!\n'"); exit(l);

}

Converting a numerical address to a string:

struct sockaddr_in srv;
char *t = inet_ntoa(srv.sin_addr);
if(t == 0) {
fprintf(stderr, “inet_ntoa failed!\n); exit(l);
}

3/26/2014

63

Translating Names to Addresses

* Gethostbyname provides interface to DNS
e Additional useful calls
— Gethostbyaddr — returns hostent given sockaddr_in

— Getservbyname
¢ Used to get service description (typically port number)
* Returns servent based on name

#include <netdb.h>

struct hostent *hp; /*ptr to host info for remote*/
struct sockaddr_in peeraddr;
char *name = “www.cs.cmu.edu”;

peeraddr.sin_family = AF_INET;
hp = gethostbyname(name)

peeraddr.sin_addr.s_addr = ((struct in_addr*)(hp->h_addr))->s_addr;

127

Socket |/O: connect()

e connect allows a client to connect to a server...

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by connect() */

/* create the socket */

/* connect: use the Internet address family */
srv.sin_family = AF_INET;

/* connect: socket “fd” to port 80 */
srv.sin_port = htons(80);

/* connect: connect to IP Address “128.2.35.50" */
srv.sin_addr.s_addr = inet_addr(*128.2.35.50");

iT(connect(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) {
perror(’connect'); exit(l);

}

128

3/26/2014

64

Socket I/O: write()

e write can be used with a socket

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by connect() */
char buf[512]; /* used by write() */
int nbytes; /* used by write() */

/* 1) create the socket */
/* 2) connect() to the server */

/* Example: A client could “write” a request to a server
*/
if((nbytes = write(fd, buf, sizeof(buf))) < 0) {
perror(*write™);
exit(l);

129

Review: TCP Client-Server

Interaction
TCP Server

TCP Client

socket() accept(Q)
connection establishment
on steb] I

ILHTO\ data request read()

data reply

end-of-file notification

from UNIX Network Programming Volume 1, figure 4.1

3/26/2014

65

UDP Server Example

e For example: NTP

- daemon
daemon
Port 123 e What does a UDP server
need to do so that a UDP

UDP client can connect to it?
i
IP
i

Ethernet Adapter

131

Socket I/O: socket()

The UDP server must create a datagram socket...

int fd; /* socket descriptor */

if((fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
perror(“socket™);
exit(l);

}

socket returns an integer (socket descriptor)
* fd <0 indicates that an error occurred

AF_INET: associates a socket with the Internet protocol family
SOCK_DGRAM: selects the UDP protocol

132

3/26/2014

66

Socket I/O: bind()

¢ A socket can be bound to a port

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */

/* create the socket */

/* bind: use the Internet address family */
srv.sin_family = AF_INET;

/* bind: socket “fd” to port 80*/
srv.sin_port = htons(80);

/* bind: a client may connect to any of my addresses */
srv.sin_addr.s_addr = htonl (INADDR_ANY);

if(bind(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) {
perror("bind"); exit(l);
3

* Now the UDP server is ready to accept packets...

Socket 1/O: recvfrom()

e read does not provide the client’s address to the UDP server

/* 1) create the socket */
/* 2) bind to the socket */

(struct sockaddr*) &cli, &cli_len);
if(nbytes < 0) {
perror(“recvfrom”); exit(l);
}

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bindQ) */
struct sockaddr_in cli; /* used by recvfrom(Q) */
char buf[512]; /* used by recvfrom() */
int cli_len = sizeof(cli); /* used by recvfrom() */
int nbytes; /* used by recvfrom() */

nbytes = recvfrom(fd, buf, sizeof(buf), 0 /* flags */,

134

3/26/2014

67

3/26/2014

Socket |/O: recvfrom() continued...

nbytes = recvfrom(fd, buf, sizeof(buf), 0 /* flags */,
(struct sockaddr*) cli, &cli_len);

* The actions performed by recvirom
* returns the number of bytes read (nbytes)
* copies nbytes of data into bufr
* returns the address of the client (c//)
* returns the length of ¢// (c/i_len)
» don’t worry about flags

UDP Client Example

2 UDP Clients
» How does a UDP client
communicate with a UDP /
2
server: ports \ 7
TCP
IP
i
Ethernet Adapter

68

Socket I/O: sendto()

Notice that the UDP client does not bind a port number
— aport number is dynamically assigned when the first sendto is called

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by sendto() */

/* 1) create the socket */

/* sendto: send data to IP Address “128.2.35.50” port 80 */

srv.sin_family = AF_INET;
srv.sin_port = htons(80);
srv.sin_addr.s_addr = inet_addr(*128.2.35.507);

nbytes = sendto(fd, buf, sizeof(buf), 0 /* flags */,
(struct sockaddr*) &srv, sizeof(srv));
if(nbytes < 0) {
perror(*“sendto”); exit(l);
¥

Review: UDP Client-Server
Interaction

UDP Server

UDP Client

recvfrom()

blocks until datagram

— sendto() data request received from a client

 »

data reply

sendto()

from UNIX Network Programming Volume 1, figure 8.1

3/26/2014

69

The UDP Server

« How can the UDP server
uDP Server‘ service multiple ports
Port 3000 Poft 2000 simultaneously?
N
UDP
IP
!
Ethernet Adapter

UDP Server: Servicing Two Ports

int sl; /* socket descriptor 1 */
int s2; /* socket descriptor 2 */

/* 1) create socket s1 */
/* 2) create socket s2 */
/* 3) bind sl to port 2000 */
/* 4) bind s2 to port 3000 */

while(1) {
recvfrom(sl, buf, sizeof(buf), ...);
/* process buf */

recvfrom(s2, buf, sizeof(buf), ...);
/* process buf */

}

* What problems does this code have?

140

3/26/2014

70

Socket |/O: select()

int select(int maxfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

FD_CLR(int fd, fd_set *fds); /* clear the bit for fd in fds */
FD_ISSET(int fd, fd_set *fds); /* is the bit for fd in fds? */
FD_SET(int fd, fd_set *fds); /* turn on the bit for fd in fds */
FD_ZERO(fd_set *fds); /* clear all bits in fds */

maxfds: number of descriptors to be tested
— descriptors (0, 1, ... maxfds-1) will be tested
readfds: a set of fds we want to check if data is available
— returns a set of fds ready to read
— ifinput argument is NULL, not interested in that condition
writefds: returns a set of fds ready to write

exceptfds: returns a set of fds with exception conditions

141

Socket |/O: select()

int select(int maxfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

struct timeval {

long tv_sec; /* seconds /
long tv_usec; /* microseconds */
by
* timeout

— if NULL, wait forever and return only when one of the descriptors is
ready for I/O

— otherwise, wait up to a fixed amount of time specified by timeout

* if we don’t want to wait at all, create a timeout structure with timer
value equal to 0

Refer to the man page for more information

142

3/26/2014

71

Socket I/0O: select()

« select allows synchronous I/0O multiplexing

int s1, s2;
fd_set readfds;

/* create and bind sl1 and s2 */

while(l) {

FD_ZERO(&readfds); /* initialize the fd set

*/

FD_SET(sl, &readfds); /* add sl to the fd set */
FD_SET(s2, &readfds); /* add s2 to the fd set */

if(select(s2+1, &readfds, 0, 0, 0) < 0) {
perror(“select™);
exit(l);

}

IT(FD_ISSET(sl, &readfds)) {
recvfrom(sl, buf, sizeof(buf), ...);
/* process buf */

/* do the same for s2 */

/* socket descriptors */
/* used by select() */

143

More Details About a Web Server

Port

Web Server

A/

TCP

!

P

i

Ethernet Adapter

How can a a web server manage
multiple connections simultaneously?

144

3/26/2014

72

Socket I/0O: select()

int fd, next=0; /* original socket */
int newfd[10]; /* new socket descriptors */
while(l) {

fd_set readfds;
FD_ZERO(&readfds); FD_SET(fd, &readfds);

/* Now use FD_SET to initialize other newfd’s
that have already been returned by accept() */

select(maxfd+l, &readfds, 0, 0, 0);
if(FD_ISSET(fd, &readfds)) {

newfd[next++] = accept(fd, ...);
¥

/* do the following for each descriptor newfd[n] */
if(FD_ISSET(newfd[7], &readfds)) {
read(newfd[7], buf, sizeof(buf));
/* process data */
}
}

Now the web server can support multiple connections... e

Remote Procedure Call

146

3/26/2014

73

3/26/2014

Message-oriented Protocols

e Many still in widespread use
* Traditional TCP/IP and Internet protocols

* Difficult to design and implement
¢ Especially with more sophisticated middleware

* Many difficult implementation issues for each
new implementation
* Formatting
* Uniform representation of data
¢ Client-server relationships

Remote Procedure Call (RPC)

e The most common framework for newer
protocols and for middleware

Used both by operating systems and by
applications
— NFS is implemented as a set of RPCs

— DCOM, CORBA, Java RMI, etc., are just RPC
systems

74

Remote Procedure Call (RPC)

e Fundamental idea: —

— Server process exports an interface of procedures
or functions that can be called by client programs

e similar to library API, class definitions, etc.

 Clients make local procedure/function calls

— As if directly linked with the server process

— Under the covers, procedure/function call is
converted into a message exchange with remote

Server process

149

Ordinary procedure/function call

count = read(fd, buf, nbytes)

Main program's
local variables

(a)

Stack pointer
/
_},-’f Main program's
pf local variables
= [oytes

| _buf

| fd

|_return address
read’s local

| variables

(b)

3/26/2014

75

Remote Procedure Call

* Would like to do the same if called procedure or
function is on a remote server

Wait for result
Client e

A X

Call remote Return
procedure from call
Request

Reply
Call local procedure Time —p»
and return results

Solution — a pair of Stubs

* Client-side stub * Server-side stub

— Looks like local server — Looks like local client
function function to server

— Same interface as local — Listens on a socket for
function message from client stub

— Bundles arguments into — Un-bundles arguments
message, sends to to local variables
server-side stub — Makes a local function

— Waits for reply, un- call to server
bundles results — Bundles result into reply

— returns message to client stub

152

3/26/2014

76

3/26/2014

Result

* The hard work of building messages,
formatting, uniform representation, etc., is
buried in the stubs

* Where it can be automated!

e Client and server designers can concentrate

on the semantics of application

e Programs behave in familiar way

RPC — Issues

* How to make the “remote” part of RPC
invisible to the programmer?

e What are semantics of parameter passing?
— E.g., pass by reference?

* How to bind (locate & connect) to servers?

* How to handle heterogeneity?

— 0S, language, architecture, ...

* How to make it go fast?

77

RPC Model

* Aserver defines the service interface using an
interface definition language (IDL)
— the IDL specifies the names, parameters, and
types for all client-callable server procedures

* A stub compiler reads the IDL declarations and
produces two stub functions for each server
function

— Server-side and client-side

RPC Model (continued)

e Linking:—
— Server programmer implements the service’s
functions and links with the server-side stubs

— Client programmer implements the client program
and links it with client-side stubs

* Operation:—

— Stubs manage all of the details of remote
communication between client and server

3/26/2014

78

3/26/2014

RPC Stubs

e Aclient-side stub is a function that looks to the client as if it
were a callable server function
— l.e., same API as the server’s implementation of the function
e Aserver-side stub looks like a caller to the server
— l.e., like a hunk of code invoking the server function
* The client program thinks it’s invoking the server
— but it’s calling into the client-side stub
* The server program thinks it’s called by the client
— but it’s really called by the server-side stub

¢ The stubs send messages to each other to make the RPC
happen transparently (almost!)

157

RPC Information Flow
args
call send
Client > Client | Packet
(caller) |e Stub Handler
return eceive
unbundle mbo
ret vals =
Machine A o
.. < £
JINE
Machine B bundle % A~
ret vals =
mbox1
return send
Server » Server »| Packet
(callee) |e Stub < Handler
call receive
unbundle
args
158

79

3/26/2014

Marshalling Arguments

* Marshalling is the packing of function parameters
into a message packet
— the RPC stubs call type-specific functions to marshal or
unmarshal the parameters of an RPC

¢ Client stub marshals the arguments into a message

¢ Server stub unmarshals the arguments and uses them to invoke
the service function

— on return:
¢ the server stub marshals return values

¢ the client stub unmarshals return values, and returns to the client
program

159

Issue #1 — representation of data

* Big endian vs. little endian

3l 12 1 0 o [11 [21 [3i o |1 21 |3
0 0 0 5 5 0 0 0 0 0 0 5
i7] ie| is5| 14 4, |51 |61 |71 4! |51 |81 |7
L L | J J I L L L L | J
(a) (b) (c)
Sent by Pentium Rec’d by SPARC After inversion

160

80

3/26/2014

Representation of Data (continued)

* IDL must also define representation of data on
network
— Multi-byte integers
— Strings, character codes
— Floating point, complex, ...

¢ example: Sun’s XDR (external data representation)

e Each stub converts machine representation to/from
network representation

* Clients and servers must not try to cast data!

161

Issue #2 — Pointers and References

read(int fd, char* buf, iInt nbytes)
* Pointers are only valid within one address
space

e Cannot be interpreted by another process
* Even on same machine!

* Pointers and references are ubiquitous in C,
C++
* Even in Java implementations!

162

81

Pointers and References —
Restricted Semantics

e Option: call by value

— Sending stub dereferences pointer, copies result
to message

— Receiving stub conjures up a new pointer

e Option: call by result

— Sending stub provides buffer, called function puts
data into it

— Receiving stub copies data to caller’s buffer as
specified by pointer

163

Pointers and References —
Restricted Semantics (continued)

e Option: call by value-result

— Caller’s stub copies data to message, then copies
result back to client buffer

— Server stub keeps data in own buffer, server
updates it; server sends data back in reply

* Not allowed:—
— Call by reference

164

3/26/2014

82

Transport of Remote Procedure Call

* Option — TCP
¢ Connection-based, reliable transmission
* Useful but heavyweight, less efficient
* Necessary if repeating a call produces different result

e Alternative — UDP

* If message fails to arrive within a reasonable time,
caller’s stub simply sends it again

¢ Okay if repeating a call produces same result

165

Asynchronous RPC

Client Wait for result Client Wait for acceptance
A\ Ay, A\ An
Call remote | { Retumn Call remote | !/ Return
procedure | [from call procedure \ [from call
A I II'. |
Reﬂuem-.‘ Reply Request # Accept request
O S — o
Server Call local procedure Time — Server Call local procedure Time —»

and return results

(a) (b)
* Analogous to spawning a thread

e Caller must eventually wait for result
— Analogous to join

166

3/26/2014

83

Asynchronous RPC (continued)

Wait for Interrupt client
) acceptance !
Client X - A}
A\ An A\
Call remote I". | Retumn a I
I fur \ from call eturn [}
procectire Vo results [| Acknowledge
\ | Accept / \
Request * request \
Server - | --
Call local procedure Ay Time >
Call client with
one-way RPC

* Analogous to spawning a thread
e Caller must eventually wait for result

— Analogous to join
— Or be interrupted (software interrupt)

RPC Binding

e Binding is the process of connecting the client to the
server

— the server, when it starts up, exports its interface
* identifies itself to a network name server
* tells RPC runtime that it is alive and ready to accept calls

— the client, before issuing any calls, imports the server

¢ RPC runtime uses the name server to find the location of the
server and establish a connection

* The import and export operations are explicit in the
server and client programs

168

3/26/2014

84

Remote Procedure Call is used ...

Between processes on different machines
— E.g., client-server model

Between processes on the same machine
— More structured than simple message passing

Between subsystems of an operating system
— Windows XP (called Local Procedure Call)

169

POSIX Thread Programming

e Standard Thread Library for POSIX-compliant
systems

e Supports thread creation and management
e Synchronization using

— mutex variables

— condition variables

e At the time of creation, different attributes can be
assigned to

—threads
— mutex/condition variables

170

3/26/2014

85

Using Posix Thread Library

* To use this library, #1nclude
<pthread.h>in your

program.

* To compile, link with the pthread library:
gcc hello.c -o hello —Ipthread

171

Data Types in POSIX

» special data type for threads (pthread t)

» mutex variables for mutual exclusion (pthread mutex t)
— mutex variables are like binary semaphores
— amutex variable can be in either Jocked or unlocked state

» condition variables using which thread can sleep

until some other thread signals the condition
(pthread cond t)

» various kind of attribute types used when initializing:
— threads (pthread_attr _t)
— mutex variables (pthread mutexattr _t)
— condition variables (pthread condattr _t)

172

3/26/2014

86

Functions and Data Types

e All POSIX thread functions have the form:
pthread[object] operation

* Most of the POSIX thread library functions
return O in case of success and some non-zero
error-number in case of a failure.

173

Threads and Their Attributes

e pthread create() function is used to create a new
thread.

e Athread is created with specification of certain
attributes such as:

— Detach state (default non-detached)
— Stack address
— Stack size

int pthread_create (pthread_t *thread_id,
const pthread_attr_t *attributes,
void *(*thread_function)(void *),
void *arguments);

174

3/26/2014

87

Example

#include <stdio.h>
#include <pthread.h>

main() {
pthread t f2 _thread, f1_thread, 3 thread; int i1=1,i2=2;
void *f20Q), *f10,*130;
pthread create(&fl_thread ,NULL,f1,&i1);
pthread create(&f2_thread,NULL, f2,&i2);
pthread create(&f3_thread, NULL, f3,NULL);

void *F1(int *i){
void *F2(int *i){
7

void *£30) {

175

Joining and Exiting

* Athread can wait for the completion of a non-
detached thread by using
pthread join (pthread t thread, void **status)
(All threads are created non-detached by default, so
they are “joinable” by default).

* If any thread executes the system call exsr€(),
the entire process terminates.

* If the main thread completes its execution, it
implicitly calls exf€(), and this again terminates
the process.

e Athread (the main, or another thread) can exit by
calling pthread exit(), this does not
terminate the process.

176

3/26/2014

88

Example

#include <stdio.h>
#include <pthread.h>
main() {
pthread t 2 _thread, f1_thread;
void *f20), *f10;
pthread create(&f1_thread, NULL, f1,NULL);
pthread create(&f2_thread, NULL, f2,NULL);
pthread join(fl_thread, NULL) ;
pthread join(fl_thread, NULL) ;
pthread exit(0);

#

void *f10O{
pthread exit(0);
#

void *f20{

pthread exit(0);
#

177

Setting Thread Attributes

e Define and initialize attribute object:
pthread attr t attr;
pthread attr init (Lattr);

* For example, set the detach state:

pthread attr _setdetachstate(&attr,
THREAD CREATE DETACHED);

e Or, you can use “default attributes” when creating
the thread.

178

3/26/2014

89

Mutex Variables

¢ Used for mutual exclusion locks.
e A mutex variable can be either locked or unlocked
pthread mutex_t lock; [/ lock is a mutex variable

* Lock operation
pthread mutex lock(&lock) ;

* Unlock operation
pthread mutex _unlock(&lock)

* |Initialization of a mutex variable by default attributes
pthread mutex itnit(&lock, NULL);

179

Example

#include <stdio.h>
#include <pthread.h>
pthread _mutex t region mutex = PTHREAD MUTEX INITIALIZER;
int b; J/* buffer size = 1; */
main() {
pthread t producer_thread, consumer_thread;
void *producer(),
void *consumer();
pthread create(&consumer_thread, NULL,consumer, NULL) ;
pthread create(&producer_thread, NULL,producer, NULL) ;
pthread join(consumer_thread, NULL) ;
7
void put _buffer(int i1){
b =1i;
?
int get bufferQO{
return b ;

}

180

3/26/2014

90

3/26/2014

Example

void *producer(O{
int i = 0;
while (1) {
pthread mutex lock(®ion_mutex);
put_buffer(i);
pthread mutex_unlock(®ion_mutex);
i++;
}
}
void *consumer(O{
int i,v;
for (i=0;i<100;1++) {
pthread mutex lock(®ion_mutex);
v = get _buffer();
pthread mutex_unlock(®ion_mutex) ;
printf(“got % “,v);
}

Competition synchronization

181

Example output

S cs1.cs.gmu.edu - C5 login - SSH Secure Shell

File Edit Vview Window Help
H & 2 B ¢ | £ g B | & R?
&1 Quick Connect [Profiles

csl ~/public html/CSS571/Examples/Pthread% !p L
pc_one
I'm a consumer
got 0 got 0O got 0O got O got O got 0O got 0 got 0 got 0O got 0O go
t O got 0O got 0O got 0 got 0 got O got 0O got 0O got 0O got 0O got
(o] got 0 got O got O got 0O got 0O got 0O got 0 got O got 0O got 0O
got O got O got 0O got O got O got O got O got 0O got O got O g
ot O got O got O got O got 0O got 0O got 0 got O got O got O got
o got 0O got 0O got 0O got O got O got O got 0 got 0O I'm a produc
er
got O got 308 got 320 got 328 got 336 got 344 got 353 got 36l go
t 370 got 379 got 388 got 398 got €676 got 691 got 941 got 953 go
t 264 got 975 got %86 got 987 got 124% got 1261 got 1273 got 128¢
got 129% got 1312 got 1325 got 1781 got 1814 got 1830 got 2084
got 2088 got 2114 got 2423 got 2444 got 2460 got 247¢ got 2494 go
t 2511 got 2528 c¢sl ~/public html/CSS571/Examples/Pthread?
csl ~/public_html/CS571/Examples/Pthread®
csl ~/public_html/CS571/Examples/Pthread®
csl ~/public_html/CcsS571/Examples/Pthread®
csl ~/public_html/CcsS571/Examples/Pthread® . ~

Connected to csl.cs.gmu.edu SSH2 - aesl128-cbc - hmac-md| 72x20 F]

182

91

3/26/2014

Example output

S cs1.cs.gmu.edu - C5 login - SSH Secure Shell

File Edit Vview Window Help
H & 2 B ¢ | £ g B | & R?
&1 Quick Connect [Profiles

csl ~/public_html/CS571/Examples/Pthread% gcc pc_one.c —o pc_one —lpthre @

ad

csl ~/public _html/CS571/Examples/Pthread% pc_one

I'm a producer

I'm a consumer

got 250 got 531 got 3542 got 551 got 562 got 807 got 817 got 827

got B37 got 1082 got 1083 got 1104 got 1114 got 112¢& got 1138 got
1149 got 11&0 got 1172 got 1420 got 1433 got 1447 got 14&0 got 1
473 got 1486 got 1488 got 1512 got 132& got 177¢& got 17%0 got 180

4 got 1821 got 2072 got 2082 got 210& got 2122 got 2140 got 2159
got 2177 got 21%é6 got 2214 got 2232 got 2250 got 2269 got 2288 g

ot 2307 got 232é got 2345 got 2365 got 2386 got 2408 got 2429 got
245350 got 2471 got 24983 got 2516 got 2538 got 2561 got 2584 got 2
607 got 2631 got 2656 got 2680 got 2705 got 2966 got 2881 got 301

7 got 3043 got 3435 got 34€8 got 3455 got 3522 got 254% got 3576
got 3BES got 38g% got 3829 got 3958 got 3988 got 4017 got 404¢ g

ot 4077 got 4108 got 4138 got 4168 got 41989 got 4230 got 4261 got
4294 got 4327 got 4359 got 4391 got 4425 got 4458 got 4432 got 4
527 got 43562 got 43%¢ got 4630 got 4666 got 4702 csl ~/public_html
/CsS571/Examples/Pthreads® . 3

Connected to csl.cs.gmu.edu SSH2 - aesl128-cbc - hmac-md| 72x20 F]

183

pthread_mutex_t rw_mutex = PTHREAD MUTEX_INITIALIZER;
pthread_mutex_t reader_mutex = PTHREAD_MUTEX_INITIALIZER;
int num_readers = 0;

main()

{.}

void *reader() Reader/Writer

{ while (@) {
pthread_mutex_lock(&reader_mutex);
num_readers++;

if (num_readers == 1) pthread_mutex_lock(&rw_mutex);
pthread_mutex_unlock(&reader_mutex);
/* read */

pthread_mutex_lock(&reader_mutex);
num_readers--;
ifT (num_readers == 0) pthread_mutex_unlock(&rw_mutex);
pthread_mutex_unlock(&reader_mutex);
¥
¥
void *writer()
{ while (1) {
pthread_mutex_lock(&rw_mutex) ;
/* write */
pthread_mutex_unlock(&rw_mutex);
¥
¥

184

92

Condition Variables

* In a critical section (i.e. where a mutex has been used),
a thread can suspend itself on a condition variable if
the state of the computation is not right for it to
proceed.

— It will suspend by waiting on a condition variable.
— It will, however, release the critical section lock (mutex) .

— When that condition variable is signaled, it will become
ready again; it will attempt to reacquire that critical section
lock and only then will be able proceed.

e With Posix threads, a condition variable can be
associated with only one mutex variable!

185

Condition Variables

e pthread cond t SpaceAvailable;
e pthread cond init (&SpaceAvailable, NULL
)7

e pthread cond wait (&condition, &mutex)
e pthread cond signal(&condition)

unblock one waiting thread on that condition variable (that
thread should still get the “lock” before proceeding)

e pthread cond broadcast(&condition)

unblock all waiting threads on that condition variable (now all
of them will compete to get the “lock”)

186

3/26/2014

93

Condition Variables

Example:

pthread_mutex_lock (&mutex);
b.tl'v}éad_cond_wait (&SpaceAvailable, & mutex);
// now proceed again

b'thread_mutex_un/ock(&mutex);

e Some other thread will execute:
pthread _cond_signal (&SpaceAvailable);

e The signaling thread has priority over an
threagthat rgnay be awakgned Y y

— —“Signal-and-continue” semantics

Producer-Consumer Problem

Producer will produce a sequence of integers,
and deposit each integer in a bounded buffer

(implemented as an array).

All integers are positive, 0..999.

Producer will deposit -1 when finished, and then
terminate.

Buffer is of finite size: 5 in this example.

Consumer will remove integers, one at a time,
and print them.

It will terminate when it receives -1.

3/26/2014

94

Definitions and Globals

#include <sys/time.h>
#include <stdio.h>
#include <pthread.h>
#include <errno.h>
#define SIZE 10

pthread_mutex_t region_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t space_available = PTHREAD_COND_INITIALIZER;
pthread_cond_t data_available = PTHREAD_COND_INITIALIZER;

int b[SIZE]; /* buffer */

int size = 0; /* number of full elements */
int front,rear=0; /* queue */

189

Producer Thread

void *producer()

{
int i =0;
while (1) {

pthread_mutex_lock(®ion_mutex);

while (size == SIZE) {
pthread_cond_broadcast(&data_available);
pthread_cond_wait(&space_available,®ion_mutex);

¥

if(i>99) i=-1;

add_buffer(i);

pthread_cond_broadcast(&data_available);
pthread_mutex_unlock(®ion_mutex);
if (i==-1) break;
i=1i+1;
3
pthread_exit(NULL);
3

190

3/26/2014

95

Consumer Thread

void *consumer()
{
int i,v;
While(1){
pthread_mutex_lock(®ion_mutex);
while (size == 0) {
pthread_cond_broadcast(&space_available);
pthread_cond_wait(&data_available,®ion_mutex);
¥
v = get_buffer();
pthread_cond_broadcast(&space_available);
pthread_mutex_unlock(®ion_mutex);
if (v==-1) break;
printf('got %d ",v);
¥
pthread_exit(NULL);
¥

191

i Main program

{
pthread_t producer_thread,consumer_thread;
void *producer(),*consumer();
pthread_create(&consumer_thread,NULL,consumer,NULL);
pthread_create(&producer_thread,NULL,producer,NULL);
pthread_join(consumer_thread,NULL);

}
void add_buffer(int i1){
b[rear] = i; size++;
rear = (rear+l) % SIZE;
}
int get_buffer({
int v;
v = b[front]; size--;
front= (front+l) % SIZE;
return v ;

192

3/26/2014

96

3/26/2014

Output

A cs1.cs.gmu.edu - €5 login - SSH Secure Shell

Hle Edit View Window Help
B ak sz mes s
21 Quick Connect [:lProﬁlfs|

S8 %lew

gcc pc five.c -o pc five -lpthread

csl ~/public html/CS571/Examples/Pthread% pc five

got 0 got 1 got 2 got 3 got 4 got 5 got &€ got 7 got B got 9@ go

t 10 got 11 got 12 got 13 got 14 got 15 got 1& got 17 got 18 go
1% got 20 got 21 got 22 got 23 got 24 got 23 got 26 got 27 go
28 got 29 got 30 got 31 got 32 got 33 got 34 got 35 got 36 go
37 got 38 got 39 got 40 got 41 got 42 got 43 got 44 got 45 go
46 got 47 got 48 got 49 got 50 got 31 got 52 got 53 got 54 go

got 56 got 37 got 58 got 59 got €60 got &1 got 62 got &3 go
&4 got €5 got €6 got €7 got €8 got €9 got 70 got 71 got 72 go
73 got 74 got 75 got 76 got 77 got 78 got 79 got B0 got 81 go
82 got 83 got 84 got 85 got 86 got 87 got 88 got 89 got S0 go
%1 got 92 got 93 got %4 got 85 got %6 got 97 got 98 got 9% cs

csl ~/public_html/Cs571/Examples/Pthreads -

| »

of ot of ot of of ot of ot
w
4]

-
Connected to csl.cs.gmu.edu |SSH2 - aes128-cbe - hmac-md| 72x14 | @] A

193

Win32 vs. POSIX Interface

1. Function calls

Win32 Threads PThreads
Just one type: Each object has its own data type :
HANDLE pthread_t, pthread_mutex_t, ...
One function needed to make one Each object has its own
functionality (e.g. functions/attributes

WaitForSingleObject)

Simpler and more generic -isit OOP? Reading and understanding may be
(sounds like misusing void* in C). more straightforward and less
confusing,

194

97

Win32 vs. POSIX Interface

2. Synchronization overhead

Win3g2 Threads PThreads

Synchronization objects: Synchronization primitives:

— Events — Semaphores

— Semaphores — Mutexes

— Mutexes — Conditional variables

- Critical sections

once an evenl is in the signaled state, it stays Signals to condition variables are either
signaled. "caught" by waiting thread(s) or

However, Itis up to the programmer to ensure discarded.

the proper switching of Windows events from However, use of a well known coding

the signaled to unsignaled state. structure at each access of a condition
(When an object is signaled, you have to check variable will ensure no signals are "lost"
what other objects in the awaken thread might by threads that may not be waiting at the
be waiting for and remove it from those wait exact time of signaling

queues)

195

More issues to consider

Historically, hardware vendors have implemented their own proprietary
versions of threads.

In Windows, the thread is the basic execution unit, and the process is a
container that holds this thread.
In Linux, the basic execution unit is the process

Some may claim POSIX threads are a low-level APl and Windows threads are a
high-level API

In Windows the thread scheduling code is implemented in the kernel.

In Linux realm, there are several drafts of the POSIX threads standard.
Differences between drafts exist! Especially many scheduling mechanisms exist
(user and kernel-level threads).

The current POSIX standard is defined only for the C language.

196

3/26/2014

98

Mapping WIN32 to PTHREADS

1. Process Mapping

Linu

CreateProcess()
CreateProcesshsUser OO

TerminateProcess ()

SetThreadpriority ()
GetThreadPriority()

GetCurrentProcessID()
Exitprocess()

Vaitforsinglecbiect()
Taitformultiplecbject (}
GetExitCodeProcess ()
GetEnvironmentVariable
SetEnvironmentVariable

fork()
setuid()
ezec()

kill()

Setpriority ()
getPriority()

getpid()
exit ()

vaitpid(}

11 Using semaphores Waitforsingleobject /
Waitformultipleobject can be implemented
zetenv ()

setenv ()

Classification

Mappable

Mappable

Mappable

Mappable
Mappable

Context specific

Mappable

Mappable: Both the Windows and Linux constructs provide similar functionality.
Context: The decision to use a specific Linux construct(s) depends on the application context

11 More on WaitForMultipleObjects may be found under the following reference:
http://www.ibm.com/ works/linux/library/l-ipc2lin3.html

197

Mapping WIN32 to PTHREADS

2. Thread Mapping

Linux

CreateThread

ThreadExit

WaitForSineleObject

SetPriorityClass
SetThreadPriority

pthread create
pthread_attr_init
pthread_attr_setstacksize
pthread attr_destroy

pthread_exit

pthread_join
pthread attr _setdetachstate
wthread detach

setpriority
sched_setscheduler
sched_setparam

pthread setschedparam
pthread_setschedpolicy
pthread_attr_setschedparam
pthread attr_setschedpolicy

Mappable: Both the Windows and Linux constructs provide similar functionality.
Context: The decision to use a specific Linux construct(s) depends on the application context

Classification

Mappable

Mappable

Mappable

Context Specific

198

3/26/2014

99

Mapping WIN32 to PTHREADS

3. Synchronization

‘Win3zz2 Thread Linux Thread Level Linux Process Level
Level

Mutex Mutex - pthread library System V semaphores
Critical section Mutex - pthread library N/A

Critical sections are used only
within threads of the same process

Semaphore Conditional Variable with mutex — System V Semaphores
pthreads POSIX semaphores
Event Conditional Variable with mutex — System V Semaphores

pthreads POSIX semaphores

!! Conditional Variables: While mutexes implement synchronization by controlling thread access to data, condition variables allow
threads to synchronize based upon the actual value of data.
See more under: https://computing.linl.gov/tutorials/pthreads

199

Mapping WIN32 to PTHREADS

Synchronization (semaphores)

‘Wing2 Thread Linux Thread Linux Classification
Process

CreateSemaphore sen_init semget Context gpecific
zenct]
OpenSemaphore N/& zenget Context specific
MaitForSinglelbject zem_wait 2EnOp Context specific
sem_trywait
ReleazeSemaphore zem_post Semop Context gpecific
Clozgelandle zemn_destroy zemct | Context gpecific

Notice: Win32 semaphores are created within a thread, and propagated all over the system.
POSIX semaphores are wither for inter-thread within a process, or inter-process entities.

!l opensemaphore function enables multiple processes to open handles of the same semaphore
object. The function succeeds only if some process has already created the semaphore by using the
CreateSemaphore function.

3/26/2014

100

3/26/2014

Mapping WIN32 to PTHREADS

Synchronization (events)

‘Wing2 Thread Linux Thread Linux Classification
Process
CreateEvent pthread cond init semget context specific
OpenBvent gem_init semct]
SetEvent pthread_cond_signal SEMOP context specific
sem_post
ResetEvent N/ h N/ h context specific
TaitForSingleObject pthread_cond_wait SEMOP context specific
pthread_cond_timedwait
sem_wait
sem_trywait
Closelandle pthread cond destroy semctl context specific

gem_destroy

Notice (See conclusion in the next slide).
- Events are Windows specific objects.
- - POSIX semaphores with count set to 1 provide similar functionality to the Windows events.
However, they don't provide timeout in the wait functions.
- Conditional variables & Mutex in pthreads provide event-based synchronization between
threads, but they are synchronous.

201
Mapping WIN32 to PTHREADS
Synchronization (events) - conclusion >
Win32 Threads PThreads

Both Manual/ Auto-reset events Only Auto-reset mechanism.
Named events to synchronization processes. Synchronization is inter-thread based.
Un-named events to synchronize threads. (System V semaphore or signals can be used)
Event objects initial state is set to signaled. Does not provide an initial state,.

(POSIX semaphores provide initial state)
Event objects are asynchronous Conditional variables are synchronous

(POSIX/System Vevents are asynchronous)
Timeout value can be specified Timeout value can be specified

(Other Linux system s don't support timeout)

202

101

Mapping WIN32 to PTHREADS

Synchronization (mutex)

‘Wingz Thread Linux Thread Linux Classification
Process

CreateMutex pthreads_mutex_init semget context specific
semctl
OpenMutex N/A zemget context specific
WaitForSinglelbject pthread_mutex_lock semop context specific
pthread mutex trylock
Releaseluteox pthread_mutex_unlock Femop context specific
ClogeHandle pthread_nutex_destroy zemnctl context specific

Notice (See conclusion in the next slide).
Some major differences reside, including:
- - Named and un-named mutexes.
- Ownershiop at creation.
- Timeout during wait.
- Recursive mutexes.

203

Mapping WIN32 to LINUX

Synchronization (mutex) - conclusion

Win32 Threads PThreads
Named mutexes synchronize Synchronization is inter-thread based.
process/thread (System V semaphore or signals can be used)

Un-named mutex synchronize threads.

Can be owned during creation. To achieve the same in Linux, a mutex should be
locked explicitly after creation.

Recursive by default Pthread has recursive mutex (initialized
explicitly)
(other Linux system do not allow recursive
mutex)

Timeout value can be specified Timeout not available.

(can be obtained via application logic)

204

3/26/2014

102

Mapping WIN32 to LINUX

Synchronization (Critical Sections)

‘Win3zz2 Thread Classificati
on

InitializeCritical3ection pthread mutex_init

Mappable
InitializeCriticalSectiondndSpinCount
EnterCriticalSection pthread_mutex_lock Mappable
TryEnterCriticalSection pthread_mutex_trylock
LeaveCriticalSection pthread mutex trylock Mappable
DeleteCriticalSection pthread mutex destroy Mappable

Notice: Since the critical sections are used only between the threads of the same process, Pthreads
mutex can be used to achieve the same functionality on Linux systems.

1- In general, mutex objects are more CPU intensive and slower to use than critical sections due to a larger amount of
bookkeeping, and the deep execution path into the kernel taken to acquire a mutex. The equivalent functions for
accessing a critical section remain in thread context, and consist of merely checking and incrementing/decrementing lock-
count related data. This makes critical sections light weight, fast, and easy to use for thread synchronization within a
process.

2- In Win32 The primary benefit of using a mutex object is that a mutex can be named and shared across process
boundaries.

205

References

e POSIX Threads Programming
https://computing.lInl.gov/tutorials/pthreads/

¢ Why pthreads are better than Win32
http://softwarecommunity.intel.com/ISN/Community/en-
US/forums/post/840096.aspx

Why Windows threads are better than pthreads:
http://softwareblogs.intel.com/2006/10/19/why-windows-threads-are-
better-than-posix-threads/

¢ Port Windows IPC apps to Linux (including code examples)

http://www.ibm.com/developerworks/linux/library/l-ipc2linl.html
http://www.ibm.com/developerworks/linux/library/I-ipc2lin2.html
http://www.ibm.com/developerworks/linux/library/I-ipc2lin3.html

206

3/26/2014

103

