Introduction to embedded
systems

What is an embedded system

Embedding System
User Environment
Embedded People
System

Embedded System =
A computer system which is integrated into another system,
the embedding system. The requirements for the embedded
system must be derived from the requirements for the
embedding system.

Examples?

12/12/2012

Examples of embedding systems

Two different main application areas

Embedding System

User Embedded Environment
System

product

Examples:

*Automotive Electronics
* Avionics

* Health Care Systems

production system
Examples:

» Manufacturing Control

» Chemical Process Control
* Logistics

12/12/2012

What are embedded systems doing?

Typical functionalities
Measuring physical variables (sensing)
Storing data
Processing sensor signals and data
Influencing physical variables (actuating)
Monitoring
Supervising
Enable manual and automatic operation
In one word:
Control

Differences to “desktop” computing?

+ Interaction with physical environment

Malfunction may lead to damage

No or very restricted human/computer interface

No or very restricted maintenance possibilities

Part of competitively priced products (high volumes)
Tight resource constraints

Often special hardware

Part of engineering product

High product generation frequency

Often many variants

= Implications for SW engineering?

12/12/2012

V Model

requirements acceptance
analysis test
specification integration
é test
architecture system
design integration
modullal_gorlthm mo du|| test
design
implementation

Architecture design needs
functional spec and driving qualities

technically
oriented

functional regs
(first version)

requirements analysis of
analysis functional reqs

functional
specification

requirements business
elicitation oriented

non-functional
requirements
(first version)

analysis of
qualities

driving
qualities

architecture
design

12/12/2012

What is architecture?

Bass, Clements, Kazman, 2003 (modified):

The architecture of a system is the structure or the
structures of the system, which comprise
elements, the externally visible properties of those
elements, and the relationship among them.

The architecture defines elements of the system.

— Architecture design is the first phase in which the system
is no longer a black box.

— The designer begins to structure the system into parts.
— Architecture manifests the earliest design decisions.
— Architecture is the blueprint for system integration.

What is architecture? /2

Bass, Clements, Kazman, 2003 (modified):

The architecture of a system is the structure or the
structures of the system, which comprise
elements, the externally visible properties of those
elements, and the relationship among them.

The architecture is only one step further in refinement.
— Now the elements are black boxes.
— The architecture specifies what the elements do and how

they interact from an outside (system‘s) perspective
(often regarded as the element’s responsibilities)

— Central concept of architectures: Interfaces.

12/12/2012

What is architecture? /3

Bass, Clements, Kazman, 2003 (modified):

The architecture of a system is the structure or the
structures of the system, which comprise
elements, the externally visible properties of those
elements, and the relationship among them.

A system can have and usually has more than
one structure.
— Examples:
» Design time elements (files, components, modules)
* Run-time elements (processes, tasks, threads)
« Behavioral elements (states, messages, queues)
— The designer must consider different architectural views.

Importance of architecture

Bass, Clements, Kazman, 2003 (again):

Architecture represents earliest design decisions.

They are the most difficult to get correct and the
hardest to change later in the design process.

They have the most far-reaching effects.

Why?

Architecture defines constraints on implementation.
Architecture dictates organizational structure.
Architecture inhibits or enables a system‘s quality.

It is possible to predict system qualities by studying
the architecture.

12/12/2012

Example: A pre-crash sensing system

The function of the pre-crash
sensing system (PCSS) is
preprocessing of sensor data to
provide information about
potentially colliding objects to pre-
crash system (PCS), which will
then decide what to do

Required sequence:

1. Read sensor data

2. Update list of objects (location,
rel. speed, time of last
measurement)

3. ldentify dangerous objects

4. Send informationto PCS

L] X .
f objects

L

\ A
'
L]
|
*

Sensors y

v

Two alternative structures

* Inthe following two alternative structures will be presented.

* The first one is based on the functional sequence, the second

one on information hiding

Representation elements:

name Module — . Control flow
opergtions
ey Data access
(from module to data structure)
name
sDtel"Lacture — Data flow
elements

12/12/2012

First structure: based on functional

sequence
control
input update filter output
-Load current -For all m;: +For all o;: -Send
measurement update corr. if object dangerous o;
— objects o; dangerous, to PCS >
-add new add j to index a
from objects to PCS
sensors
current object list index
measurement
Timestamp t, 0=(X,Yp, XY, t) List with

indices of
dangerous o

mi=(xi,vi,3(i,§'i)

Second structure: information hiding

control
manage manage manage
curr. measur. object list dang. objects

from +Delete m(t-1) ‘-Sort in m; | __rLoad o,
sensors and load /oGive o « | classify an
«Give t store if dang.
*Give m; ~Give gy — to PCS

Abstract I I
Data current

. . dangerous
Type measurement obectilist objects
Timestamp t, 0i=(X;,YjsX;.Yjst) 9= XY XioViot)
m;=(Xq.Y3.X;.Y5)
| NS Y. 4

12/12/2012

12/12/2012

Which is the better structure?

» Depends on criteria.

 Parnas, 1972:

— Best criterion for modularization is
maintainability/modifiability, i.e. the support of
changes.

— Changes mostly affect data structures
« Example:

— Objects shall be stored in polar coordinates
instead of Cartesian coordinates.

— Changes in first structure: 3 Modules
— Changes in second structure: 1 Module

Microcontrollers

overview

* Microcontroller architecture. Address modes
and instruction sets. Subroutines and
interrupts. Handling software tools including
IDE, editor, assembler, simulator and C
compiler. Interface techniques including
parallel, serial, timer, and analogue peripheral
interface.

History

. In the year 1969, first microprocessor was born.
. In 1971 Intel obtained the right to sell this integrated circuit.
— Before that Intel bought the license from the Japanese company BUSICOM company which first came with the idea.
. During that year, a microprocessor called the 4004 appeared on the market.
— The first 4-bit microprocessor with the speed of 6000 operations per second.
. Not long after that, American company CTC requested from Intel and Texas Instruments to manufacture 8-bit
microprocessor.
— InApril 1972 the first 8-bit microprocessor called the 8008 appeared on the market.

— Itwas able to address 16Kb of memory, had 45 instructions and the speed of 300 000 operations per second. That
microprocessor was the predecessor of all today’s microprocessors.

. In April 1974, Intel launched 8-bit processor called the 8080.
— Address 64Kb of memory, had 75 instructions and initial price was $360.
. In another company called Motorola launched 8-bit microprocessor 6800.
. At the WESCON exhibition in the USA in 1975, MOS Technology announced that it was selling processors 6501 and
. 6502 at $25 each.
— Inresponse to the competitor, both Motorola and Intel cut the prices of their microprocessors to $69.95.
. Due to low price, 6502 became very popular so it was installed into computers such as KIM-1, Apple I, Apple

. 11, Atari, Commodore, Acorn, Oric, Galeb, Orao, Ultra and many others.
. Soon appeared several companies manufacturing the 6502 (Rockwell, Sznertek, GTE, NCR, Ricoh, Commodore
took

* over MOS Technology).
. Other companies such as Zilog Inc have their own microprocessor.
— In1976 Zilog announced the Z80. When designing this microprocessor Faggin
— The new processor was compatible with the 8080, i.e. it was able to perform all the programs written for the 8080.
— Apart from that, many other features was included so that the Z80 was the most powerful microprocessor at that time.
— Itwas able todirectly address 64Kb of memory, had 176 instructions, a large number of registers, built in option for refreshing
dynamic RAM memory, single power supply, greater operating speed etc.
— The Z80 was a great success and everybody replaced the 8080 by the Z80.
. In 1976 Intel came up with an upgraded version of 8-bit microprocessor called the 8085. However, the Z80 was so
much better that Intel lost the battle.
. Even though a few more microprocessors appeared later on the market (6809, 2650, SC/MP etc.), everything was
actually decided. There were no such great improvements which could make manufacturers to change their mind,

so the 6502 and Z80 along with the 6800 remained chief representatives of the 8-bit microprocessors of that time.

12/12/2012

10

uProcessors < uControllers < SoCs

M RAM area
8‘ . " : 8
S Port ™
_ Timer
7| 16bit ADC| | A
8 CPU
' . I1X
ROM area Serial Port B Rx
Port B Port C
5 L . 8

Microprocessors (uP) differ from
microcontrollers (uC)

uC: suited for controlling /O devices that requires a minimum component count
uP: suited for processing information in computer systems
Instruction sets:
uP: processing intensive
powerful addressing modes
instructions to perform complex operations & manipulate large volumes of data
processing capability of MCs never approaches those of MPs
large instructions -- e.g., 80X86 7-byte long instructions
uC: cater to control of inputs and outputs
instructions to set/clear bits
boolean operations (AND, OR, XOR, NOT, jump if a bit is set/cleared), etc.
Extremely compact instructions, many implementedin one byte
(Control program must often fit in the small, on-chip ROM)
Hardware & Instructionset support:
uC: built-in1/0 operations, event timing, enabling & setting up priority levels
for interrupts caused by external stimuli
uP: usually require external circuitry to do similar things (e.g, 8255 PPI, 8259 etc)

12/12/2012

11

Microprocessors (uP) and
microcontrollers (uC)

Bus widths:
uP: very wide
large memory address spaces (>4 Gbytes)
lots of data (Data bus: 32, 64, 128 bits wide)
uC: narrow
relatively small memory address spaces (typically kBytes)
less data (Data bus typically 4, 8, 16 bits wide)
Clock rates:
uP very fast (> 1 GHz)
uC: Relatively slow (typically 10-20 MHz)
since most 1/0 devices being controlled are relatively slow
Cost:
uP's expensive (often > $100)
uCs cheap (often $1 - $10)
4-bit: <$1.00
8-bit: $1.00 - $8.00
16-32-bit: $6.00 - $20.00

Microprocessor

Tirmers

VO Ports

< Microcontroller

12/12/2012

12

A generic microcontroller

Program Further ||
Power memory <:> <:>mriphera|
Data Further |- e
memory \I/‘:> <:l/r\periphera| RNTE T
Digital |1
<::l> 110 \:—::>
—+\] Microprocessor
Reset, ——/ core <:>
Interrupt(s), Analog ||
Internal data & o
address buses
Counters |-
_I'(I:_II'ID_I(':I‘_(<:> & timers |~ s

System-on-a-chip =

=

Digilm Frogrammable Blocks

=[O0 0=
=[O0 00=>
=[O0 00=>
=[O0 0=

Analeg Programmable Blocks

R N T N T T T T RO R N T

Compare to lab-on-a-chipideas

12/12/2012

13

12/12/2012

Example: PSoC (Cypress)

B I
: BES10 Besiz) ocat
egay_PVME DigBuf
Digeut
ad L
= = 1 o :
: [—— . =
e] | R arz o
| ROA[2] 4
RO1[3] e
Emum
L VE 13
SysCiks
cPu 32
(?n.m
3 5
o0 o e SR [:‘

Example of circuit

* Notice the processor/controller
* What does it do?

14

12/12/2012

Memory types

* Volatile. This is memory that only works as long as it is powered. It
loses its stored value when power is removed, but can be used as
memory for temporary data storage.

— commonly been called RAM (Random Access Memory)

* Non-volatile. This is memory that retains its stored value even when
power is removed.
— hard disk
— Inan embedded system it is achieved using non-volatile
semiconductor memory, commonly been called ROM (Read-Only
Memory)

* Anideal memory reads and writes in negligible time, retains its
stored value indefinitely, occupies negligible space and consumes
negligible power.

— In practice no memory technology meets all these happy ideals

15

Memory — cont.

* Static RAM (SRAM)
— Each memory cell is designed as a simple flip-flop.
— Datais held only as long as power is supplied (volatile).

— Consume very little power, and can retain its data down to a low
voltage (around 2 V).

— Each cell taking six transistors, SRAM is not a high-density technology.
¢ EPROM (Erasable Programmable Read-Only Memory)
— erased by exposing it to intense ultraviolet light.

— each memory cell is made of a single MOS transistor (very high density
and robust)

— Within the transistor there is embedded a ‘floating gate’. Using a
technique known as hot electron injection (HEI), the floating gate can
be charged. When it is not charged, the transistor behaves normally
and the cell output takes one logic state when activated. When it is
charged, the transistor no longer works properly and it no longer
responds when it is activated. The charge placed on the floating gate is
totally trapped by the surrounding insulator. Hence EPROM technology
is non-volatile.

— Requires quartz window and ceramic packaging.

— As a technology, EPROM has now almost completely given way to
Flash

Memory — cont.

* EEPROM (Electrically Erasable Programmable Read-
Only Memory)

— Uses floating gate technology.
* This is known as Nordheim—Fowler tunnelling (NFT).

e With NFT, it is possible to electrically erase the memory cell as well
as write to it.

* To allow this to happen, a number of switching transistors need to
be included around the memory element itself, so the high density
of EPROM is lost.

* EEPROMis non-volatile

— Because the charge on the floating gate is totally trapped by the
surrounding insulator

* Write and erase byte by byte.
* Flash
— A further evolution of floating-gate technology.
— canonly erase in blocks.
— Non-volatile

12/12/2012

16

Organizing memory
* Two important buses

— Address
— Data

e Two architectures

— Von Neumann architecture
» One bus for data and one for address
 Serve for memory and others (program and I/O)
* Disadvantages:
— uses the same data bus for all sizes (areas) of memory
— Shared between many things, can be used for one thing ata time
— The Harvard architecture
* Every memory area gets its own address bus and its own data bus

* Disadvantages:
— Complex

— Dataand program are separated (tables inside program memory can’t be treated as
data)
a b
Yo T Address ,—————
= Data
C::> memory
Data \
Central Central Address
entra ”
Processing Input/ Processing c':ﬁ:& 0
Unit (CPU) output Unit (CPU) K——)
Data \ J
Address /~
Program h Program
memory
memory 4 :>
\\—/ ~— Data ~—_ /’
(a) The Von Neumann way. (b) The Harvard way

12/12/2012

17

X8 2 (14,16

+

ROM
(program)

(a) The Von Neumann way. (b) The Harvard way

uC

* Many families
— Each family is generally the same processor core with
different peripherals combination and different
memory size.

— One core might be 8-bit with limited power, another
16-bit and another a sophisticated 32-bit machine.

— Because the core is fixed for all members of one
family, the instruction set is fixed and users have little
difficulty in moving from one family member to
another.

12/12/2012

18

IVIicrocontroller packaging and appearance

e Usually plastic or ceramic are used as the packaging material.

* Interconnection with the outside world is provided by the pins on the
package

* Dual-in-line package (DIP), with its pins arranged in two rows along the
longer sides of the IC, the pin spacing being 0.1 inches

e Otherincudes: Pin grid array (PGA), leadless chip carrier (LCC) packages,
Small-outline integrated circuit (SOIC), Plastic leaded chip carrier (PLCC)
packages, plastic quad flat pack(PQFP), and thin small-outline packages
(TSOP)

— Used when number of pins is very large compared to IC size

e bR) S e

N X

A collection of microprocessors and microcontrollers — old and new. From left to right:
PIC12F508, PIC 16F84A, PIC 16C72, Motorola 68HC705B16, PIC 16F877, Motorola 68000

Microchip and the PIC microcontroller

* Has a wide range of different families
— 8-bit, 16-bit, 32-bit
* All 8-bit PIC microcontrollers are lowcost, self-contained, pipelined,

RISC, use the Harvard structure, have a single accumulator (the
Working, or W, register), with a fixed reset vector.

* Microchip offer 8-bit microcontrollers with four different prefixes,
10-, 12-, 16-, and 18-, for example 10F200, or 18F242. We call each
a ‘Series’, for example ‘12 Series’, ‘16 Series’, ‘18 Series’.

— Each Series is identified by the first two digits of the device code.
* Letters are used as follows:
— The ‘C’ insert implies CMOS technology

— The ‘F’ insert indicates incorporation of Flash memory technology (still
using CMOS as the core technology).

— An ‘A’ after the number indicates a technological upgrade on the first
issue device.

— An X’ indicates that a certain digit can take a number of values.
— For example, the 16C84, the 16F84, and the 16F84A.

* |nsome cases microcontrollers of one Series can fall into more than
one family.

12/12/2012

19

RISC vs. CISC

Reduced Instruction Set * Complex Instruction Set
Computer (RISC) Computer (CISC)
— Used in: SPARC, ALPHA, Atmel — Used in: 80X86, 8051,
AVR, etc. 68HC11, etc.
— Few instructions — Many instructions
(usually < 50) (usually > 100)
— Only a few addressing modes — Several addressing modes
— Executes 1 instructionin 1 — Usually takes more than 1
internal clock cycle (Teyc) internal clock cycle (Tcyc) to
execute

Family Core Architecture Differences
The PIC Family: Cores
0 12bit cores with 33 instructions: 12C50x, 16C5x
[14bit cores with 35 instructions: 12C67x,16Cxxx
[16bit cores with 58 instructions: 17C4x,17C7xx

O ‘Enhanced’ 16bit cores with 77 instructions: 18Cxxx

12/12/2012

20

The PIC Family: Speed

* Can use crystals, clock oscillators, or even an RC circuit.
* Some PICs have a built in 4MHz RC clock, Not very
accurate, but requires no external components!
* Instruction speed = 1/4 clock speed (Tcyc = 4 * Tclk)
* All PICs can be run from DC to their maximum specified
speed: 12C50x 4MHz
12C67x 10MHz
16Cxxx 20MHz
17C4x/17C7xxx | 33MHz
18Cxxx 40MHz
Clock and Instruction Cycles
* Instruction Clock

Clock from the oscillator enters a microcontroller via OSC1 pin where internal circuit of a
microcontroller divides the clock into four even clocks Q1, Q2, Q3, and Q4 which do not overlap.

These four clocks make up one instruction cycle (also called machine cycle) during which one
instruction is executed.

Execution of instruction starts by calling an instruction that is next in string.
Instruction is called from program memory on every Q1 and is written in instruction register on Q4.

Decoding and execution of instruction are done between the next Q1 and Q4 cycles. On the
following diagram we can see the relationship between instruction cycle and clock of the oscillator
(OSC1) as well as that of internal clocks Q1-Q4.

Program counter (PC) holds information about the address of the next instruction.

Q1,02 Q3 Q4 Q1 ,Q2,0Q3 Q4 ,Q1 ,Q2,Q3,; Q4
Tosc

T tn | tee | Ton |

12/12/2012

21

Pipelining in PIC

* Instruction Pipeline Flow

Tey0 Tey Tcy2 Tev3 Tcyd Teys
. MOVLW 55h ‘ Fetch 1 | Execute 1
. MOVWF PORTB Fetch2 | Execute 2
. CALL SUB 1 Fetch3 | Execute 3
. BSE DORTA, BIT? (Borced NOP) Fetch 4 Flush
. Instruction @ address SUB 1 Fetch SUB_1/| Execute SUB_1

Fetch SUB_1+1

All instructions are single cycle, except for any program branches. These take two cycles since the fetch
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed

The PIC Family: Program Memory

* Technology: EPROM, FLASH, or ROM
* |t varies in size from one chip to another.

- examples:

12C508 512 12bit
instructions

16C711 1024 (1k) 14bit
instructions

16F877 8192 (8k) 14bit
instructions

17C766 16384 (16k) 16bit
instructions

12/12/2012

22

12/12/2012

The PIC Family: Data Memory

* PICs use general purpose “File registers” for RAM
(each register is 8bits for all PICs)

- examples:

12C508 25B RAM

16C71C 36B RAM

16F877 368B RAM + 256B of
nonvolatile EEPROM

17C766 902B RAM

Comparison of 8-bit PIC families

Instruction Stack size Number of

Family Example devices word size (words) instructions Interrupt vectors|
Baseline 10F200, 12F508, 12 bit 2 33 None

16F57
Mid range 12F609, 16F84A, 14 bit 8 35 1

16F631, 16F873A
High 18F242, 18F2420 16 bit 32 75, including 2 (prioritised)
Performance hardware multiply

* Every member of any one family shares the same core architecture
and instruction set.

* The processing power is defined to some extent by the parameters
quoted, for example the instruction word size, and the number of
instructions.

23

An introducti
using

on to PIC microcontrollers
the Baseline Series

* We will look at the PIC 12F508/509.

* The only difference between the 508 and 509 is that the latter
has slightly larger program and data memories.

Key
Vpo:

Voo —I—l 1 -3
GP5/OSC1/CLKIN ~a—=]2 g
GP4/0SC2-—»[]3 E
GPIMCLRVPe —{]4 §
o

[J=— Vss

[]=t—m GPO/ICSPDAT
[T-e—» GP1/ICSPCLK
[}a—s— GP2/TOCKI

o @ N @

Power supply
Programming voltage input

PP
0SC1, 0OSC2: Oscillator pins

GPO to GP5: General Purpose input/output

pins (bidirectional except GP3)
CSPDAT: In Circuit Serial Programming™ data pin.
CSPCLK: In Circuit Serial Programming™ clock pin.

Vgg: Ground
MCLR: Master clear
CLKIN: Extemal clock input

Address bus for Data
program memory memory

Data bus for Input/
program GPIO output
memory, P } GPO/ISCPDAT
carrying 2024 x 12 GP1/1SCPCLK
instruction :dmgmm = gPEfmg_LKF{NPP
e ey GPA/OSC2
GP5/OSC1/CLKIN
Program 1
Address Bus Address bus for
extracted Instruction Reg data memory
from Direct Addr 5
= S]
et ¥~ [Data bus for data
memory and
Literaldata [T— 8 peripherals

extracted from
instruction word /‘L
Instruction Instruction
% Decode &
itself! Control

Device Reset
Timer
The CPU
Power-on
Reset

Watchdog
Timer

OSC1/CLKIN <,:>| Timing
0SsC2 L Generation

WMCLR é msi0

Vop, Vss

Key (See also Key to Figure 1.11)

FSR: File Select Register GPIO:

MUX: Multiplexer

W reg: Working register

General Purpose Input/Output
RC: Resistor capacitor

12/12/2012

24

The architecture of the 12F508 — cont.

As this microcontrolleris a RISC computer, each instruction word must
carry not only the instruction code itself, but also any address or data
information needed.

Depending on the instruction itself, five bits of the instruction word may
carry address information and hence be sent down the ‘Direct Addr’ bus
to the address multiplexer (‘Addr MUX’). Eight bits of the instruction word
may carry a data byte that is to be used as literal data for the execution of
that instruction. This goes to the multiplexer (‘MUX’), which feeds into the
ALU. Finally, there is the instruction data itself, which feeds into the
‘Instruction Decode and Control’ unit.

A ‘Power-on Reset’ function detects when power is applied and holds the
microcontrollerin a Reset condition while the power supply stabilizes.
The MCLR input can be used to place the CPU in a Reset condition and to
force the program to start again.

— Aninternal clock oscillator (‘Internal RC OSC’) is provided so that no external
pins whatsoever need be committed to this function.

— External oscillator connections can, however, be made, using input/output
pins GP4 and GP5. The oscillator signal is conditioned for use through the
microcontrollerin the ‘Timing Generation’ unit.

The ‘Watchdog Timer’ is a safety feature, used to force a reset in the
processor if it crashes.

The PIC 16F877

* We will concentrate on just one device, the PIC

16F877

— A good range of features and allows most of the
essential techniques to be explained.

— It has a set of serial ports built in, which are used to
transfer data to and from other devices, as well as
analogue inputs, which allow measurement of inputs
such as temperature.

— All standard types of microcontrollers work in a similar

way, so analysis of one will make it possible to
understand all the others.

12/12/2012

25

MCU

* The microcontroller contains the same main elements as any computer
system:
— Processor
— Memory
— Input/Output

* InaPC, these are provided as separate chips, linked together via bus
connections on a printed circuit board, but under the control of the
microprocessor (CPU).

* Abusis aset of lines which carry data in parallel form which are shared by
the peripheral devices.

* The system can be designed to suit a particular application, with the type
of CPU, size of memory and selection of input/output (1/0) devices
tailored to the system requirements.

* Inthe microcontroller, all these elements are on one chip. This means that
the MCU (microcontroller)for a particular application must be chosen
from the available range to suit the requirements.

PIC 16F877 Architecture

* Microcontrollers contain all the components
required for a processor system in one chip: a
CPU, memory and I/O.

* A complete system can therefore be built
using one MCU chip and a few I/O devices
such as a keypad, display and other interfacing
circuits.

Datasheet
http://bit.ly/XgtauM

12/12/2012

26

_ Program Data
Device FLASH Data Memory | eeppom
PIC16FB74 4K 192 Bytes 128 Bytes
PIC16FB7T 8K 368 Bytes 256 Bytes
3 = = . Data Bus 8 PORTA
ruacn [oo o[22 FORTA
Program b N
Memory) p &
B Lovsl Stack. Fie T
(13-bit) Regiztsrs 1
Program 4,
Bus RAM Addr(" —EORTE
Ireuciion reg L{‘MJQ
i i |, mdirect
An architecture bere 3 i | [
_an reg — ‘
overview of the . L
PORTC
PIC16F877 S ‘ :
W Timer I«
Inztruction | _ Oscillator = T
Decods & [(F=-{ | Swmrt-up Timer e
Contral Power-on a
Resst q
| Timi] Wazxchdog —
M= .7- et FORTD
OSC1CLKIN Brown-out T
OSC2/CLKOUT Fsast
In-Circuit
Debugger L_r
Low-Volage
Programming Parallel Stave Port |-
é é PORTE
MCLR Voo, Vss +—-[4]
= =]
||| K=
TimerQ Timerl Timer2 10-bit AD
| It i [
I 1 I i
Synchronous.
Data EEPROM | CCP12 | | Sarial Port | | USART |

Note 1: Higher order bita are from the STATUS register,

AGIT1OSOTICK
AC1/T10SUCCP2

ACHSCK/SCL
AC4/SDISDA
AGHSDO
ACHTX/CK
ACT/RAX/DT
ADO/PSPD
ADLPSP1

ADGPSPE
ADT/PSPT

REQ/ANS/RD
REV/ANGTWR
REZ/ANTICS

Software: Programmers Model

<= 12/14/16 bits ->

Hardware Stack
Stores addresses for

Program Memory

“"Burned” in by
programmer (can’t
change during
execution). Stored
instructions, addresses
and “literals”
(numbers) .

subroutines

4—| (2CH)

Program Counter-PCL |

<- 8 bits ->

Status

|

W “Register”

Special Purpose
Registers

I/O pin states,
peripheral
registers, etc.

memory"”.

General Purpose
Registers

RAM or "“data
Variables

are stored here.

12/12/2012

27

PIC Programming Procedure

e For example: in programming an embedded PIC featuring electronically
erasable programmable read-only memory (EEPROM). The essential steps
are:

— Step 1: On a PC, type the program, successfully compile it and then generate
the HEX file.

— Step 2: Using a PIC device programmer, upload the HEX file into the PIC. This
stepis often called "burning".

— Step 3: Insert your PIC into your circuit, power up and verify the program
works as expected. This step is often called "dropping" the chip. If it isn't, you
must go to Step 1 and debug your program and repeat burning and dropping.

PIC16F877A Features

High Performance RISC CPU:
* Only 35 single word instructions to learn

* All single cycle instructions except for program
branches, which are two-cycle

* Operating speed: DC - 20 MHz clock input DC - 200
ns instruction cycle

12/12/2012

28

12/12/2012

PIC 16F877 Pin IN/Out

* The chip can be obtained in different packages,
such as conventional 40-pin DIP (Dual In-Line
Package), square surface mount or socket format.

* Most of the pins are for input and output, and
arranged as 5 ports: port A (5 pins), port B(8),
C(8), D(8) and E(3), giving a total of 32 1/0 pins.
— These can all operate as simple digital 1/0 pins, but

most have more than one function.
— The mode of operation of each is selected by
initializing various control registers within the chip.

— Note, in particular, that Ports A and E become
ANALOGUE INPUTS by default (on power up or reset),
so they have to set up for digital 1/0 if required.

PIC 16F877 Pin IN/Out — cont.

* Port B is used for downloading the program to
the chip flash ROM (RB6 and RB7), and RBO
and RB4—RB7 can generate an interrupt.

* Port C gives access to timers and serial ports.

* Port D can be used as a slave port, with Port E
providing the control pins for this function.

29

PIC 16F877 Pin IN/Out — cont.

* The chip has two pairs of power pins (V=5 V nominal and V=0
V) (11,12 or 31, 32), and either pair can be used.

* The chip can work down to about 2 V supply, for battery and power-
saving operation.

* Alow-frequency clock circuit using only a capacitor and resistor to
set the frequency can be connected to CLKIN, or a crystal oscillator
circuit can be connected across CLKIN and CLKOUT.

* MCLR s the reset input; when cleared to 0, the MCU stops, and
restarts when MCLR=1. This input must be tied high allowing the
chip to run if an external reset circuit is not connected.

— Itis usually a good idea to incorporate a manual reset button in all but

the most trivial applications.

ADG ippts

CounterO
externalin

PORTE

PORTC

PIC16F877A Pin Layout

MCLRAEr —=[] 1 J w [T<—= RE7/PGD
RAIAMD =[] 2 33 [J=—= RBSIPGC PORTB
RA1AMI =—=[]3 38 [J == RBS
RAAN2INVREF-FCVREF =—e [4 37« RB4
RAJIANINAzF+ =[5 36 [] =—= RBIPGM
S4TOCKICIOUT a8 35[J«—» RB2
\SVAN4/SSIC20UT =—= [7 < 34 [J=—= RB1
RED/RDIANS -—[] 8 T 30— REUNT
RE1/WWRIAME =-—[& ;l? 32 [J =— Voo
REICSIANT =—e-] 10 M= 31[J e—ss
Voo — w1 X 30~ ROVPSPT PORTD
Vss—w[]12 8@ 29[J~—= RD&PSPS
OSCICLKIN —=[]13 @ 28 []=— RDSPSPS
OSCCLKOUT «—[14 &y 27] RD4PSP4
RCOTIOSOMICK «——e[15 T 26[T+— RCTRXDT PORTC
RCUTI0SICCP2 a—e[] 18 25 «—» RCETXCK
RC2ICCPT «—w[] 17 24§ <—= RCS/SD0
RCUSCKISCL =[] 18 23 [== RCASDUSDA
ROO/PEPD =— [13 33 [T +—» RDIPSPI
RO1/PSP1 =—s[] 20 21 -—= RD2PSP2
PORTD

12/12/2012

30

PIC 16F877 Pin IN/Out — cont.

Reset =0, Run =1 MCLR

Port A, Bit 0 (Analogue ANOQ) RAO
Port A, Bit 1 (Analogue AN1) RA1
Port A, Bit 2 (Analogue AN2) RA2
Port A, Bit 3 (Analogue AN3) RA3
Port A, Bit 4 (Timer 0) RA4

Port A, Bit 5 (Analogue AN4) RAS
Port E, Bit 0 (AN5, Slave control) REO
Port E, Bit 1 (AN6, Slave control) RE1
Port E, Bit 2 (AN7, Slave control) RE2
+5V Power Supply Voo

0V Power Supply Vss

(CR clock) XTAL circuit CLKIN

XTAL circuit CLKOUT

Port C, Bit 0 (Timer 1) RCO

Port C, Bit 1 (Timer 1) RC1

Port C, Bit 2 (Timer 1) RC2

Port C, Bit 3 (Serial Clocks) RC3

Port D, Bit 0 (Slave Port) RDO

Port D, Bit 1 (Slave Port) RD1

Co~NOO A~ WM

RB7 Port B, Bit 7 (Prog. Data, Interrupt)
RB6 Port B, Bit 6 (Prog. Clock, Interrupt))
RB5 Port B, Bit 5 (Interrupt)

RB4 Port B, Bit 4 (Interrupt)

RB3 Port B, Bit 3 (LV Program)

RB2 Port B, Bit 2

RB1 Port B, Bit 1

RBO Port B, Bit O (Interrupt)

Vop +5V Power Supply

Vss 0V Power Supply

RD7 Port D, Bit 7 (Slave Port)

RD6 Port D, Bit 6 (Slave Port)

RD5 Port D, Bit 5 (Slave Port)

RD4 Port D, Bit 4 (Slave Port)

RC7 Port C, Bit 7 (Serial Ports)

RC6 Port C, Bit 6 (Serial Ports)

RC5 Port C, Bit 5 (Serial Ports)

RC4 Port C, Bit 4 (Serial Ports)

RD3 Port D, Bit 3 (Slave Port)

RD2 Port D, Bit 2 (Slave Port)

PIC Memory

The PIC16F877A has an 8192 (8k) 14bit instruction
program memory

368 Bytes Registers as Data Memory :

[1Special Function Registers: used to control peripherals

and PIC behaviors

1 General Purpose Registers: used to a normal
temporary storage space (RAM)

256 Bytes of nonvolatile EEPROM

12/12/2012

31

PIC Program Memory

The PIC16F877 8192 (8k) 14bit instructions

Takes a max of 8 addresses, the ninth

1Cze address will write over the first.
£y !
CAL_, BLUIEN 17
wameis e en the controller
- \Lg - is reset, program
P—] execution starts
: from here
Stgek Levsl & PCH PCL
12 11w 8 7 [u]
RESET “wcls 00005 i PC | I ; _ | 3O0TO, CALL
: | T PoLATHe4:- T n
. - ||=' Opcode <10:0=
Intmrrups Vectar | aooan
fo0sa \ PCLATH
Page Tl
n7Rr If interrupted, program
uZuga o .
e 1age 1 execution continues from here
o _n-: 0FEFa
Mamory | 1008k
Page &
T TFF
10005
PSQSE
15FF

PIC16F877 block diagram — cont.

The main program memory is flash ROM, which
stores a list of 14-bits instructions.

Instructions are fed to the execution unit, and
used to modify the RAM file registers.

The file register include special control registers,
the port registers and a set of general purpose
registers which can be used to store data
temporarily.

A separate working register (W) is used with the
ALU (Arithmetic Logic Unit) to process data.
Various special peripheral modules provide a
range of /0 options

12/12/2012

32

PIC16F877 block diagram — cont.

There are 512 RAM File Register addresses (0—1FFh), which are
organized in 4 banks (0-3), each bank containing 128 addresses.
The default (selected on power up) is Bank 0 which is numbered
from 0 to 7Fh, Bank 1 from 80h to FFh and so on.

These contain both Special Function Registers (SFRs), which have a
dedicated purpose, and the General Purpose Registers (GPRs).

The file registers are mapped as seen in the next slid.
The SFRs may be shown in the block diagram as separate from the

GPRs, but they are in fact in the same logical block, and addressed
in the same way.

Deducting the SFRs from the total number of RAM locations, and
allowing for some registers which are repeated in more than one
bank, leaves 368 bytes of GPR (data) registers.

PIC 16Fs// Block Diagram

e a
| '

Flash Program Counter
Program (13 bits)
Memory
8192 Address (13)
x 14 bits
0000 - 1FFF Stack RAM
13 bits File
x8 Registers
Instructions (14) levels 368
x 8 bits
000-1FF
Instruction Register A
File Address (7)

Working File Select
Literal (8 Register (8) Register (8)
ALU
Status bits
Status

|

|

: |

o |

1 Op- H Register (8) Data Bus

| code * : (8 bits)

! H

| \ 4 EEPROM
1 Instruction —» MCU

H Decode & P control v
|

1

i

Control > lines
Ports, Timers
* * * ADC, Serial IO

Clock, Timing & Programming

.
.
|
|
________ T

A B C D E

12/12/2012

33

The data memory is devided into 4 memory banks

= T = o
These registers are reserved. main

in the:

=& registers clear

File File File e
Addrcss Addross Addrcss Address
indirecl addr.¢? | oon Indirecl addr.? | gon Indirect addr.¢? | 100nh Indirect addr.C? | 180n
TM0 o1h OPTION_REG | 81h TMRO 101h OPTION_REG| 181h
PCL ozh PCL 82h PCL 102h PCL 182h
STATUS o3h STATUS 83n STATUS 103h STATUS 183N
FSR 01h FSR 84anh FSR 104n FSR 184nh
PORTA os5h TRISA a5h 105n 185h
PORTB o6h TRISB 86h PORTB 106h TRISD 186h
PORTC o7h TRISC a7h 107n 187n
PORTD(? osh TRISD®™ 88h 1o8n 188N
PORTEM o9h TRISEM™ 89n 109h 189h
PCLATH 0Ah PCLATH AR PCIATH 10AR PCI ATH 18ANh
INTCON oBh INTCON 8Bh INTCON 10Bh INTCON 18Bh
PIR1 och PIE1 8ch EEDATA 10Ch EECON1 18Ch
PIR2 oDh PIE2 2Dh EEADR 10Dh EECONZ 180N
TMRI1L OEh PCOMN 8ENh EEDATH 10Eh Reserved® 18Eh
TMRI1H OFh eFh EEADRH 10Fh Reserved® 18Fh
T1CON 10h Q0h 110n 190h
TMR2 11h SSPCON2 91h 111h 191h
T2CON 12h PR2 92h 112h 192h
SSPBUR 13h SSPADD 93h 113n 193n
SSPCON 14h PSTAT 24h 114h 194h
CCPRIL 15h 95h 115h 195h
CCPRIH 16h 96h 116h 1960
CCP1GON 17h 97h General 117h General 197h
urpose =
RCSTA 18h TXSTA ash Rodistor 118n Register 198h
TXREG 19h SPBRG 99n 16 Bytes 119h 16 Bytes 199n
RCREG 1ANK 9Ah 11AR 19Ah
CCPR2L 1Bh aBh 11Bh 19Bh
CCPR2H 1ch 9ch 11Ch 19Ch
CCP2CON 1Dh 9Dh 11Dh 19Dh
ADRESH 1ENR ADRESL 9Eh 11Eh 19Eh
ADGONO 1rh ADCON1 9Fh 11Fh 19Fh
20h AOh 120h 1A0h
General General General General
Purpose Purj Se Purpose Purpose
Hegister Hegister Hegister Hegister
926 Bytes 80 Bytes £en 80 Bytes 165 80 Bytes 1bh
accesses Fon accesses 170h accesses 1ron
7Oh-7Fh 70Oh-7Fh FOh - 7Fh
7FEN FFh 17Fh 1FFh
Bank O Bank 1 Bank 2 Bank 3
I Unimplemented data memory locations, read as "0’
" Not a physical register.
Note 1: These registers are not implemented on the PIC1G6F876.
2: These registers are reserved, maintain these registers clear.
= Fil=
Aﬂ';lll'és AG'ZIIEESS .ﬂ.ﬂ'-:jlrzss Addrass
indirect agar.t | con Indirect addr ™ | =on Indirect addr."™' 100n indirect adar.™ | js0n
TraRO o1h s1n ThRO 101 SPTICN_RES| 181n
Themost +— PoL ozn o i 1020 < 1520
. :t sSTaTus o3h STATUS 23h SIAIUS A0EN STATUS 183h
important FSR o0zn FSR Ban SR 1040 For 18an
PORT oas5hn TRISA a85h 1050 185h
H PORTE oash RSB a5h PCRTEB 1050 TRISB 1860
registers PORTC o7h TRISC a7h 107n 187h
PORTDIN osh TRISDIT Aan 1080 188h
have BoRTEM oan TrRISEMT Bon 1n9n 1:an
—> BCLATH oan PoLATH 200 PCLAaTH 1Dan PCLATH 18A0
N oBh ooh INTCON 108N INTC oM 188h
addresses och act 10Ch EECONT 18CH
. oDh Bon ECAD= 10Dh CCconz 1800
in all the ocn sen oA 10en Reservea® | 1sen
oFn 8Fh EC AR 10FN Reservedi®) 18Fn
an son 1100 190n
four banks i ssPoonE | oin 1110 191h
2n PR2 s2h 112h 192h
3h sSsPaDD S3Eh 113h 193h
“hn SSPSTAT Sdah 114ah 194h
an =101 115h 195h
sh s6h 1160 196h
7h o7Th ral 117h genersl 197h
an A son Eutkose 118n Buposs romn
an SPERG son & Byles 119h 1€ Byles 1990
An wan 11an 19An0
BN o8N 1160 1980
=] <n CIACON och 1100 19Ch
CCP2oOMN Dh CWVRCOMN sCh 11Dh 19Dh
ACRESH Eh ADRESL SEN 1T1EN 19Eh
ACCOND Fh ADCTON SFh 11Fn 19Fh
20n Agn 1200 1.40hR
General G=neral General General
Purpose Purpose rpose
Regisler Regisies Regssier
26 Enytes 00 Dytes 00 Dytes N 1EFR
accosscs accosses 170h accesses 1Foh
A TD*—? n TORTFN TOoR - TFh
TFR 17FN 1FFh
[5] Edrik 1 Banlk 2 shnk 2

12/12/2012

34

12/12/2012

Register Addressing Modes

* There are 3 types of addressing modes in PIC

—Immediate Addressing
* Movlw H’OF

—Direct Addressing
—Indirect Addressing

Register Addressing Modes

Immediate Addressing:
Movlw H'OF

Indirect Addressing
IRP T FSR register o
. N
ect Lacation Select

Direct Addressing:
Uses 7 bits of 14 bit instruction to identify a register file
address 8th and 9th bit comes from RPO and RP1 bits of
STATUS register.
ie. ZequD'2' ; Z=2

btfss STATUS, Z ; testif the 3rd bit of the STATUS register is set

35

Indirect Addressing:

e Full 8 bit register address is written the
special function register FSR

* INDF is used to get the content of the address
pointed by FSR

® Exp : A sample program to clear RAM
locations H’20" — H’2F:

MOVLW 0x20 ;initialize pointer
MOVWEF FSR ;to RAM
NEXT CLRFINDF ;clear INDF register
INCF FSR,F ;inc pointer
BTFSS FSR,4 ;all done?
GOTO NEXT ;no clear next
CONTINUE

L]

Indirect Addressing: /2

 forinstance,

— one general purpose register (GPR) at address OFh contains a
value of 20

— By writing a value of OFh in FSR register we will get a register
indicator at address OFh,

— and by reading from INDF register, we will get a value of 20,
which means that we have read from the first register its value
without accessing it directly (but via FSR and INDF).

* It appears that this type of addressing does not have any
advantages over direct addressing, but certain needs do
exist during programming which can be solved smoothly
only through indirect addressing.

* Indirect addressing is very convenient for manipulating
data arrays located in GPR registers.
— Inthis case, it is necessary to initialize FSR register with a
starting address of the array, and the rest of the data can be
accessed by incrementing the FSR register.

12/12/2012

36

PIC Family Control Registers

* Uses a series of “Special Function Registers” for
controlling peripherals and PIC behaviors.

[1 STATUS =» Bank select bits, ALU bits (zero, borrow, carry)

[1INTCON = Interrupt control: interrupt enables, flags, etc.

[J OPTION_REG =>» contains various control bits to
configure the TMRO prescaler/WDT postscaler ,the
External INT Interrupt, TMRO and the weak pull-
ups on PORTB

the accumulator

Program
Memory

gt ———

File

Registers
Instruction Reg
ress Bus

Instruction
Decode &
Control

sng e1eq

« * toadd two
numbers together

— first move the
contents of one
file register into
the w register

— then add the
contents of the
second file
register tow

— the result can be
written to w or to
the second file
register

12/12/2012

37

the status register

.:|Prograrn Counterl "_“
Program
Memory File
Registers
Instruction Reg } .
ll Address Bus i
z
Instruction Status
Decode &
Control I

ALU

=5

* the STATUS
register stores
‘results’ of the
operation

* three of the bits
of the STATUS
register are set
based on the
result of an
arithmetic or
bitwise operation

the STATUS register

* three of the bits of the STATUS register are set
based on the result of an arithmetic or bitwise
operation

— zero flag ; this bit is set whenever the result of an
operation is zero
— carry flag ; this bit is set whenever the result of an

operation is greater than 255 (OxFF) ; can be used to
indicate that higher order bytes need to be updated
— digit carry flag ; this bit is set whenever the least
significant four bits of the result of an operation is
greater than 15 (OxOF)

12/12/2012

38

bit 6-5

bit 4

bit 2

bit =2

bit 1

bit O

Special Function Register
“STATUS Register”

RANV-O RANV-O RAN-O R 1 RAW-x RV % R
IRP RP1 [rPo_] TO | =

t 7 bit O

IRP: Register Bank Select bit {(used for indirect addressing)
1 = Bank 2, 3 (100m - 1TFFh)

o = Bank 0, 1 {00h - FFh}

RP1:RPO: Register Bank Select bits (used for direct addressing)
11 Bank 3 (180h - 1FFh)

10 Bank 2 (100h - 17Fh)

o1 = Bank 1 (80h - FFh)

oo = Bank O (00N - 7Fh)

Each bank is 128 bytes

TO: Time-out bit

= After power-up, CLEWDT instruction, or SLEEP instruction
A WDT time-out occurred

ok

D: Power-down bit
After power-up or by the cLEWDT instruction
= By execution of the SLEEF instruction
Zero bit
= The result of an arithmetic or logic operation is zero
= The result of an arithmetic or logic operation is not zero
DC: Digit carmy/bormow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)
(for Borrow, the polarity is reversed)
1 = .A carry-out from the 4th low order bit of the result occurred
o = INo carry-out from the 4th low order bit of the result
C: Carry/borrow bit (ADDWE, ADDLW, SUBLW, SUBWE instructions)
A carry-out from the Most Significant bit of the result occurred
No carry-out from the Most Significant bit of the result occurred
Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's
complement of the second operand. For rotate (RrRF, RLF) instructions, this bit is
lcaded with either the high. or low order bit of the source register.

ocFNOoOFT

1
]

Legend:
R = Readable bit W= Wiritable bit U = Unimplemented bit, read as ‘0’
- n =‘Value at POR 1’ = Bit is set 0" = Bit is cleared x = Bit is unknown

bit 7

bit &

bit 5

bit 4

bit 3

bit 2

bit 1

bit O

Special Function Register
“INTCON Register”

RAN-O RAN-D RAN-D RAVV-0 RAN-0 RAN-0 RAN-O RA=X
GIE | PEIE | TMROIE | INTE | RBIE | TMROIF INTF RBIF
it 7 it 0

GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts

] Disables all interrupts

PEIE: Peripheral Interrupt Enable bit

1 = Enables all unmasked peripheral interrupts

o = Disables all peripheral interrupts

TMROIE: TMRO Overflow Interrupt Enable bit

1 Enables the TMRO interrupt

] Disables the TMRO interrupt

INTE: REO/INT External Interrupt Enable bit

1 = Enables the RBO/INT external interrupt

o = Disables the RBO/INT external interrupt

RBIE: RE Port Change Interrupt Enable bit

1 = Enables the RB port change interrupt

o = Disables the RB port change interrupt

TMROIF: TMRO Overflow Interrupt Flag bit

1 = TMRO register has overflowed (must be cleared in software)

o = TMRO register did not overflow

INTF: REO/INT External Interrupt Flag bit

1 = The RBOVINT external interrupt occurred (must be cleared in software)

o = The RBO/INT external interrupt did not occur

RBIF: RE Port Change Interrupt Flag bit

1 = At least one of the RE7:RB4 pins changed state; a mismatch con n continue to set
the bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared
{must be cleared in software)

o = None of the REB7:RB4 pins have changed state

Legend
R = Readable bit W = wWritable bit U = Unimplemented bit, read as "0
- n = Value at POR ‘1" = Bitis set 0" = Bit is cleared ® = Bit is unknown

12/12/2012

39

X14 Instruction set

* 35 instructions

—Byte Oriented Operations

—Bit Oriented Operations

—Literal and control Operations

i 14-Bit Opcode
.3':;::::_:::2’ Description Cycles v Lob .A.Sf::chil:d Motes
BYTE-ORIENTED FILE REGISTER OFERATIONS
ADDWF £, d Add W and f 1 o0 0111 AsfE £fff | C,DCZF
AMDWE f,d AMND W with 1 oo 0101 4QEfE ££££ I
CLRF T Clear 1 oo 0001 1£ff £E£FF I
CLRW - Clear W 1 oo D001 Ozooc oo Z
COMF f.d Complement f 1 oo 1001 AJfff F£EFF z
DECF f,d Decrement f 1 00 0011 Afff £EEF z
DECFSZ f,d Decrement f, Skip if 0 12y 00 1011 A4EfE E£E£EE
INCF f,d Increment § 1 oo 1010 J4Eff ££Ef I
INCFSZ f,d Increment f, Skip if 0 12y 00 1111 A4ffE E£E£EE
IORWF f,d Inclusive OR W with 1 0o 0lo0 Afff FEFEF rd
MOWF f,d Movwe 1 00 1000 Afff £EEF z
MO W T Mowe W to T 1 oo oDOD 1E£ff £E£FF
NOP - Mo Operation 1 oo 0000 Oxxx0 0000
RLF f.d Rotate Left f through Carry 1 oo 1101 AJ4Efff £££f c
RRF f,d Rotate Right f through Carry 1 00 1100 Afff f£EEf c
SUBWF f,d Subtract W from f 1 0o oDlo 4fff f££f | C,DCZ
SWAPF f,d Swap nibbles in f 1 oo 1110 J4fff E££EF
HORWF 1, d Exclusive OR W with f 1 0o 0110 JQEfE E£££F I
BIT-ORIENTED FILE REGISTER OPERATIONS
BCF f,b Bit Clear f 1 o1 00bk bEfEf E£££F 1.2
BSF f,b Bit Set f 1 o1 0lbk bEfEf E££FF 1.2
BTFSC f,b Bit Test f, Skip if Clear 1(2) 01 10bb bEEE EEEE 3
ETFSS f,b Bit Test f, Skip if Set 1(2) 01 11bb bEEE E£EE£F 3
LITERAL AND CONTROL OPERATIONS
ADDLW k Add literal and W 1 11 111lx kkkk kkkk| C,DCZ
AMNDLW k AMD literal with W 1 11 1001 kkkk kkklk I
CALL k Call subroutine 2 10 Okkk kkkk kkkk
CLARWDT - Clear Watchdog Timer 1 oo 0O0o0 0110 0100
GOTO k Go o address 2 10 1kkk kkkk kkkk
IORLW k Inclusive OR litsral with W 1 11 1000 kkkk kikklk I
MOWVILW k Mowe literal to W 1 11 ODacc kkkk kkkk
RETFIE - Return from intemupt 2 oo 0O0O0 0000 1001
RETLW k Return with literal in W 2 11 0l kkkk kkkk
RETURN - Aeturn from Subroutine 2 00 0000 0000 1000
SLEEP - Go into standby mode 1 00 0000 0110 0011 | TO,PD
suBLW k Subtract W from literal 1 11 110x kkkk kkkk C,DC.Z
HORLW k Exclusive OR Eteral with W 1 11 1010 kkkk kkkk rd
HNote 1: When an WO register is modified as a function of itself (e.g., MOVF PORTE, 1), the value used will be that value present
on the pins themseives. For example, if the data latch is "1" for a pin configured as input and is driven low by an extemal
device, the data will be written back with a 0",
2: If this instruction is executed on the TMRO register (and, where applicable, d = 1), the prescaler will be cleared if

assigned to the TimerD) module.

If Program Counrer (PC) is modified_or a condifional test s mge the inelniciion requires Dag cycle:

Ihe second cycle js

12/12/2012

40

Data Movement

— movf,movlw,movwf

Arithmetic

— addlw,addwf,sublw,subwf,incf,decf

Logical

— andlw,andwf,iorlw,iorwf,xorlw,xorwf,rrf,rif,clrf,clrw,swapf,c
omf

Bit Operators
— bsf bcf
Branching

— goto,btfss,btfsc,decfsz,incfsz

Subroutine

— call,return,retlw,retfie
* Misc.

— sleep,clrwdt,nop

Mnemonic, JLIL 14-Bit Opcode Status
Description Cycles Notes
Operands MSb Lsb | Affected
BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF fd Add W and f 1 00 0111 dfff ffff| C,DC,Z 1.2
ANDWF f.d AND W with f 1 00 0101 Afff f£fff z 1:2
CLRF f Clear f 1 00 0001 1fff f£fff z 2
CLRW - Clear W 1 00 0001 Oxxx XXX Z
COMF f.d Complement f 1 00 1001 dAfff ffff Z 12
DECF f.d Decrement f 1 00 0011 Afff ffff z 1,2
DECFSZ f, d Decrement f, Skip if 0 1(2) 00 1011 Afff ffff 12,3
INCF fd Increment f 1 00 1010 Afff f£fff Z 1,2
INCFSZ fd Increment f, Skip if 0 1(2) 00 1111 dfff f£fff 123
IORWF fd Inclusive OR W with f 1 00 0100 Afff ffff z 1.2
MOVF f.d Move f 1 00 1000 dfff Efff z 1,2
MOVWF f Move W to f 1 00 0000 1fff f£fff
NOP - No Operation 1 00 0000 Oxx0 0000
RLF f, d Rotate Left f through Carry 1 00 1101 dfff f£fff c 1,2
RRF f,d Rotate Right f through Carry 1 00 1100 Afff ffff Cc 152
SUBWF f.d Subtract W from f 1 00 0010 afff ffff| CDC.Z 1,2
SWAPF fd Swap nibbles in f 1 00 1110 Afff f£fff 1,2
XORWF f.d Exclusive OR W with f b 00 0110 dfff f£fff L 1,2

For byte-oriented instructions, f' represents a file register designator and 'd’
represents a destination designator. The file register designator specifies which file
register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If
'd’ is zero, the result is placed in the W register. If 'd’ is one, the result is placed

in the file register specified in the instruction

12/12/2012

41

Mnemonic, L) 14-Bit Opcode Status
o d Description Cycles Affected Notes
perands MSb LSh ecte
BIT-ORIENTED FILE REGISTER OPERATIONS
BCF f.b Bit Clear f 1 01 00bb bfff ffff 1.2
BSF f.b Bit Set f 1 01 0lbb bfff ffff 1.2
BTFSC f.b Bit Test f, Skip if Clear 1(2) 01 10bb bEff fEEEf 3
BTFSS f.b Bit Test f, Skip if Set 1(2) 01 1lbb bfff fEEf 3
LITERAL AND CONTROL OPERATIONS

ADDLW k Add literal and W 1 11 111x kkkk kkkk| CDCZ
ANDLW K AND literal with W 1 11 1001 kkkk kkkk Z
CALL k Call subroutine 2 10 Okkk kkkk kkkk| _
CLRWDT - Clear Watchdog Timer 1 00 0000 0110 o100 | TO,PD
GOTO k Go to address 2 10 1kkk kkkk kkkk
IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z
MOVLW k Move literal to W 1 11 00xx kkkk kkkk
RETFIE - Return from interrupt 2 00 0000 0000 1001
RETLW k Return with literal in W 2 11 0lxx kkkk kkkk
RETURN - Return from Subroutine 2 00 0000 0000 1000
SLEEP 5 Go into standby mode 1 00 0000 0110 o001l | TOPD
SUBLW K Subtract W from literal 1 11 110x kkkk kkkk| CDCZ
XORLW K Exclusive OR literal with W 1 11 1010 kkkk kkkk z

For bit-oriented instructions, 'b’ represents a bit field designator which selects the
number of the bit affected by the operation, while 'f' represents the address of the
file in which the bit is located.

For literal and control operations, 'k’ represents an eight or eleven bit constant or
literal value.

Byte-oriented file register operations
13 8 7 6 0

OPCODE | d | f(FILE #)
d = 0 for destination W

d = 1 for destination f
f = 7-bit file register address

Bit-oriented file register operations
13 10 9 786 0
OPCODE |b (BIT #)| f(FILE %)

b = 3-bit bit address
f = 7-bit file register address

Literal and control operations

General
13 8 7 0
OPCODE k (literal)

k = 8-bit immediate value

CALL and GOTO instructions only
13 1 10 0
OPCODE k (literal)

k = 11-bit immediate value

12/12/2012

42

1. Copy value from/to file register or
literal to/from w

movf fr, d Move file register VA fr=>d
Move W to file
movwf fr . W => fr
register
moviw k Move literal to W k=>W

Move Commands:

movlw OxF2 : stores the number OXF2 into the W register
movwf 0x0C : stores the W register contents into file H’0C’

movf OXOC,W : Ioads the contents of file H'OC into W register

movf OXOC,f : loads the contents of file H'OC’ into file H’0C’

12/12/2012

43

2. Logic / arithmetic instructions with
a file register and w

| o ||

addwf fr,d addition Z,DC,C fr + W=>d
subwf fr,d subtraction Z,DC,C fr -wW=>d
andwf fr,d Logical and Z fr AND W =>d
iorwf frd Logical or Z fr ORW=>d
xorwf fr,d Xor z fr XORW =>d

addwf instruction

General form:
addwf floc, d d— [floc] + w
flocis a memory location in the file registers (data memory)
wis the working register
dis the destination, can either be the literal f’ or ‘W’
[floc] means “the contents of memory location floc”
addwf 0x70,w w — [0x70] + w
addwf 0x70,f [0x70] « [0x70] + w

12/12/2012

44

addlw k addition

sublw k subtraction
andlw k Logical and
iorlw k Logical or
xorlw k xor

3. Logic / arithmetic instructions with
literal and w

| o ||

Z,DC,C W+k=>W

Z,DC,C W-k=>W
z W AND k =>W
z WOR k=>W
z W XOR k=>W

clrw
clrf fr

decf fr,d
incf fr,d
comf fr,d
rlf fr,d
ref fr,d
bef fr,b
bsf fr,b

swapf fr,d

nop

Clear accumulator W
Clear file registerfr

Decrementfile register fr
Increment file register fr

1's complementfile register fr
Rotate file register fr left thru C
Rotate file register fr right thru C
Bit clear on file register fr

Bit set on file register fr

swap halves of fr

No operation

z
z

z

4.0ne operand logic / arithmetic

instructions
mmm

0=>W
0=>fr

fr-1=>d
frel1=>d

not fr=>d

C <=1r(7), fr(i) <= fr(i-1), fr(0) <=
C

C =>fr(7), fr(i) => fr(i-1), fr(0) =>
C

0=>fr(b)
1 =>fr(b)

(fr(0:3) <=>fr(4:7)) =>d

12/12/2012

45

Bit Set/Clear Commands

bef 0x0C,0 . clear the 0th bit of file HOC

bsf 0x0D,3 . set the 3rd bit of file HOD’

btfsc 0x42,0 . test the 0th bit of the file H'42', if it
is 0, then skip the next line of code.

btfss 0x43,1 . test the 1st bit of the file H'43’, if it

is 1, then skip the next line of code.

5. Branch, Skip and Call instructions

| Mnemonic | ____ Description ___[status| ____Function __|

goto addr branchto addr addr => PC(0:10)

PC=>TOS

call addr call routine at addr addr => PC(0:10)

decfsz fr,d Decrement fr, skip if zero fr-1=>d, skipif 0
incfsz fr,d Increment fr, skip next instr if zero fr+ 1 => d, skip next instr if 0
btfsc fr,b Bit test fr, skip if clear skip next instr if fr(b) =0
btfss fr,b Bit test fr, skip if set skip next instr if fr(b)=1
return return from subroutine TOS =>PC
retlw k return with literal in w k=>w, TOS=>PC
retfie return from interrupt TOS=>PC, 1=>GIE

12/12/2012

46

TEST, SKIP & JUMP

Conditional jumps are initiated using a bit test and conditional skip,
followed by a GOTO or CALL.
The bit test can be made on any file register bit.

— This could be a port bit, to check if an input has changed, or a statusbitin a

control register.

BTFSC (Bit Test and Skip if Clear) and BTFSS (Bit Test and Skip if Set) are
used to test the bit and skip the next instruction, or not, according to the
state of the bit tested.
DECFSZ and INCFSZ embody a commonly used test — decrement or
increment a register and jump depending on the effect of the result on the
zeroflag (Zis set if result 0).
The bit test and skip may be followed by a single instruction to be carried
out conditionally, but GOTO and CALL allow a block of conditional code.
Using GOTO label simply transfers the program execution point to some
other pointin the program indicated by a label in the first column of the
source code line.
A CALL label means that the program returns to the instruction following
the CALL when RETURN is encountered at the end of the subroutine.

— Another option is RETLW (Return with Literal in W). See the KEYPAD.

— RETFIE (Return From Interrupt) will be explained later.

CONTROL

NOP simply does nothing for one instruction cycle
(four clock cycles).
— very useful for putting short delays in the program

SLEEP stops the program, such that it can be
restarted with an external interrupt.

The unused locations contain the code 3FFF (all 1
s), which is a valid instruction (ADDLW FF).

CLRWDT means clear the watchdog timer. If the
program gets stuck in a loop or stops for any
other reason, it will be restarted automatically by
the watchdog timer.

To stop this from happening, the watchdog timer
must be reset at regular intervals of less than,
say, 10 ms, within the program loop, using
CLRWDT.

12/12/2012

47

OPTIONAL INSTRUCTIONS

TRIS was an instruction originally provided to make port
initialization simpler.

— It selects register bank 1 so that the TRIS data direction registers
(TRISA, TRISB, etc.) can be loaded with a data direction code
(e.g. 0> output).

The manufacturer no longer recommends use of this
instruction, although it is still supported
The assembler directive BANKSEL can be used

— It gives more flexible access to the registers in banks 1, 2, 3.
The other option is to change the bank select bits in the
STATUS register directly, using BSF and BCF.

OPTION, providing special access to the OPTION register, is
the other instruction, which is no longer recommended.

— It can be replaced by BANKSEL to select bank 1 which contains
the OPTION register, which can then be accessed directly.

C to PIC Assembly

movliw 0x64

. incf 0x20,f

i =i + 1;/ movt 0x20,w
. - // movwf 0x21

T decft 0x21,f

]) movE 0x20,w
k =3+ 1; —» | addwf 0x21,w
movwf 0x22

12/12/2012

48

INCLUDE "p16f877.inc"

Register Usage

CBLOCK 0x020 ; mpiest.asm
i, j,k ; reserve space
ENDC
myid equ D'100' ; define myid label This file can be
org 0 assembled by
movlw myid ; w <- 100 .
movwf i ;i <- w; MPLAB into PIC
machine code and
incf i,E ;i <-1i+1 .
simulated.
movE i,w rw <=1
movwf J PR Labels used for
s : memory locations
ec 3, 3 £= 3= . .
0x20 (1), 0x21(3),
0x22(k) to increase
movE iw ;ow <=1 sEars A fens
addwf j,w ; w<-w+ 3 code clarity
movwf k ; k <- w
here
goto here ; loop forever
end :

Chip Configuration Word

* The assembler directive __ CONFIG is included at
the top of the program, which sets up aspects of
the chip operation which cannot be subsequently
changed without reprogramming.

* The configuration word is a special area of
program memory located outside the normal
range (address 2007h) and stores chip
configurations such as the clock type.

— Done by loading the configuration bits with a suitable
binary code (see next slide).

12/12/2012

49

Chip Configuration Word

Bit Label Function Default Enabled Typical
15 - None 0 X 0
14 - None 0 X 0
13 CP1 Code protection 1 0 1
12 CPO (4 levels) 1 0 1
11 DEBUG In-circuit debugging (ICD) 1 0 0
10 - None 1 X 1
9 WRT Program memory write enable 1 1 1
8 CPD EEPROM data memory write protect 1 0 1
7 LVP Low-voltage programming enable 1 1 0
6 BODEN Brown-out reset (BoR) enable 1 1 0
5 CP1 Code protection (CP) 1 0 1
4 CPO (repeats) 1 0 1
3 PWRTE Power-up timer (PuT) enable 1 0 0
2 WDTE Watchdog timer (WdT) enable 1 1 0
1 FOSCA1 Oscillator type select 1 X 0
0 FOSCO RC=11,HS =10, XT=01,LP=00 1 X 1

Default = 3FFF (RC clock, PuT disabled, WdT enabled).
Typical RC clock = 3FF3 (RC clock, ICD disabled, PuT enabled, WdT disabled).
Typical XT clock = 3731 (XT clock, ICD enabled, PuT enabled, WdT disabled).

CODE PROTECTION

Normally, the program machine code can be read back to the programming host
computer, be disassembled and the original source program recovered.

This can be prevented if commercial or security considerations require it. The code
protection bits (CP1:CPO) disable reads from selected program areas.

Program memory may also be written from within the program itself, disabled via
the WRT bit.

Data EEPROM may also be protected from external reads in the same way via the
CPD bit, while internal read and write operations are still allowed, regardless of the
state-of-the code protection bits.

bit 13-12, bit 5-4

CP1:CPO: FLASH Program Memory Code Protection bit, All of the CP1:CPO pairs
have to be given the same value to enable the code protection scheme listed.
11 = Code protection off

10 = 1FOO0h to 1FFFh code protected

01 = 1000h to 1FFFh code protected

00 = 0000h to 1FFFh code protected

12/12/2012

50

IN-CIRCUIT DEBUGGING

* In-circuit debugging (ICD) allows the program
to be downloaded after the chip has been
fitted in the application circuit, and allows it to
be tested with the real hardware.

* The normal debugging techniques of single
stepping, breakpoints and tracing can be
applied in ICD mode.

bit 11 DEBUG: In-Circuit Debugger Mode
1 = In-Circuit Debugger disabled, RB6 and RBY are general purpose /O pins

0 = In-Circuit Debugger enabled, RB6 and RB7 are dedicated to the debugger.

LOW VOLTAGE PROGRAMMING

* Normally, when the chip is programmed, a high
voltage (12-14 V) is applied to the PGM pin
(RB3).

* To avoid the need to supply this voltage during in-
circuit programming (e.g. during remote
reprogramming), a low-voltage programming
mode is available.

* Using this option means that RB3 is not then
available for general I/O functions during normal

operation.
bit 7 LVP: Low Voltage In-Circuit Serial Programming Enable bit

1 = RB3/PGM pin has PGM function, low voltage programming enabled
0 = RB3 is digital /0, HV on MCLR must be used for programming

12/12/2012

51

POWER-UP TIMER

* When the supply power is applied to the programmed
MCU, the start of program execution should be delayed
until the power supply and clock are stable, otherwise
the program may not run correctly.

* The power-up timer may therefore be enabled (PWRTE
0) as a matter of routine.

* It avoids the need to reset the MCU manually at start
up, or connect an external reset circuit, as is necessary
with some microprocessors.

* At aclock frequency of 4 MHz, this works out to 256us.

bit 3 PWRTE: Power-up Timer Enable bit!®
1 = PWRT disabled
0 = PWRT enabled

3: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the value of bit PWRTH

Ensure the Power-up Timer is enabled any time Brown-out Reset is enabled.

BROWN-OUT RESET

* Brown out refers to a short dip in the power-supply (PSU)
voltage, caused by mains supply fluctuation, or some
other supply fault, which might disrupt the program
execution.

* |fthe Brown-Out Detect Enable bit (BODEN) is set, a PSU
glitch of longer than about 100 ps will cause the device
to be held in reset until the supply recovers, and then
wait for the power-up timer to time out, before
restarting. The program must be designed to recover
automatically.

bit 6 BODEN: Brown-out Reset Enable bit
1 = BOR enabled
0 = BOR disabled

12/12/2012

52

WATCHDOG TIMER

The watchdog timer is designed to automatically reset the MCU if
the program malfunctions, by stopping or getting stuck in loop.

This could be caused by an undetected bug in the program, an
unplanned sequence of inputs or supply fault.

A separate internal oscillator and counter automatically generates a
reset about every 18 ms, unless this is disabled in the configuration
word.

If the watchdog timer is enabled, it should be regularly reset by an
instruction in the program loop (CLRWDT) to prevent the reset.

If the program hangs, and the watchdog timer reset instruction not
executed, the MCU will restart, and (possibly) continue correctly,
depending on the nature of the fault.

bit 2 WDTE: Watchdog Timer Enable bit
1 =WDT enabled
0 = WDT disabled

RC OSCILLATOR

The MCU clock drives the program along,
providing the timing signals for program
execution.

The RC (resistor—capacitor) clock is cheap
and useful. It allows operating with the
internal clock driver circuit, to generate
the clock.

The time constant (product R X C)
determines the clock period. @ ey

A variable resistor can be used to give a
manually adjustable frequency, although |
is not very stable or accurate. ::i

ild

MICLR

0scl

PIC16

12/12/2012

53

12/12/2012

CRYSTAL (XTAL) OSCILLATOR

Used for greater precision

— uses the hardware timers to make accurate measurements

— generate precise output signals

Normally, it is connected across the clock pins with a pair of

small capacitors (15 pF) to stabilize the frequency.

The crystal acts as a self-contained resonant circuit, where the
quartz or ceramic crystal vibrates at a precise frequency when

subject to electrical stimulation.

A convenient value (used in our examples later) is 4 MHz; this

gives an instruction cycle time of 1 ps

— This is the maximum frequency allowed for the XT configuration

setting.

Operating at higher frequency requires the selection of the HS
configuration option.

Each instruction takes four clock cycles

CRYSTAL (XTAL) OSCILLATOR/2

FIN13 FIMN14

.

AMHz
crystal

—

——

22pl

22pk

TABLE 14-2: CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR
Osc Type CF?::I Cap.CR‘Iange Cap.g;nge
LP 32 kHz 33 pF 33 pF
200 kHz 15 pF 15 pF
XT 200 kHz 47-68 pF 47-68 pF
1 MHz 15 pF 15 pF
4 MHz 15 pF 15 pF
HS 4 MHz 15 pF 15 pF
8 MHz 15-33 pF 15-33 pF
20 MHz 15-33 pF 15-33 pF

54

CONFIGURATION SETTINGS

The default setting for the configuration bits is 3FFF,
which means

— The code protection is off

— In-circuit debugging disabled

— Program write enabled

— Low-voltage programming enabled

— Brown-out reset enabled

— Power-up timer disabled

— Watchdog timer enabled

— RC oscillator selected.
A typical setting for basic development work would
enable in-circuit debugging, enable the power-up timer
— This would minimize the possibility of a faulty start-up.
For reliable starting, disable the watchdog timer and
use the XT oscillator type.

— By default, the watchdog timer is enabled.

Program Execution

The program counter keeps track of program
execution; it clears to zero on power up or reset.

With 8k of program memory, a count from 0000
to 1FFF (8191) = requires (13 bits).

The PCL (Program Counter Low) register (SFR 02)
contains the low byte, and this can be read or
written like any other file register.

The high byte is only indirectly accessible via
PCLATH (Program Counter Latch High, SFR OAh).

12/12/2012

55

SUBROUTINES

A label is used at the start of the subroutine
When a subroutine is called (Using the CALL instruction),
— the destination address is copied into the program counter

— the return address (the one following the CALL) is pushed onto the
stack

In the PIC, there are 8 stack address storage levels, which are used
inturn.
The subroutine is terminated with a RETURN instruction

— causes the program to go back to the original position and continue.

— achieved by popping the address from the top of the stack and
replacing it in the program counter.

CALL and RETURN must always be used in sequence to avoid a stack
error, and a possible program crash.

In the PIC, the stack is not directly accessible

PAGE BOUNDARIES

Jump instructions (CALL or GOTO) provide
only an 11-bit destination address, so the
program memory is effectively divided into
four 2k blocks, or pages.

A jump across the program memory page
boundary requires the page selection bits to
be modified by the user program.

Sections 2.3 and 2.4 in the 16F877 data sheet
contain detail how to handle these problems.

12/12/2012

56

Input/output ports

Mlcrocontroller

Input/output ports

There are five parallel ports in the PIC 16F877, labelled
A—E.
All pins can be used as bit- or byte-oriented digital
input or output with
— Some having alternate functions depending on the

initialization of the relevant control registers.
The TRIS (data direction) register bits in bank 1, default
to 1, setting the ports B, C and D as inputs.
Ports A and E are set to ANALOGUE INPUT by default,
because the analogue control register ADCON1 in bank
1 defaults to O - - - 0000.
To set up these ports for digital 1/0, this register must
be loaded with the code x - - - 011x (x don’t care),e.g.
06h.
ADCONL1 can be initialized with bit codes that give a
mixture of analogue and digital I/O on Ports A and E.

ADCON1 is in bank 1 so BANKSEL is needed to access it.

12/12/2012

57

Input/output ports

MICROCONTROLLER

Port functions

Bits Pins Alternate function/s Bit Default

Port A 6 RAO-RAS5 Analogue inputs 0.1,2,3,5 Analogue
Timer0 clock input 4 Input
Serial port slave select input 5

Port B 8 RBO-RE7 External interrupt 0 Digital
Low-voltage programming input 3 110
Serial programming 6,7
In-circuit debugging 6.7

Port C 8 RCO-RC7 Timer1 clock input/output 0.1 Digital
Capture/Compare/PWM 1.2 /0
SPI, 12C synchronous clock/data 345
USART asynchronous clock/data 6,7

Port D 8 RDO-RD7 Parallel slave port data /O 0-7 Digital

110

Port E 3 REO-RE2 Analogue inputs 01,2 Analogue

Parallel slave port control bits 01,2 Input

12/12/2012

58

Two bits of a possible digital output
port

Two lines of
data bus
- D Q—
Reale”'LDO \ External pin
Port Select ’/
Flip-flop latches data bus value onto
High whenever external pin, when memory location
port address is is selected, AND Write is active
selected
D o—11
»_1\ External pin

Two bits of a possible digital input
port

Two lines of
data bus

__ | n
Read/Write \ N External pin

Buffer transfers logic value on external pin
onto data bus line, when memory location
is selected, AND Read is active

| {1
N External pin

\

Port Select

L/

12/12/2012

59

Combine the two circuits to

create a

programmable bidirectional input/output pin

Read/Write

Read port
Data bus ﬂ
(bit n) Input buffer

Port Select '_\por\l ~1-|Holds bit
output value

8 of these
7 | ip- ops form
.~ [the ‘Data’ SFR

/" ‘Direction’

DDR 7 D Q

Direction Select Determines whether port|

bit is input or output

Alternate Input
Function

‘Data’ SFR . A —
| | | | | | | I | 8 of these ip- ops form
the ‘Data Direction’ SFR

‘Direction’ SFR

‘Data’ 0—r| 1/O pin
i Output buffer (bit n of an

‘ 8-bit port)

Buffer, enabled
‘ when pin is output

Input & Output (Interfacing)

* Switch Input
— input loading and debouncing.

ASV

Pull-up
Resistor
Rp Qutput, Vo
______________ _.—07
Debou_nce
Capacitor — /’

Switch |
ov

PIC

Input
Resistance
Ri

Vo = 5.Ri/(Rp+Ri)

12/12/2012

60

Switch Debouncing
* Delay

* Schmit trigger
* capacitor

()

—p— g ————————- +5V

1 P-Time
f Switch closes
(b)
0.8V
= >
Switch hardware debounce (a) without debounce capacitor; (b) with debounce

capacitor

PIC Applications

LED Flasher h

o i
Loop: S
bsf PORTB,0 vt wmps
call Delay_500ms H E:‘éﬂm s =
bef PORTB, 0 HESE P]
call Delay_500ms =y t“""u" Tl e e nim
e meporm
goto Loop fom - A
SOETNCE _Q;-
BOTAEWOT i
marsrs | B
naprany
mame|
A
] =

RE
-

12/12/2012

61

PIC Applications

Button Read
-
Moviw 0 2 - =
movwf TRISD, f He88 Seiin T
bsf TRISD, 2 rero [0
Loop: -t m?; % ;
btfsc PORTD,2 g =
goto light R % .
goto No_light Y 1‘-}& Bl [] B
Light: i
bsf PORTB,0 meeat s |
goto Loop ot e o 0
No_light: » EE = i
bcf PORTB,0 25 mapesn -2

goto Loop % {j

INTERRUPTS

* The stack is used when an interrupt is processed.

* Aninterruptis effectively a call and return which is initiated by an
external hardware signal

* Forces the processor to jump to a dedicated instruction sequence,
an Interrupt Service Routine (ISR).

For example, the MCU can be set up so that when a hardware timer
times out (finishes its count), the process required at that time is
called via a timer interrupt.

* When an interrupt signal is received,

the currentinstruction is completed and

the address of the next instruction (the return address) is pushed into
the first available stack location.

The ISR is called

The ISR is terminated with the instruction RETFIE (return from

interrupt), which causes the return address to be pulled from the
stack.

Program execution then restarts at the original location.

* If necessary, the registers must be saved at the beginning of the ISR,
and restored at the end, in spare set of file registers.

12/12/2012

62

invoke the Stack

16 Series

The Interrupt
Service Routine | ___
must start here

User Memory
Space

|

instructions which | -+ ReTFIE, RETLW

CALL, RETURN

[PC<12:0>] —0_ |
13 \+ Program Counter
Stack Level 1
H The program
Stack Level 8 s must start here
RESET Vector 0000h
Peripheral Interrupt Veclor | 0004h Program Counter
¥——__ | points fo locations in
program memory
aFFh Unimplemented
< memory space, still
—— addressable by the
16F84A program
1FFFh

Interrupt Control Registers

Interrupt s
request ;

IF bit

IEbit

Flag

- Interrupt

Enabled

12/12/2012

63

Interrupt Control Registers

* The registers involved in interrupt handling are INTCON, PIR1, PIR2, PIE1,
PIE2 and PCON.

* Interruptsare external hardware signals which force the MCU to suspend
its current process, and carry out an Interrupt Service Routine (ISR).

* InPICwhen an interrupt occurs the program execution jumps to address
004.

* Bydefault, interrupts are disabled.
e Ifinterruptsare to be used

the main program start address needs to be 0005, or higher, and a ‘GOTO
start’ (or similar label) placed at address 0000.

A ‘GOTO ISR’ instruction can then be placed at 004, using the ORG directive,
which sets the address at which the instruction will be placed by the
assembler.

The Global Interrupt Enable bit (INTCON, GIE) must be set to enable the
interrupt system.

The individual interrupt source is then enabled.

For example, the bit INTCON, TOIE is set to enable the Timer0 overflow to
trigger the interrupt sequence.

When the timer overflows, INTCON, TOIF (TimerO Interrupt Flag) is set to
indicate the interrupt source, and the ISR called.

* The flags can be checked by the ISR to establish the source of the
interrupt, if more than one is enabled.

Interrupt sources and control bits

Enable Flag
Source Bit Set Bit Set Interrupt Trigger Event

TMRO INTCON,5 INTCON,2 Timer0 count overflowed

RBO INTCON 4 INTCON.1 RBO input changed (also uses INTEDG)

RB4-7 INTCON,3 INTCON.O Port B high nibble input changed

Peripherals INTCON,6

TMR1 PIE1.,0 PIR1,0 Timer1 count overflowed

TMR2 PIE1.1 PIR1.1 Timer2 count matched period register PR2

CCP1 PIE1,2 PIR1,2 Timer1 count captured in or matched CCPR1

SSP PIE1.3 PIR1,3 Data transmitted or received in
Synchronous Serial Port

™> PIE1.4 PIR1.4 Transmit buffer empty in Asynchronous
Serial Port

RC PIE1.,5 PIR1,5 Receive buffer full in Asynchronous
Serial Port

AD PIE1.6 PIR1,6 Analogue to Digital Conversion
completed

PSP PIE1,7 PIR1,7 A read or write has occurred in the
Parallel Slave Port

CCP2 PIE2,0 PIR2,0 Timer2 count captured in or matched

CCPR2
BCL PIE2,3 PIR2,3 Bus collision detected in SSP (12C mode)
EE PIE2.4 PIR2,4 Write to EEPROM memory completed

12/12/2012

64

OSCILLATOR]

USART
receiver

transmitter
MSSP (SPI, 12C)
Transmission

Error p
CGP1 module EEC BN
ol ——
Timer 2 M

Analog H p—

- SFRs: INTCON, PIE1, PIEZ, PIR1, PIR2 and IOCB -

[& Pin RBO/ANT

Waking up

L» Interrupt

Analog
comparator 2 ﬂ
Pnra) ST B T

-y

o

o

o

Macros, Special Instructions, Assembler Directives
Another structured

* Supplementary instructions

B. Instruction Meaning Assembler Code
BZ addlab Branch to destination (address label) if BTFSC STATUS, 4
result of previous operation zero GOTO addlab
BNZ addlab Branch to destination (address label) if BTFSS STATUS, 7
result of previous operation not zero GOTO addlab
BC addlab Branch to destination (address label) BTFSC STATUS, G
if carry set GOTO addlab
BNC addlab Branch to destination (address label) BTFSS STATUS, (
if carry not set GOTO addlab
NEG numl Negate (2s complement) a file register COMF numl
(labelled num1) INCF numl
ISTF numl Test a file register (labelled num1) MOVF numl

to modify status bits

12/12/2012

65

12/12/2012

Program Design and flowcharts

* There are two main forms of flowchart.
— Data flowcharts: used to represent complex data
processing systems

— Program flow charts: used to represent overall
program structure and sequence, but not the
details.

Previous Example flow chart
(a)

Initialise
Port B = all outputs

Decrement
Count = 0?

Increment /
LED display /

DELAY
using Count

66

Flowchart implementation

Operation Symbol Implementation
Start Sart Source code flle/project name In start box.
End [End not needsd if program loops endlassly
Process Initialise DANKSEL TRISD
Seguence Port B = all outputs MOVLW B’00000000°
MOVWF PORTB
Input |
or “AllLEDs off CLRF PORTB
Output
Branch 14//E;i??“w BTFSS PCRTD, Inres
Selection GOTO reset
Subroutine | MOVIW OFF
Procedure DELAY CALL delay
or using Count
Function |

PIC Peripherals

Each peripheral has a set of SFRs to control its operation.

Different PICs have different on-board peripherals

12/12/2012

67

Timers
The PIC 16F877 has three hardware timers.

— Used to carry out timing operations simultaneously with the
program.

— Ex.: Generating a pulse every second at an output.
Timer0 uses an 8-bit register
— TMRO, file register address 01.

— The register counts from 0 to 255, and then rolls over to 00
again.

— When the register goes from FF to 00, an overflow flag, TOIF, bit
2 in the Interrupt Control Register INTCON, address 0B, is set.

The timer register is incremented via a clock input from
either the MCU oscillator (fosc) or an external pulse train at
RAA4.

If the internal clock is used, the register acts as a timer.
The timers are driven from the instruction clock (fos./4).

If the chip is driven from a crystal of 4 MHz, the instruction
clock will be 1 MHz, and the timer will update every 1us.

Timers — cont.
A timer can work as a counter.
— Counts external pulses
— timers can also be used as counters.
Tlir(?ero, can be controlled by a pre-scaler, see next
slide.

The pre-scaler is a divide by N register, where N 2, 4, 8,
16, 32, 64, 128 or 256, meaning that the output count
rate is reduced by this factor.

This extends the count period or total count by the
same ratio, giving a greater range to the measurement.

The watchdog timer interval can also be extended, if
this is selected as the clock source.

The pre-scale select bits, and other control bits for
TimerO are found in OPTION_REG.

12/12/2012

68

BLOCK DIAGRAM OF THE TIMERO/WDT PRESCALER

CLKOUT (= Fosc/4) Data Bus
\ 8

0 "J 1

RA4/TOCKI M
pin ’ X u 13 TMRO R
1 0 eg
X Cycles
TOSE
ToCS)
PSA Set Flag Bit TOIF
on Overflow

PRESCALER

Watchdog
Timer

8-1o - IMUX }1— PS2:PS0
F S B a
1

WDT Enable bit

MUX PSA

WDT
Time-out

OPTION_REG REGISTER

R/W-1 R/W-1 R/AW-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
RBPU | INTEDG | Tocs | Tose | PsA [ps2 | Psi PS0
bit 7 bit 0
bit 7 RBPU > Each of the PORTB pins has a weak
bit 6 INTEDG internal pull-up. A single control bit can
bit 5 T0GS: TMRO Clock Source Select bit turn on all the pull-ups. This is performed
1 = Transition on TOCKI pin by clearing bit RBPU (OPTION_REG<7>).
0 = Internal instruction cycle clock (CLKOUT) The weak pull-up is automatically turned
bit 4 TOSE: TMRO Source Edge Select bit off when the port pin is configured as an
1 = Increment on high-to-low transition on TOCKI pin output. The pull-ups are disabled on a
0 = Increment on low-to-high transition on TOCKI pin Power-on Reset.
bit 3 PSA: Prescaler Assignment bit
1 = Prescaler is assigned to the WDT
0 = Prescaler is assigned to the Timer0 module —> RBO/INT is an external interrupt input pin
bit20 PS2:PSO0; Prescaler Rale Select bils and is configured using the INTEDG bit
) (OPTION_REG<6>).
Bit Value TMRO Rate WDT Rate
000 1:2 1:1
001 1:4 1:2
010 1:8 1:4
011 1:16 1:8
100 1:32 1:16
101 1:64 1:32
110 1:128 1:64
111 1:256 1:128
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
- N = Value at POR 1" = Bit is set '0" = Bit is cleared x = Bit is unknown

12/12/2012

69

Timer 0 options

Prescaler assignment:
1 - assigned to WDT
PSA E <4— (- assigned to timer or counter

Mode selection
= counter
0 = timer
|
|

Edge seloction -

1 = raising edge | Iﬁ _-‘. IE————
| 0

Watch-dog timer

\
TOCS | ¥ : |
E BN SRRELLY o7 Prescaler

0 = falling edge L 4

N Time-out | Ps2, P$1, PSO

Bits foql prescaler rate selection

Counter (timer) Interrupt flag
B-bit register

Pin RA4/TOCK
Signal external source

TIMERO registers

TABLE5-1: REGISTERS ASSOCIATED WITH TIMERD

Value on: Value on
Address Name Bit7 | Bit6 Bit5 |Bitd | Bit3 | Bit2 | Bit1 | Bit0 - | all other
POR, BOR
Resets
01h,101h [TMRO Timer0 Module Register 0000 00| uuun uuuu
0Bh,8Bh, |INTCON GIE PEIE | TMROIE | INTE | RBIE | TMROIF | INTF | RBIF {0000 000x|0000 000u
10Bh,18Bh
81h,181h |OPTION_REG | RBPU | INTEDG [TOCS |[TOSE | PSA [PS2 | PS1 | PSO |1111 1111f1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as ‘0". Shaded cells are not used by Timer0.

12/12/2012

70

Typical configurations for TimerO

OPTION_REG

Configuration

Effect

Applications

11010000
[Active bits in bold

11010011 Internal clock (fogc/4)
Pre-scale = 16

11110111 External clock
TOCKI pin

11111110 Watchdog timer

selected pre-scale = 64

Internal clock (fygo/4)
No pre-scale

Timer mode using
instruction clock

Timer mode using
instruction clock with
pre-scale

Counter mode
Pre-scale = 256

Extend watchdog
reset period to
18 x 64 = 1152 ms

1. Preload Timer0 with initial
value, and count up to 256
2. Clear TimerD initially and
read count later to measure
time elapsed

Extend the count period x 16
for applications 1 and 2

Count one pulse in 256 at RA4

Watchdog timer checks
program every second

* show (LED1H design and code) which illustrates the use
of a hardware timer and the use of interrupt.

Timers — cont.

* Timerl is a 16-bit counter, consisting of TMR1H and TMR1L
(addresses OE AND OF).

— When the low byte rolls over from FF to 00, the high byte is

incremented.

— The maximum count is therefore 65535, which allows a higher
count without sacrificing accuracy.

* Timer2 is an 8-bit counter (TMR2) with a 4-bit pre-scaler, 4-
bit post-scaler and a comparator.

— It can be used to generate Pulse Width Modulated (PWM)
output which is useful for driving DC motors and servos, among

other things.

* These timers can also be used in capture and compare
modes, which allow external signals to be more easily

measured.

12/12/2012

71

bit 7-6
bit 5-4

bit 3

bit 2

bit 1

bit 0

T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

u-0 u-0 R/W-0 R/W-0 RAW-0 R/W-0 RW-0 RW-0
—_ —_ T1CKPS1 T1CKPSO| T10SCEN |T1SYNC |TMR1CS TMR1ON
bit 7 bit 0

Unimplemented: Read as ‘0’

T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits

11 = 1:8 prescale value

10 = 1:4 prescale value

01 = 1:2 prescale value

00 = 1:1 prescale value

T10SCEN: Timer1 Oscillator Enable Control bit

1 = Oscillator is enabled

0 = Oscillator is shut-off (the oscillator inverter is turned off to eliminate power drain)
T1SYNC: Timer1 External Clock Input Synchronization Control bit
When TMR1CS = 1:

1 = Do not synchronize external clock input

0 = Synchronize external clock input

When TMR1CS = 0:

This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.
TMR1CS: Timer1 Clock Source Select bit

1 = External clock from pin RCO/T10S0/T1CKI (on the rising edge)
0 = Internal clock (FOsc/4)

TMR1ON: Timer1 On bit

1 = Enables Timer1

0 = Stops Timer1

TIMER1 summary

TABLE6-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Value on: Value on
Address | Name | Bit7 | Bité | BitS | Bitd Bit3 Bit2 | Bit1 | Bit0 " | all other
POR,BOR Resels

0Bh8Bh, |INTCON| GIE | PEIE | TMROIE | INTE | RBIE | TMROIF | INTF | RBIF [0000 000x|0000 000U

10BN, 18Bh
0Ch PR |PSPIF)| ADIF | RCIF | TXIF | SSPIF | CCP1IF | TMR2IF | TMR1IF |0000 0000{0000 0000
8Ch PIEt |PSPEM| ADIE | RCIE | TXIE | SSPIE | CCPIE | TMRZIE | TMRIIE o000 cooocoa cooe
0Eh TMRIL |Holding Register for the Least Significant Byte of the 16-bit TMR1 Register 00K 000K | U UL
0Fh TMRTH |Holding Register for the Most Significant Byte of the 16-bit TMR1 Register KKK 000K | WU UL
h [micoN | = | = [mioKpst]Tickpso|TioSCEN| TISYNG | THRICS [TMRION]--00 000 --us wuue

Legend: 3= unknown, u= unchanged, - = unimplemented, read as ‘0", Shaded cells are not used by the Timer1 module.
Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

12/12/2012

72

FIGURE 7-1:

TIMER2

TIMER2 BLOCK DIAGRAM

Sets Flag
BiUTMRAIF | Oty

Postscaler
11t01:16

T20UTPS3:
T20UTPSO

Note 1: TMR2 register output can be software selected by the

v

Prescaler

I~ Fosc/4

1:1,1:4,1:16

}

T2CKPS1:
T2CKPS0

SSP module as a baud clock.

Timer2 is an 8-bit
timer with a
prescaler and a
postscaler. It can be
used as the PWM
time base for the
PWM mode of the
CCP module(s). The
TMR2 register is
readable and
writable and is
cleared on any device

Reset.

TIMER2 summary

TABLE7-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

val .| Value on
Address | Name | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | ot or- | all other

POR, BOR

Resets

0Bh, 8Bh, |INTCON| GIE PEIE | TMROIE | INTE RBIE | TMROIF [INTF RBIF (0000 000x|0000 000u
10Bh, 18Bh
0Ch PR1 [PsPIF")| ADIF RCIF TXIF | SSPIF | CCP1IF [TMR2IF | TMR1IF {0000 0000{0000 0000
8Ch PIE1 |PSPIEM| ADIE RCIE TXIE | SSPIE | CCPMIE | TMR2IE [TMR1IE |0000 0000|0000 0000
11h TMR2 [Timer2 Module's Register 0000 0000(0000 0000
2h [r2con| — [routPss|toutes2|routpst|TouTPso| MRzoN| T2cKPs1|T2CKPS0] - 000 0000[-000 0000
92h PR2 |Timer2 Period Register 1111 11111111 1111
Legend: x = unknown, u = unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.
Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.

12/12/2012

73

Keypad Input

A keypad is simply an array of push buttons connected in rows and columns, so
that each can be tested for closure with the minimum number of connections.

There are 12 keys on a phone type pad (0-9, #, *), arranged in a 3X4 matrix. The
columns are labeled 1, 2, 3 and the rows A, B, C, D.

i 220R
Key displayed on
—
7 segment LED —1 ’j:D
 —
—
 —
—
L 0sC1CLKN RBOINT [— fi
L2 oscucokour Re1 = J
— | MeCRAppTHY RB2 [
R mBaPaM [
2 RaiAND Res [
= RatiaNT Res [
- ey N
= RAzANIVRERL RE7P [y = L
= Ragrock -
| RASANE/SS RCOTHOSOMTICK! [t
s RC1TIOSICCP2 |— R1 R2 [|R2
2 RemavsiRD. RO2ICCPY | ik | [1oc || o
= REVANSWR
- 7/C8 RC4SDISDA
RCA/SDO
RCBITXCK
RCTIRNIDT
ROOPSPD /
RO1PSP1
RDZPSP2 "
ROZPSPS [-
ROATSP4
RDEPSPS
ROGPSPE
RO7PSP?
e
PROGRAM=KEYPAD.HEX 3 =
CLOCK=4VHz e
ut <7 /8 9
///VV : ./ " Y " i3
vl 0 #
Keypad Input — cont
.
[}

If we assume that all the rows and columns
are initially high, a keystroke can be detected
by setting each row low in turn and checking
each column for a zero.

In the KEYPAD circuit, the 7 keypad pins are
connected to Port D.

— Bits 4-7 are initialized as outputs, and bits 0-2
used as inputs.

The input pins are pulled high to logic 1. The
output rows are also initially set to 1.

12/12/2012

74

12/12/2012

counter.

in order:

— RowA 1,2,3
— RowB 4,5,6
— RowC 7,8,9
— RowD *,0, #
* Following this system, the star symbol is represented by a count of
10 (0OAh), zero by 11(0Bh) and hash by 12 (0C).
* Show Keypad design and code.

Keypad operation

* Ifa0is now output on row A, there is no effect on the inputs unless
a button in row A is pressed. If these are checked inturnfora 0, a
button in this row which is pressed can be identified as a specific
combination of output and input bits.

* Asimple way to achieve this result is to increment a count of keys
tested when each is checked, so that when a button is detected, the
scan of the keyboard is terminated with current key number in the

* This works because the (non-zero) numbers on the keypad arranged

Single digit
calculator
u1
13
[——1 CSC1/CLKIN RBOINT
+ CSCACLKOUT RB1
| WetRevpamv R62
2 REZEGM
3— RAQIAMD RE4
= ravrant RES
== RAZ!AN2IVREF- RBAFGE
= ReasmnzvREF: RETIFGD
-2 Raarmocks
] RASIANASS REOMI OSOMICKI
R — ROUTIOSKECR2
-2 ReoANSRD RC2ICEPT
-2 REVANGWR RCHBTH/ECL
221 RE2ANTITS RCAISDISDA
RCA/SDO0
RCEMGTC
RCTIRXIOT
ROOIPSP0
RO1/PER1
RO2PERD
ROWPEP3
ROAIPSPA
RDS/PSPI
ROSIPEPS
RO7IPSFT
FICToRETT

+5Y

Calculator

-7 [8][9 [#]
“ 4 [5][6 X
1 [2][3][=]
le]l- [+

LED1
LMO18L

B84 2%, mmonzass

T HH

|

P N

75

* The calculator operates as follows:

— To perform a calculation, press a number key, then
an operation key, then another number and then
equals.

— The calculation and result are displayed. For the
divide operation, the result is displayed as result
and remainder.

Pseudo code tor the calculator

* CALC
— Single digit calculator produces two digit results.
— Hardware: x12 keypad, 2x16 LCD, P16F887 MCU
* MAIN
* |Initialise
— PortC = keypad
* RCO - RC3 = output rows
* RC4-RC7 = input columns
— PortD=LCD
* RD1, RD2 = control bits
* RD4-RD7 = data bits
— CALL Initialise display
* Scan Keypad
— REPEAT
* CALL Keypad input, Delay 50ms for debounce
e CALL Keypad input, Check key released
* |Ffirst key, load Num1, Display character and restart loop
* |F second key, load sign, Display character and restart loop
* |F third key, load Num2 Display character and restart loop
* |Ffourth key, CALL Calculate result
* |Ffifth key, Clear display
— ALWAYS

12/12/2012

76

Subroutines

Included LCD driver routines

— Initialise display

— Display character

Keypad Input

— Checkrow A, IF key pressed, load ASCII code

Check row B, IF key pressed, load ASCII code
Check row C, IF key pressed, load ASCII code
Check row D, IF key pressed, load ASCII code
ELSE load zero code

Calculate result
— IFkey =+, Add

IF key = “-, Subtract

IF key = ‘X', Multiply

IF key = /', Divide

Add Add Num1 + Num2

* Load result, CALL Two digits

Subtract Subtract Num1— Num?2

* |F result negative, load minus sign, CALL Display character
* Load result, CALL Display character

Subroutines — cont.

— Multiply

REPEAT

Add Num1 to Result
Decrement Num2
UNTILNum2=0

Load result, CALL Two digits

— Divide

REPEAT

Subtract Num2 from Num1

Increment Result

UNTILNum1 negative

Add Num2 back onto Num1 for Remainder
Load Result, CALL Display character

Load Remainder, CALL Display character

* Two digits

— Divide result by 10, load MSD, CALL Display character

— Load LSD, CALL Display character

12/12/2012

77

* Show calc code and design

Optocouplers

The way it works is simple: when a signal arrives, the LED within
the optocoupler is turned on, and it illuminates the base of a
photo-transistor within the same case. When the transistor is
activated, the voltage between collector and emitter falls to
0.7V or less and the microcontroller sees this as a logic zero on

its RA4 pin.

L
RAz

Raz
R8T Q2RI

RECAMT

RE{
RE2
REZ

Rad
Ran
Lga |

HELR pIC 9s¢c2
vss 16FB4 [T

RET
REB
REBS
RE<H

12

[

AT

]IS

4hiHZ

]_
15
[l

_-5'}
—

—

14 3V

LS)) Y

E

12/12/2012

78

|I |Hakze: OPTOIN.Z3M
[

;¥#%%% Declaring and configuring a microcontroller *%+%%

DROCESSOR 16£34
#include "pl6£S4d. inc™

__CONFIG _CP_OFF & _WDT_OFF & _PWRTE_ON & _XT_O3C

JEFFEEF Gtructure of program Memory FEEEF

ORG 000 :Reset wector

goto Main

ORG O0x04 sInterrupt wector

goto Main o interrupt routine
Main sMain program

banksel TRISL

movlw Oxef sInitialization of port &

movwE TRISL sTRISA «<- Ox£f

movlw Ox00 sInitialization of port B

movwf TRISE ;TRISE <- 0x00

movlw b'O01l10000°" ;Rad -»= THMRO, P3=1:2

banksel OPTION

movwi OPTION_REG sIncrement THREO upon falling edge
banksel PORTE

clrf PORTE ;PORTE <- 0
clrf THRO STMEO - 0
Loop movE THRO, w s5end walue of the counter
movwf FPORTE sto PORTE
goto Loop sFemain at this line
End ;End of program

Optocoupler - output

An Optocoupler can be also used to separate the output
signals. If optocoupler LED is connected to microcontroller
pin, logical zero on pin will activate optocoupler LED, thus
activating the transistor. This will consequently switch on
LED in the part of device working on 12V. Layout of this
connection is shown below.

+2v +12v
St I
[|rez Rod []
4 [T i
[|raz Ran[] 4MHz 2
I —
I 71 1k
- 1 RRAAT K] 23] B | * +
o L = . = 12v
(Jief pye osc Iy '—1 +_|_\-' AN
f: wis 16F84 udd[]
I
- =+ [|reomr RET[]
3 ‘ 1] [I30R
RE1 REE T —]
| i EN:
[{rez Res [F 1
— 1
[|rez RE4[] = ']j
CNY 1Y GHD

12/12/2012

79

Program

* Write a program to command the relay after
each interrupt RBO

Program

* Write a program to command the relay after
each interrupt RBO

160

12/12/2012

80

12/12/2012

Sounds

* Generating sound

In microcontroller systems, beeper is used for indicating certain
occurrences, such as push of a button or an error. To have the beeper
started, it needs to be delivered a string in binary code - in this way,
you can create sounds according to your needs. Connecting the
beeper is fairly simple: one pin is connected to the mass, and the
other to the microcontroller pin through a capacitor, as shown on the

following image.
;an Rit :‘ﬂ

]
i ﬂocm 0sC1 :—_f_—n'_|3
SMCLR pIC 952 7@ =
— s 16F84 wwa T :.U

i

]

H

H

3
REOANT RET
é -

7 [+
RE1 RE&
T

REZ RES
2] T
RE2 RE4

Program

* Write a program to make a sound of
frequency 1Khz

162

81

7 segment-display
To produce a 4, 5 or 6 digit display, all the 7-segment displays are connected in parallel. The
common line (the common-cathode line) is taken out separately and this line is taken low for
a short period of time to turn on the display. Each display is turned on at a rate above 100
times per second, and it will appear that all the displays are turned on at the same time. As
each display is turned on, the appT)1ropriate information must be delivered to it so that it will

give the correct reading.
WEDQ
I
15 , w EEERPEEER
z[rmz Fuid (r?) {r?}
b b
[res RiD (0 0f (0 (I
g h e Atz P —
= [resrockr osct [— |] H E H
: ES 2 O, 0P, 0
[|WTR py 052 :‘IE—T—' = ——n ——0
] ided HEEEEEELEL
swi L™ 16F84 = | } ! I
[{reoanT RET
7| 1 300
[re REG
1 1 3300
I [re2 RES
= 1% s3nce
REZ Re4[—T—¢
3300
o
P
— 163
3300

Program

» Write a program to display 45 to the 7
segments displays

164

12/12/2012

82

ADC

* Registers used
— ADCONO
— ADCON1

— The output from the converter is stored in
ADRESH (analogue to digital conversion result,
high byte) and ADRESL (low byte).

* Show ADC code and design (VINTEST)

ADC block diagram

Internal reference voltages
Vss

External ras
reference [
voltages Ra2 B
Analogue A
Inputs
A 4 h A
RAD —»| = +
RA1 »
FAz > Vad
e 3 e 3] Aoc | o T
REO Select E MUX g 'tc"
e; —> elect > Digital ADRESL
RE2 > Converter
[) Y —p ADIF
Select 3 T
Set mix of Channel external System
or internal Divid clock
analogue select reference ieer
digital bits
ort voltage.
inputs GO/
DONE Clock rate
select
y

ADC Control Registers (ADCONO, ADCON1)

12/12/2012

83

8-bit Conversion

The 16F877 MCU has eight analogue inputs available,
at RAQ, RA1, RA2, RA3, RA5, REO, RE1 and RE2.

RA2 and RA3 may be used as reference voltage inputs,
setting the minimum and maximum values for the
measured voltage range.

These inputs default to analogue operation, so the
register ADCON1 has to be initialized explicitly to use
these pins for digital input or output.

The ADC converts an analogue input voltage (e.g. 0 —
2.56V) to 10-bit binary, but only the upper 8 bits of the
result are used, giving a resolution of 10 mV per bit
((1/256) X 2.56 V).

ADC OPERATION

The inputs are connected to a function selector block which sets up
each pin for analogue or digital operation according to the 4-bit
control code loaded into the A/D port configuration control bits,
PCFGO-PCFG3in ADCONL1.
— The code used, 0011, sets Port E as digital /O, and Port A as analogue
inputs with AN3 as the positive reference input.
The analogue inputs are then fed to a multiplexer which allows one
of the eight inputs to be selected at any one time.
— This is controlled by the three analogue channel select bits, CHSO—
CHS2 in ADCONO.
— Inthe example, channel 0 is selected (000), RAO input.
— If more than one channel is to be sampled, these select bits need to
be changed between ADC conversions.
The conversion is triggered by setting the GO/DONE bit, which is
later cleared automatically to indicate that the conversion is
complete.

12/12/2012

84

FIGURE 11-1: A/D BLOCK DIAGRAM
CHS2:CHS0
3 111
: . RE2/ANT
: 110 :
! RE1/aNg™
: 101 :
: o . REO/ANS
: 100 :
' s] RAS/ANA
VN ' '
(Input Veltage) 01y . »—E RASANIVREF+
AID 010
Converter o @ RAZIANZNREF-

i o1 ,
| o : & RA1/AN1
i :
i o v IE RADIANOD

U

VREF- ! > :
(Refarence L I
Valtage) (L
NI vss
PCFG3:PCFGO

Note 1: Mot avallable on 28-pin devices.

bit 7-6

bit 5-3

bit 2

bit 1
bit O

ADCONO REGISTER (ADDRESS 1Fh)

RM-0 RMW-0 RAW-0 RAW-0 RAW-0 RAW-0 u-0 RW-0
ADCS1 | ADCSD | CHsS2 | CHsS1 | CHSO [GO/DONE| — ADON
bit 7 bit O
ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCONOD bits in bold)
ADCON1 ADCOMNO
<ADCS2> | <ADCS1:ADCS0> e Commosion
] oo Fosc/2
[01 Fosc/B
] 10 Fosc/32
] 11 Frc (clock derived from the internal A/D RC oscillator)
1 o0 FOSC/4
1 a1 Fosc/M&
1 10 Fosc/4
1 11 Frc (clock derived from the internal A/D RC oscillator)

CHS2:CHS0: Analog Channel Select bits
000 = Channel 0 (ANO)
001 = Channel 1 (AN1)
010 = Channel 2 (AN2)
011 = Channel 3 (AN3)
100 = Channel 4 (AN4)
101 = Channel 5 (ANS)
110 = Channel 6 (ANE)
111 = Channel 7 (ANT)

Note: The PIC16F8T3ABTEA devices only implement A/D channels O through 4; the
unimplemented selections are reserved. Do not select any unimplemented
channels with these devices.

GO/DONE: A/D Conversion Status bit

When ADOM = 1:

1 = AJD conversion in progress (setting this bit starts the A/D conversion which is automatically
cleared by hardware when the A/D conversion is complete)

0 = A/D conversion not in progress

Unimplemented: Read as ‘0"

ADON: A/D On bit

1 = A/D converter module is powered up

0 = A/D converter module is shut-off and consumes no operating current

12/12/2012

85

ADCON1 REGISTER (ADDRESS 9Fh)

RAN-0 RAN-0 u-0 u-0 RAN-0 RAW-0 RAW-0 RAN-0
[AaDFMm | AaDcsz | — [e | PcFG3 PCFGZ PCFG1 PCFGO
kit 7 bit 0
bit 7 ADFM: AD Result Format Select bit

1 = Right justified. Six (6} Most Significant bits of ADRESH are read as ‘o'
0 = Left justified. Six (6) Least Significant bits of ADRESL are read as "'o'.

bit 6 ADCS2: AMD Conwersion Clock Select bit (ADCOMN1 bits in shaded area and in bold)
ADCOMN1 ADCOMND
<ADCS2> | <ADCS1:ADCS0> Clock Conversion
a oo Fosci2
] kY Foscrg
] 10 Fosci32
=] 11 FRrc (clock derived from the internal AD RC oscillator)
i 1] Foscsd
i oL Fosc/16
i 10 Foscic4
1 11 Frc (clock derived from the internal AMD RC oscillator)

bit 54 Unimplemeanted: Read as ‘o’
bit 30 PCFG3:PCFGO0: A/D Port Configuration Control bits
PCFG

=3-0> AMNT AMNG ANS ANS AMN3 ANZ AN ANO VREF+ VREF= CiR
oooo = A A A A A = Ey VDo vss 80
o001 I A Iy fad WVREF+ o~ = [l AN VES 71
o010 D D D A A A A o VDo vess 5/0
o011 D D D oA VREF+ A A o AN3 vss 4/1
o100 D D D D A (=] A o VDo vss 30
0101 D D D [=] WVREF+ D = [l AN VES 2/1
0113 D D D (=] D (=] D D — — oo
1000 o A A o WVREF+ VREF- A o ANS AN &2
1001 D D Iy fad A Iad A [l VDo VES &0
1010 D D o~ Y WVREF+ o~ Y e AN3 vss 51
1011 D D A A VREF+ VREF- A o AN3 AN 42
1100 D D D o WVREF+ VREF- A o ANS AN V2
1101 D D D [=] WVREF+ VREF- A [l AN ANZ 22
1110 D D D (=] D (=] D o VDo vss 10
1111 D D D (=] VREF+ VREF- D o AN3 AN 12
A= Analog input D = Drigital WO
CiR = & of analog input channelsi&# of AJD volle&s references

Register Setting Flags Function

ADRESH 00K XXXX ADC result high byte

ADRESL XOOEK XXXX ADC result low byte

ADCONO 0100 0X01 ADCS1,0 Conversion frequency select

GO/DONE, ADON ADC start, ADC enable

ADCON1 0000 0011 ADFM, PCFG3-0 Result justify, ADC input mode control

INTCON 1100 0000 GIE,PEIE Peripheral interrupt enable

PIE1 0100 0000 ADIE ADC interrupt enable

PIR1 0100 0000 ADIF ADC interrupt flag

(©
ADRESH ADRESL

ADFM =1 Right justified ‘ 0000 OORR ‘RRRR RRRR ‘

ADFM=0 Leftjustified | RRRR RRRR | RROO 0000 |

R = Result bits

12/12/2012

86

To do an A/D Conversion, follow these steps:

1. Configure the A/D module:
— Configure analog pins/voltage reference and
— digital I/O (ADCON1)
— Select A/D input channel (ADCONO)
— Select A/D conversion clock (ADCONO)
— Turn on A/D module (ADCONO)

2. Configure A/D interrupt (if desired):
— Clear ADIF bit
— Set ADIE bit
— Set PEIE bit
— Set GIE bit
3. Wait the required acquisition time

4. Start conversion:
— Set GO/DONE bit (ADCONO)
5. Wait for A/D conversion to complete by either:

— Polling for the GO/DONE bit to be cleared
(interrupts disabled); OR Waiting for the A/D
interrupt

12/12/2012

87

6. Read A/D Result register pair
(ADRESH:ADRESL), clear bit ADIF if required.

7. For the next conversion, go to step 1 or step 2
as required. The A/D conversion time per bit is
defined as TAD.

ADC Test Circuit

5 yn
Fiy
250V oot
U1 LnteL
RV2 2 gggvgmg« regin (22
2 ost2icLkouT RET =
L WCLRIVopTHY Rag 25 2.50 Voits
D '| RE3PGM
R2 2| RAGAND R34
3u0R ol = Raniant R25
—{ RAZIAN2WVREF- RESIPGC
@] £ RASIANGREFs RR7IPGD
| RAATOCHI
o) L RASIANAES RCOTICSOMICK
RV1 . ~ RCTIOSHCCR?
M —E REGANSRD RC24CCFT
2 REVANGINR RCASCKISCL
REZIANTITS RC4/SDUSDA
ra RCS/S00
D1 R1 RCSITHICK
BZX7OC2VT 10k RGTRADT
RDOIPERO
RDIPERT
RD2/PSE2
RO32693
RDArPER
=D512855
RDBIPERS
- R
PIGIGFE77

12/12/2012

88

12/12/2012

ADC clock

* The speed of the conversion is selected by bits ADSC1 and ADSCO.
* The ADC operates by successive approximation;

— this means that the input voltage is fed to a comparator, and if the voltageiis
higher than 50% of the range, the MSB of the result is set high.

— Thevoltage is then checked against the mid-point of the remaining range, and
the next bit set high or low accordingly, and so on for 10 bits.

* This takes a significant amount of time: the minimum conversion time is
1.6 ps per bit, making 16 us for a 10-bit conversion.

* The ADC clock speed must be selected such that this minimum time
requirementis satisfied;

e The MCU clock is divided by 2, 8 or 32 as necessary.

e Oursimulated test circuit is clocked at 4 MHz. This gives a clock period of
0.25 ps. We need a conversion time of at least 1.6 ys; if we select the

divide by 8 option, the ADC clock period will then be 8 X 0.25 = 2 s, which
is just longer than the minimum required.

¢ The select bits are therefore set to 01.

Capture/compare/ PWM

Each Capture/Compare/PWM (CCP) module
contains a 16-bit register which can operate as:
— 16-bit Capture register
— 16-bit Compare register
— PWM Master/Slave Duty Cycle register

e Both the CCP1 and CCP2 modules are identical in
operation

89

Capture mode

Set Flag bit CCP1IF

(PIR1<2>)
Prescaler
+1,4,16
RCEE:EIEM CCPR1H | CCPR1L
j and —i . Capture
Edge Detect Enable
$ TMR1H TMR1L
CCP1CON<3:0>
Qs

Compare mode

Special event trigger will:
reset Timer1, but not set interrupt flag bit TMR1IF (PIR1<0=)
and set bit GO/DONE (ADCONO<2>).

Special Event Trigger

Set Flag bit CCP1IF

(PIR1<2>)
RC2/CCP1 CCPR1H| CCPR1L

pin {}'

Q S Dutp_-ut - Comparator
rL| Logic [Match P
TRISC<2 o
oA
TMR1H | TMR1L
Output Enable CCP1CON<3:0>
Mode Select

12/12/2012

90

bit 7-6
bit 5-4

bit 3-0

CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS 17h/1Dh)

U-0 U0 RW-0 RMW-0 RW-0 RW-0 RMW-0 RMW-0
— — [ccPxx | copxy | ccPama [ccPxMz | cCPxM1 | CCPxMO
bit 7 bit 0

Unimplemented: Read as ‘0"
CCPxX:CCPxY: PWM Least Significant bits

Capture mode:

Unused.

Compare mode:

Unused.

PWM mode:

These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.

CCPxM3:CCPxMO0: CCPx Mode Select bits

0000 = Capture/Compare/PWM disabled (resets CCPx module)

0100 = Capture mode, every falling edge

0101 = Capture mode, every rising edge

0110 = Capture mode, every 4th rising edge

0111 = Capture mode, every 16th rising edge

1000 = Compare mode, set output on match (CCPxIF bit is set)

1001 = Compare mode, clear output on match (CCPxIF bit is set)

1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is
unaffected)

1011 = Compare mode, trigger special event (CCPxIF bitis set, CCPx pin is unaffected); CCP1
resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is
enabled)

11xx = PWM mode

PWM Mode (PWM)

* |n Pulse Width Modulation mode, the CCPx
pin produces up to a 10-bit resolution PWM
output. Since the CCP1 pin is multiplexed with
the PORTC data latch, the TRISC<2> bit must
be cleared to make the CCP1 pin an output

12/12/2012

91

FIGURE 8-3: SIMPLIFIED PWM BLOCK
DIAGRAM

Duty Cycle Registers ——— CCP1CON=5:4>

| coemiL | |

|

| CCPR1H (Slave)i |
4_}[, * RG2/CCP
| Comparator i R Q —[:
| TMR2 |{Hn-‘ta 1].|
=
TRISC=2>

| Comparator
Clear Timer,
s CCP1 pin and
| PR2 | lateh DG

Note 1: The S8-bitl timer s concatenated with 2-bil internal Q
clock, or 2 bits of the prescaler, o create 10-bit ime
basea.

* PWM Period =
[(PR2) + 1] ® 4 TOSC ¢ (TMR2 Prescale Value)

* PWM Duty Cycle =
(CCPR].L:CCP].CON<5:4>) .TOSC hd (TMRZ Prescale)

! Fosc)_

Q ;

Fesolution = m bits
logi2)

12/12/2012

92

TABLE 8-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2
Add N Bit7 | Bite | Bits | Bité | Bit3 | Btz | Bit1 | Bito | 2veo™ Vﬂ:;fn
ress ame I I I I I a er
POR, BOR| o "
0Bh8Bh, |INTCON GIE PEIE | TMROIE | INTE RBIE | TMROIF | INTF RBIF |0000 000x|0000 000u
108h, 188h
0Ch PIR1 PsPIF ADIF | RCIF | TXIF | SSPF | CCPIF | TMR2IF | TMRIIF [oooo ooooloooo oooo
0Dh FIR2 = = = = = = — | ceparF |---- - glezias s 0
8Ch PE1 |PSPIE™| ADIE | RCIE | TXE | SSPE | CCPIE | TMRZIE | TMRIIE [oooo oooofooon oooo
8Dh PIE2 = = - - = - — | ccP2E |---- ---] E—— b
ath TRISC |PORTC Data Direction Register 1111 1111{1111 1111
11h TMRZ Timer2 Module's Register 0000 0000{0000 000D
92h PR2 Timer2 Module’s Peniod Register 1111 11111111 1111
12h T2CON | — [routpss[toutesz|TouTesi|routPso| TMR2ON | T2cKPS1{T2CKPS0]-000 0000]-000 0000
15h CCPRIL |Capture/Compare/PWM Register 1 (LSB) 00O J0000{UNUL. Uuuu
16h CCPRIH |Capture/Compare/PWM Register 1 (MSB) A 00K UL LU
17h copicoN] — | — [copix [copiv |copima] copimz | copimi [copimo]--00 ooool--00 oooo
1Bh CCPRIL |Capture/Compare/PWM Register 2 (LSB) 0 2000 (Ut uuu
1Ch CCPR2H |Capture/Compare/PWM Register 2 (MSB) U 00K UL LU
1Dh cepacoN] — | — [ceeax [cepay |ccpama|copamz | copamt [copamo]--00 ooool--00 oooo
Legend: x =unknown, u = unchanged, - = unimplemented, read as '0". Shaded cells are not used by PWM and Timer2.
Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.
1. Set the PWM period by writing to the PR2
register.
2. Set the PWM duty cycle by writing to the
CCPR1Lregister and CCP1CON<5:4> bits.
3. Make the CCP1 pin an output by clearing the
TRISC<2> bit.
4. Set the TMR2 prescale value and enable Timer2
by writing to T2CON.
5. Configure the CCP1 module for PWM operation

12/12/2012

93

COMPARATOR MODULE

The comparator module contains two analog
comparators. The inputs to the comparators
are multiplexed with /O port pins RAO
through RA3, while the outputs are
multiplexed to pins RA4 and RA5. The on-chip
voltage reference can also be an input to the
comparators.

12/12/2012

94

CMCON REGISTER

R-0 R-0 RAV-0 R/W-0 R/W-0 RIW-1 RAW-1 R/W-1
[c2ouT [c1ouT [czinv C1INV cIS cM2 CcM1 CMO
bit 7 bit 0
bit 7 C20UT: Comparator 2 Output bit

When C2INV = 0:
1 = C2 VIN+ = C2 ViIN-
0 = C2 ViN+ < C2 VIN-
When C2INV = 1:
1=C2 VIN+ < C2 VIN-
0 = C2 VIN+ > C2 VIN-
bit & C10UT: Comparator 1 Output bit
When C1INV = o:
1 =C1WViN+ = C1 Vin-
0 =C1 ViN+ < C1 ViN-
When C1INV = 1:
1 =C1 Vint < C1 Vin-
0 =C1 Vin+t > C1 ViIN-
bit 5 C2INV: Comparator 2 Output Inversion bit
1 = C2 output inverted
o0 = C2 output not inverted
bit 4 C1INV: Comparator 1 Output Inversion bit
1 = C1 output inverted
0 = C1 output not inverted
bit 3 CIS: Comparator Input Switch bit
When CM2:CMO0 = 110:
1= C1 VIN- connects to RA3/AN3
C2 ViN- connects to RAZ/ANZ
0 = C1 ViN- connects to RAOWANO
C2 Vin- connects to RAT/AN1

bit 2 CM2:CMO0: Comparator Mode bits

Figure 12-1 shows the Comparator modes and CM2:CMOD bit settings.

Com Reset Comparators OFff (POR Default Value)
CM2-ChWD = 000 CM2CMO =111
RAane —2 ROt —2
S 1 —— Off (Read as ‘o) iy ——— O [Fead = 0')
T S el AN —2— S~
S OFf (Read as ‘07 e O [Rimad == 0"
FLAZIANZ %1—_&%’ . 5 Razanz D F% ¢ ?
Twwa In ittt Ox
Two Independent Comparators 3 na
CM2-CMO = 010 R
A DAMND - RAQMAND A =
e [T e RETE. Y !
FLARIAND
RALMOCHUICTOUT
A -
Rt 1mr AN — L
RAZIAMNT 2 RADMAND B Ve || C2OUT
RASANASECIOUT
Two ators Twao Common Reference with Cutp
CM2-CMO = Lo CMZ:CMO = 101
RAAND —2 FUALUAND
e CA1oUT
FLARIAND
RAanT 2
ju]
RAZANZ O N—

RASIAMNAISSIC20UT

One Independent Comparator with Output
CM2-ChWD = 001

RAAND 2

T TR

C1ouUT

RAATOCKVC 1OUT

C2 —— Of (Read as ‘o)

Four Inputs Multiplexed to Two Comparators.
CM2:CMO =110

a
RAAND —— o mee [~
RAZsakgs & - CIE=2

e
Vaer | | D2 5 C2OUT

CWREF Epom G

VREF Module

A= Analog Input. port reads ceros always. D = Digital lnpul. CIS (CMOON<3>} is the Comparator Input Switch.

12/12/2012

95

PIC CCS Compiler

A compiler converts a high-level language program to machine
instructions for the target processor

A cross-compiler is a compiler that runs on a processor
(usually a PC) that is different from the target processor

Most embedded systems are now programmed using the
C/C++ language

Several C compilers are available that target Microchip PICs,
for example HiTech, Microchip and CCS

CCS C is standard C plus limited support for reference
parameters in functions

PIC-specific pre-processor directives are provided in addition
to the standard directives (#include, #define etc):

#inline implement the following function inline
#priority set priority of interrupts
Additional functions supporting PIC hardware are provided:

output_Tow() set an 1/O port bit low
delay_us(Q) delay by a specified number of ys

12/12/2012

96

Data types

PICs are optimised for processing single bits or 8-bit words,
and this is reflected the CCS compiler word sizes:

short int (or int1) 1 bit Oor1

int (or int8) 8 bit 0 to 255

long int (or int16) 16 bit | 0 to 65535

int32 32 bit | 0 to 4294967295
char 8 bit 0 to 255

float 32 bit | +3x10738 to +3x10*38

Contrary to the C standard, CCS C integers are by default
unsigned

Multi-Precision Operations

It is often necessary to process data words that are larger
than can be operated on by a single instruction

PIC instructions only operate on 8-bit words

Multi-precision arithmetic uses a sequence of basic
instructions on existing data types

In CCS C the long int (16 bit) and int32 (32 bit) types are
processed using multi-precision arithmetic

This is much more expensive in time and code size than
single instructions

12/12/2012

97

Multi-Precision Operations

Als += Bls

l

Als +=Bls

Yi
Overflow? es Ams ++

No

Ams += Bms

l

Multi-Precision Operations

16-bit addition using 8-bit operations:

Als += Bls

12/12/2012

98

Multi-Precision Operations

32-bit addition using 8-bit operations:

A

e B

Built-in functions

RS-232 1/0O:

getc()
putcQ
fgetc O
gets()
putsQ
fgets O
fputc
fputs ()
printf(Q)
kbhit(
fprintf(O
set_uart_speed()
perror()
assert()
getchar(Q
putchar(
setup_uart(Q

SPI two wire 1/0O:

read_bank()
setup_spiQ
spi_read()
spi_write(Q
spi_data_is_inQ

Discrete 1/O:

output_Tow()
output_high(Q
output_float()
output_bit()
input(Q
output_xQ
output_toggle()
input_state()
input_XxXQ
port_b_pullups(Q
set_tris_xQ

12/12/2012

99

Built-in functions

Parallel Slave I/0: 12C 110 Processor control:
setup_psp() i2c_start() sleep()
psp_input_fullQ i2c_stop() reset_cpu()
psp_output_full() i2C_read restart_cause()
psp_overflow() i2c_write() disable_interrupts()
i2c_po11() enable_interrupts()
ext_int_edge()
read_bank()

write_bank()
1abel_address()
goto_address()
getenv()
clear_interrupts
setup_oscillator()

Built-in functions

Bit/Byte Manipulation: Standard C Math:
shift_right(Q absQ) fabs
shift_left() acos() fmod OO
rotate_right(Q) asin(Q) atan2()
rotate_left() atan() frexp(Q
bit_clear() ceilQ) TdexpQ
bit_set() cos() modf ()
bit_test() exp() sqrt(Q)
swap() floor() tan()
make8() Tabs() divQ
makel6() sinhQ 1div(O
make32() log(Q)

Togl0 ()

pow()

sin()

cosh()

tanh(

12/12/2012

100

Built-in functions

Standard C Char:

atoiQ stremp() strtol1Q)
atoi32Q stricmp(Q) strtoul QO
atol1Q strncmp() strncat(Q
atofQ strcat(Q) strcoll1Q
tolower() strstr) strxfrmQ
toupper() strchrQ

isalnumQ strrchrQ

isalphaQ isgraph(Q)

isamoung () iscntrl Q)

isdigitQ strtok(Q)

islower() strspn()

isspace(Q) strcspn()

isupper() strpbrk()

isxdigit(Q striwrQ

strilen() sprintfQ

strcpyQ isprint(Q)

strncpy Q) strtodQ)

Built-in functions
AID Conversion: Timers: Standard C memory:

setup_vref() setup_timer_X() memset()

setup_adc_ports() set_timer_x() memcpy ()
setup_adc() get_timer_x() offsetof()
set_adc_channel() setup_counters() offsetofbit()
read_adc() setup_wdt() malloc()
restart_wdt() calloc()
free()
Analog Compare: realloc()
memmove ()
setup_comparator() nencip)
memchr()

12/12/2012

101

Built-in functions

Capture/Compare/PWM:

setup_ccpX()
set_pwmx_duty()
setup_power_pwm()
setup_power_pwm_pins()
set_power_pwmx_duty()
set_power_pwm_override()

Delays:

delay_us()
delay_ms()
delay_cycles()

Internal EEPROM:

read_eeprom()
write_eeprom()
read_program_eeprom()
write_program_eeprom()
read_calibration()
write_program_memory()
read_program_memory ()
write_external_memory()
erase_program_memory ()
setup_external_memory()

Standard C Special:

rand()
srand()

Device Definition file

A CCS C program will start with a number of pre-processor

directives similar to:

#include <18F452.H>

#fuses HS,NOWDT,NOBROWNOUT,NOPROTECT, PUT

#use delay(clock=20000000)

#include "lcd.c"

The first directive instructs the compiler to include the system

header file 18F452.H

This is a device-specific file that contains information about
the location of SFRs and the values to be written to them

12/12/2012

102

Delay

CCS C provides functions for generating delays:

delay_us()
delay_ms()

These delay functions actually delay by a number of machine
cycles

The compiler needs to know the clock frequency in order to
calculate the required number of machine cycles

#use delay(clock=20000000)

This use-delay directive specifies that the clock frequency of
the PIC is 20 MHz

Multiple source files

CCS C does not allow separate compilation and linking of
source code files

It is convenient (and good programming practice) to put
commonly-used library functions in separate files

#include "lcd.c"

This directive instructs the compiler to include the user library
file Icd.c in the file currently being compiled

This is not particularly efficient (the library file is compiled every
time) - however typical PIC programs compile in a few seconds

12/12/2012

103

12/12/2012

Access to |0 ports

Complete program to toggle all pins on the B port:

#include <18F452.H>
#fuses HS,NOPROTECT, NOBROWNOUT,NOWDT,NOLVP, PUT
#use delay(clock=20000000)

#define trisb (int *) O0xF93
#define portb (int *) OxF81

void main(Q)

{
*trisb = 0x00;
for (G3) {
*portb = ~*portb;
delay_ms(100);
}
}

Support for 1/0

Comprehensive support is provided in CCS C for accessing
data ports and individual pins of the ports

Three different methods of /O can be used, specified by the
directives:

#use standard_io(port)

#use fast_io(port)

#use fixed_io(port_outputs=pin_x1,pin_x2, ...)

The differences between these 1/0 methods are to do with the
way that the data direction registers are controlled

104

Support for I/O

Functions are provided for reading from a complete port:

value = input_a()
value = input_b()

for writing to a complete port:

output_a(value)
output_b(value)

and for setting the data direction register:

set_tris_a(int)
set_tris_b(int)

#use fast_io(b)

void main()

{ .
int q;
set_tris_b(0b11111010);
for (q = 0b00000001;; q A= 0b00000101) {
output_b(q);
delay_ms(100);
}
}

12/12/2012

105

Support for 1/0

A function is provided for reading from a pin of a data port:

value = input(pin)

and for writing to a pin of a data port :

output_bit(pin,value)
output_Tow(pin)
output_high(pin)
output_toggle(pin)

Pin names are of the form:

pin_al pin_bl pin_cl
pin_a2 pin_b2 pin_c2

Timers

Fortunately it is not necessary to manipulate the registers

directly because special functions are provided in CCS C:

setup_timer_0(mode)
setup_timer_1(mode)

To set the counter:
set_timer0(value)
set_timerl(value)

To read the counter:

get_timer0(Q)

value =
= get_timerl(Q)

value

12/12/2012

106

Counter example

Program to count pulses on external input to timer/counter 0:

void mainQ)
{
setup_timer_O(RTCC_EXT_L_TO_H | RTCC_8_BIT);
set_timer0(0);
led_initQ;
for (55) {
printf(lcd_putc, "\f%d", (int) get_timer0());
delay_ms (200);
}

Interrupts

CCS C provides the following functions to configure interrupts:

disable_interrupts() disables the specified interrupt
enable_interrupts() enables the specified interrupt
clear_interrupt() clear specified interrupt flag

The are corresponding interrupt types and directives for each
of the available interrupt sources:

INT_TIMERO #INT_TIMERO Counter/timer O oflo

INT_AD #INT_AD A/D conversion complete
INT_RB #INT_RB Change on B port
INT_SSP #INT_SSP 12C Activity

12/12/2012

107

Timer interrupt

#INT_TIMERO
void timer_irqQ

{
}

output_toggle(pin_bl);

void main()

{

setup_timer_O(RTCC_INTERNAL | RTCC_DIV_16);
enable_interrupts (INT_TIMERO);
enable_interrupts(GLOBAL);

for (3) {

}

PWM

#define period 100

void main()

{

int q;
setup_ccpl(CCP_PWM) ;
setup_timer_2(T2_DIV_BY_4,period,1l);
for(;;) {

if (++q >= period)

q= 0;
set_pwml_duty(q);
delay_ms (100) ;

12/12/2012

108

LCD

Before writing to the LCD it is necessary to initialise it:

Ted_init(Q);

This function sets up the PIC 1/O pins used to communicate
with the LCD and initializes the LCD registers

Then various routines can be used to control the display:

Tcd_clear(Q)

Tecd_home()
Tcd_backspace()
Ted_panleft(Q)
Ted_panrightQ
Ted_gotoxy(int x, int y)
Tcd_putc(char c)

clear complete display

goto 1st character on 1st line
backspace by 1 character
pan complete display left
pan complete display right
goto x character on y line
write character at current pos

LCD

#include "lecd.c"

void main()

printf(lcd_putc, "\fADC = %41d", q);
printf(lcd_putc, "\nvoltage = %01.2fv", p);

{
Tong 1int q;
float p;
led_init(Q;
for (G3) {
q = read_adc();
p=5.0%*q / 1024.0
delay_ms(100);
}
}

12/12/2012

109

RS232

#use rs232(baud=38400, xmit=PIN_C6, rcv=PIN_C7,
parity=n, bits=8)

void main(Q)

{

float p;

led_init(Q;

for (G3) {
p=5.0* read_adc() / 1024.0;
printf("\n\rvoltage = %01.2fv", p);
if (kbhit())

printf(lcd_putc, "%c", fgetc());

delay_ms (100);

}

}

CCS C provides the following functions to control the ADC:
setup_adc(mode) set the clock source
setup_adc_ports(value) set which pins are analogue
set_adc_channel(channel) set current input channel
read_adc() perform conversion

There is also a directive which determines the return size for
read_adc():

#DEVICE ADC=xX

where xx can be 8 or 10 (when set to 8 the ADC will return the
most significant byte)

12/12/2012

110

ADC

#device ADC=10
void main()

{
Tong int q;
fFloat p:
setup_adcCADC_CLOCK_DIV_64) ;
setup_adc_ports (ANO) ;
set_adc_channel (0D ;

for (553D {
q = read_adc();
P = 5.0 * q / 1024.0;

delay_ms (100D ;

12/12/2012

111

