Operating Systems

Real-Time Operating Systems

Chalermek Intanagonwiwat

Slides courtesy of Subhashis Banerjee

Real-Time Systems

 Result in severe consequences If logical
and timing correctness are not met

« Two types exist

- Soft real-time
 Tasks are performed as fast as possible

 Late completion of jobs is undesirable but not
fatal.

« System performance degrades as more & more
Jobs miss deadlines

 Example:
- Online Databases

Real-Time Systems (cont.)

- Hard real-time

 Tasks have to be performed on time
* Failure to meet deadlines is fatal

« Example :
- Flight Control System

- Qualitative Definition

Hard and Soft Real Time Systems
(Operational Definition)

« Hard Real Time System

- Validation by provably correct procedures
or extensive simulation that the system
always meets the timings constraints

« SoftReal Time System

- Demonstration of jobs meeting some
statistical constraints suffices.

« Example — Multimedia System
- 25 frames per second on an average

Most Real-Time Systems are
embedded

An embedded system iIs a computer built into

a system but not seen by users as being a
computer

Examples

- FAX machines
- Coplers

- Printers

- Scanners

- Routers

- Robots

Role of an OS In Real Time Systems

Standalone Applications
- Often no OS involved
- Micro controller based Embedded Systems

Some Real Time Applications are huge &
complex

- Multiple threads

- Complicated Synchronization Requirements

- File system / Network / Windowing support

- OS primitives reduce the software design time

Features of Real Time OS
(RTOS)

Scheduling.
Resource Allocation.
Interrupt Handling.

Other i1ssues like kernel size.

Foreground/Background Systems

Small systems of low complexity

These systems are also called “super-
loops”

An application consists of an infinite
loop of desired operations (background)

Interrupt service routines (ISRs)
handle asynchronous events
(foreground)

Foreground/Background Systems
(cont.)

Critical operations must be performed
by the ISRs to ensure the timing

correctness

Thus, ISRs tend to take longer than
they should

Task-Level Response

- Information for a background module Is not
processed until the module gets its turn

Foreground/Background Systems
(cont.)

 The execution time of typical code Is
not constant

[T acode is modified, the timing of the
loop Is affected

 Most high-volume microcontroller-based
applications are F/B systems

- Microwave ovens
- Telephones
- Toys

Foreground/Background Systems

(cont.)
’Bgzlﬁ;und Foreground —— . Fr()m a pOWer
7 .
N consumption
e point of view,
77/ it might be
. | better to halt
7 SR ™ and perform all

processing In
I SRS

Multitasking Systems

 Like F/B systems with multiple
backgrounds

e Allow programmers to manage
complexity inherent In real-time
applications

Multitasking Systems (cont.)

TASK #1 TASK #2 TASK #n
Stack Stack Stack
—
—
Task Control Block Task Control Block Task Control Block
Slatus | Status | L Status |
EA - SP =P
FPriority Frorivy FPriornty

MEMORY

CPU Regiaters

'\.1

=>F

Context

Scheduling in RTOS

e More information about the tasks are
Known
- Number of tasks
- Resource Requirements
- Execution time
- Deadlines

 Being a more deterministic system
better scheduling algorithms can be
devised.

Scheduling Algorithms in RTOS

 Clock Driven Scheduling

 Weighted Round Robin Scheduling

* Priority Scheduling

Scheduling Algorithms in RTOS (cont.)

e Clock Driven

- All parameters about jobs (execution
time/deadline) known In advance.

- Schedule can be computed offline or at
some regular time instances.

- Minimal runtime overhead.
- Not suitable for many applications.

Scheduling Algorithms in RTOS (cont.)

« Weighted Round Robin

- Jobs scheduled in FIFO manner
- Time quantum given to jobs is proportional to it’s
weight
- Example use : High speed switching network
QOS guarantee.

- Not suitable for precedence constrained jobs.

Job A can run only after Job B. No point in giving time
guantum to Job B before Job A.

Scheduling Algorithms in RTOS (cont.)

* Priority Scheduling

- Processor never left idle when there are
ready tasks

- Processor allocated to processes according
to priorities

- Priorities
e Static - at design time
e Dynamic - at runtime

Priority Scheduling

« Earliest Deadline First (EDF)

- Process with earliest deadline given highest
priority

e Least Slack Time First (LSF)
- slack = relative deadline — execution left

« Rate Monotonic Scheduling (RMS)

- For periodic tasks
- Tasks priority inversely proportional to it's period

Schedulers

Also called “dispatchers’

Schedulers are parts of the kernel

responsible for determining which task
runs next

Most real-time kernels use priority-
based scheduling

- Each task is assigned a priority based on Its
Importance

- The priority is application-specific

Priority-Based Kernels

e There are two types
- Non-preemptive
- Preemptive

Non-Preemptive Kernels

 Perform “cooperative multitasking”

- Each task must explicitly give up control of the
CPU

- This must be done frequently to maintain the
Illusion of concurrency

 Asynchronous events are still handled by ISRs

- ISRs can make a higher-priority task ready to run
- But ISRs always return to the interrupted tasks

Non-Preemptive Kernels (cont.)

Low Priority Task

(1) .{_2}_.. ISR

(3)
(4)

ISR makes the high v
priority task ready Time

High Priority Task
B

Low priority task
relinquishes the CPU

Advantages of Non-Preemptive
Kernels

 Interrupt latency is typically low

e (Can use non-reentrant functions without fear
of corruption by another task

- Because each task can run to completion before it
relinquishes the CPU

- However, non-reentrant functions should not be
allowed to give up control of the CPU

 Task-response is now given by the time of the
longest task
- much lower than with F/B systems

Advantages of Non-Preemptive
Kernels (cont.)

 Less need to guard shared data through
the use of semaphores

- However, this rule i1s not absolute

- Shared 1/0 devices can still require the
use of mutual exclusion semaphores

- A task might still need exclusive access to a
printer

Disadvantages of Non-Preemptive
Kernels

Responsiveness

- A higher priority task might have to wait
for a long time

- Response time iIs nhondeterministic

Very few commercial kernels are non-
preemptive

Preemptive Kernels

The highest-priority task ready to run is
always given control of the CPU
- 1T an 1SR makes a higher-priority task

ready, the higher-priority task is resumed
(instead of the interrupted task)

Most commercial real-time kernels are
preemptive

Preemptive Kernels (cont.)

Low Priority Task

N :

’ ngh Priority Task

ISR makes the high (5) _'
i priority task ready Time

<

(6)

Advantages of Preemptive
Kernels

 EXxecution of the highest-priority task Is
deterministic

 Task-level response time is minimized

Disadvantages of Preemptive
Kernels

e Should not use non-reentrant functions
unless exclusive access to these

functions Is ensured

Reentrant Functions

A reentrant function can be used by

more than one task without fear of data
corruption

It can be Interrupted and resumed at
any time without loss of data

It uses local variables (CPU registers or
variables on the stack)

Protect data when global variables are
used

Reentrant Function Example

vold strcpy(char *dest, char *src)

{

while (*dest++ = *src++) {

}
*dest = NULL;:

}

Non-Reentrant Function Example

Int Temp;

void swap(int *x, int *y)

Non-Reentrant Function Example
(cont.)

LOW PRIORITY TASK HIGH PRIORITY TASK
Temp == 1
while (1) (0SIntExit () while (1) {
X = 13 -+ z = 3;
. 2 2 = 4;
B —Lisn | B
(3)
swap (&x, &y); (1) swap (&z, &t);
{ (
Temp = *x; Temp = *z;
(5) 'Tos
“ { 0.S. |+ 't e
‘x = 'y,)
*y = Temp; (4) ‘

. 0STimeDly(1);
08TimeDly(1); / i
))

Tamp ==3

Resource Allocation in RTOS

Resource Allocation

- The issues with scheduling applicable here.

- Resources can be allocated In
 Weighted Round Robin
* Priority Based

Some resources are non preemptible
- Example: semaphores

Priority inversion problem may occur If
priority scheduling Is used

Priority Inversion Problem

Common In real-time kernels

Suppose task 1 has a higher priority
than task 2

Also, task 2 has a higher priority than
task 3

I f mutual exclusion Is used in accessing
a shared resource, priority inversion
may occur

Priority Inversion Example

Priority Inversion

i (13)

— — — —— ————— ——— T ——— —— — — " S — i ————

Task 1 (H)

(9)

Task 2 (M)

(1)

Task 3 (L) 7/ Rz 0
Task 3 Gets Semaphore :

(2) i

— . ——

I
|
i
!
| i
I

Task 3 Resumes !

—— —— i ——

Task 1 Preempts Task 3 | K382
(4) i
Task 1 Tries to get Semaphore Task 3 Releases the Semaphore
(6) (12)

e et b L LT T a——

Task 2 Preempts Task 3
(8)

A Solution to Priority Inversion
Problem

 We can correct the problem by raising
the priority of task 3

- Just for the time 1t accesses the shared
resource

- After that, return to the original priority

- What If task 3 finishes the access before
being preempted by task 17

e Incur overhead for nothing

A Better Solution to the Problem

 Priority Inheritance

- Automatically change the task priority when
needed

- The task that holds the resource will
Inherit the priority of the task that waits
for that resource until it releases the
resource

Priority Inheritance Example

Priority Inversion
bt >

(5)

-

— e ——

Task 1 (H) |
Task 2 (M)

(1) ;(3]%
Task 3 (L) %7

Task 3 Gets Mutex
(2)

Task 1 Preempts Task 3 °

(4)

— i ————

Task 1 Tries to get Mutex
(Priority of Task 3 is raised to Task 1's)

(6)

)
"
)
.
]
.
]
.
I
.
|
.
]
:
|
.
I
'
I
‘
|
H
1
.
I
.

——— — —— — —

I |
I |
I |
I |
| |
| |
I |
I |
I |
| |
I |
I |

|
:
I
1 (9)

R]

A4 |

B T T I

-

(11)

—

e e — — i — o m— i i —m—

Task 1 Completes
(10)

P — i — -

ETask 3 Releases the Mutex
(Task 1 Resumes)
(8)

Assigning Task Priorities

Not trivial

In most systems, not all tasks are

critical

- Non-critical tasks are obviously low-
priorities

Most real-time systems have a

combination of soft and hard

requirements

A Technique for Assigning Task
Priorities

 Rate Monotonic Scheduling (RMS)

- Priorities are based on how often tasks
execute

 Assumption in RMS
- All tasks are periodic with regular intervals

- Tasks do not synchronize with one another,
share data, or exchange data

- Preemptive scheduling

e

RMS Examp

Aoy —P 0

Task Execution Rate (Hz)

RMS: CPU Time and Number of
Tasks

Number of Tasks n(2im-1)
I .00
2 0.828
3 0.779
4 ().756
D 0.743

0.693

RMS: CPU Time and Number of
Tasks (cont.)

 The upper bound for an infinite number
of tasks Is 0.6973

- To meet all hard real-time deadlines based
on RMS, CPU use of all time-critical tasks
should be less than 70%

- Note that you can still have non-time-
critical tasks in a system

- So, 100% of CPU time Is used

- But not desirable because 1t does not allow
code changes or added features later

RMS: CPU Time and Number of
Tasks (cont.)

Note that, in some cases, the highest-
rate task might not be the most

Important task

- Eventually, application dictates the
priorities

- However, RMS is a starting point

Other RTOS iIssues

 Interrupt Latency should be very small
- Kernel has to respond to real time events

- Interrupts should be disabled for minimum
possible time

 For embedded applications Kernel Size should
be small
- Should fit in ROM

e Sophisticated features can be removed
- No Virtual Memory
- No Protection

Mutual Exclusion

The easiest way for tasks to
communicate Is through shared data
structures

- Global variables, pointers, buffers, linked
lists, and ring buffers

Must ensure that each task has
exclusive access to the data to avoid
data corruption

Mutual Exclusion (cont.)

« The most common methods are:
- Disabling interrupts
- Performing test-and-set operations
- Disabling scheduling
- Using semaphores

Disabling and Enabling Interrupts

e The easiest and fastest way to gain
exclusive access

« Example:
Disable interrupts;
Access the resource;
Enable interrupts;

Disabling and Enabling Interrupts
(cont.)

This Is the only way that a task can
share variables with an ISR

However, do not disable interrupts for
too long

Because It adversely impacts the “
Interrupt latency”!

Good kernel vendors should provide the
Information about how long their kernels
will disable interrupts

Test-and-Set (TAS) Operations

Two functions could agree to access a
resource based on a global variable value

I T the variable is O, the function has the

dCCESS

- To prevent the other from accessing the resource,
the function sets the variable to 1

TAS operations must be performed indivisibly
by the CPU (e.g., 68000 family)

Otherwise, you must disable the interrupts
when doing TAS on the variable

TAS Example

Disable interrupts;
IT (variable 1s 0) {
Set variable to 1;
Enable interrupts;
Access the resource;
Disable interrupts;
Set variable to O;
Enable interrupts;
} else {
Enable interrupts;
}

Disabling and Enabling the
Scheduler

 Viable for sharing variables among tasks
but not with an ISR

 Scheduler is locked but interrupts are
still enabled
- Thus, ISR returns to the interrupted task

- Similar to a non-preemptive kernel (at
least, while the scheduler is locked)

Disabling and Enabling the
Scheduler (cont.)

Example:
Lock scheduler;
Access shared data;
Unlock scheduler;

Even though this works well, you should
avold It because It defeats the purpose
of having a kernel

Semaphores

 Invented by Edgser Dijkstra in the mid-
1960s

« Offered by most multitasking kernels

 Used for:
- Mutual exclusion
- Signaling the occurrence of an event
- Synchronizing activities among tasks

Semaphores (cont.)

« A semaphore iIs a key that your code acquires
In order to continue execution

 |IT the key Is already In use, the requesting
task Is suspended until the key Is released

e There are two types

- Binary semaphores
e Oorl

- Counting semaphores
° >= O

Semaphore Operations

 Initialize (or create)
- Value must be provided
- Waiting list is initially empty
« Wait (or pend)
Used for acquiring the semaphore

- If the semaphore is available (the semaphore value is
positive), the value is decremented, and the task is not
blocked

- Otherwise, the task is blocked and placed in the waiting list
- Most kernels allow you to specify a timeout

- If the timeout occurs, the task will be unblocked and an
error code will be returned to the task

Semaphore Operations (cont.)

e Signal (or post)
- Used for releasing the semaphore

- I no task is waiting, the semaphore value Is
Incremented

- Otherwise, make one of the waiting tasks
ready to run but the value Is not
Incremented

- Which waiting task to receive the key?
 Highest-priority waiting task
 First waiting task

Semaphore Example

Semaphore *s;
Time timeout;
INT8U error_code;

timeout = O;

Wait(s, timeout, &error_code);
Access shared data,;

Signal(s);

Applications of Binary
Semaphores

Suppose task 1 prints “I am Task 1!”
Task 2 prints “I am Task 2!”

I they were allowed to print at the
same time, 1t could result In:

| laamm T Tasask k1!2!

Solution:
- Binary semaphore

Sharing 1/0 Devices

"I am task #1!"

___________________ """"H.\
‘ﬁ.\x

Acquire Semaphore N
N
4

1 SEMAPHORE | PRINTER

N

Acquire Semaphore J

"I am task #2!"

Sharing 1/0 Device (cont.)

 In the example, each task must know
about the semaphore In order to access

the device

A better solution:
- Encapsulate the semaphore

Encapsulating a Semaphore

CommSendCmd()
DRIVER RS-232C
»
CommSendCmd) I

Semaphore

Encapsulating a Semaphore
(cont.)

INT8U CommSendCmd(char *cmd, char *response,
INT16U timeout)

{
Acquire semaphore;
Send command to device;
Wait for response with timeout;
I (timed out) {
Release semaphore;
return error code;
} else {
Release semaphore;
return no error,;

Applications of Counting
Semaphores

A counting semaphore iIs used when a
resource can be used by more than one

task at the same time

 Example:
- Managing a buffer pool of 10 buffers

Buffer Management

BufFreelist
—+—»| Next +—¥»| Next | Next+9» 0

I " !

BufReq() |4+—» 14—-—'—.* BufRel ()

Buffer Management (cont.)

BUF *BufReq(void)

{
BUF *ptr;

Acquire a semaphore,
Disable interrupts;

ptr = BufFreelList;
BufFreelList = ptr->BufNext;
Enable interrupts;

return (ptr);

Buffer Management (cont.)

vold BufRel(BUF *ptr)

{
Disable interrupts;
ptr->BufNext = BufFreelList;
BufFreelList = ptr;
Enable interrupts;
Release semaphore;

Buffer Management (cont.)

Semaphores are often overused

The use of semaphore to access simple shared
variable is overkill in most situations

For this simple access, disabling interrupts
are more cost-effective

However, IT the variable is floating-point and
CPU does not support floating-point In
hardware, disabling interrupts should be
avoided

Linux for Real Time Applications

 Scheduling

- Priority Driven Approach
 Optimize average case response time

- Interactive Processes Given Highest
Priority
 AIm to reduce response times of processes

- Real Time Processes

* Processes with high priority
e There was no notion of deadlines

Linux for Real Time Applications

(cont.)

e Resource Allocation

- There was no support for handling priority
Inversion

e Since version 2.6.18, priority inheritance

avallable in both kernel and user space

mutexes for preventing priority
Inversion

Interrupt Handling in Linux

 Interrupts were disabled in ISR/critical
sections of the kernel

e There was no worst case bound on
Interrupt latency avaliable

- eg: Disk Drivers might disable interrupt for
few hundred milliseconds

Interrupt Handling in Linux
(cont.)

 Linux was not suitable for Real Time
Applications
- Interrupts may be missed

e Since 2.6.18, Hard IRQs executed In
kernel thread context

- (where differing priority levels can be
assigned)

- allows developers to better insulate
systems from external events

Other Problems with Linux

 Processes were not preemtible in Kernel Mode
- System calls like fork take a lot of time
- High priority thread might wait for a low priority
thread to complete it’'s system call
 Processes are heavy weight
- Context switch takes several hundred
microseconds
 Linux 2.6.18 adds preemption points in kernel,
with the goal of achieving microsecond-level
latency;

- all but "kernel-critical” portions of kernel code
become preemptible involuntarily at any time

Why Linux?

 Coexistence of Real Time Applications
with non Real Time Ones

- Example http server
 Device Driver Base
o Stability

Why Linux? (cont.)

e Several real-time features are now
Integrated into the main distribution of

LInuX

- Improved POSIX compliancy

e Including Linux's first implementation of
message queues and of priority inheritance,

e as well as an improved implementation of signals
less apt to disregard multiple inputs

- Hard IRQs executed In thread context

Why Linux? (cont.)

- Three levels of real-time preemptibility In
kernel, configurable at compile time
(throughput or real-time predictability):

* Voluntary preemption
 Preemptible kernel (ms level)
* Full real-time preemption (microsecond level)

- Priority inheritance available in both kernel
and user space mutexes

Why Linux? (cont.)

- High-resolution timers

« Added in 2.6.21, this allows the kernel to
actually use the high-resolution timers built into
most processors, enabling,

 For example, POSIX timers and nano_sleep calls
to be "as accurate as hardware allows,"

 The kernel's entire time management gets to
the level of microseconds

Why Linux? (cont.)

- Various kernel config options for monitoring
real-time behavior of kernel:

 CONFIG _LATENCY_ TRACE
- Track the full trace of maximum latency

e CONFIG_WAKEUP_ _TIMING
- Tracking of the maximum recorded time between
» waking up for a high-priority task, and
» executing on the CPU, shown in microseconds

