
Operating Systems

Real-Time Operating Systems

Chalermek Intanagonwiwat

Slides courtesy of Subhashis Banerjee



Real-Time Systems
• Result in severe consequences if logical

and timing correctness are not met

• Two types exist
- Soft real-time
• Tasks are performed as fast as possible

• Late completion of jobs is undesirable but not
fatal.

• System performance degrades as more & more
jobs miss deadlines

• Example:
- Online Databases



Real-Time Systems (cont.)

- Hard real-time

• Tasks have to be performed on time

• Failure to meet deadlines is fatal

• Example :
- Flight Control System

- Qualitative Definition



Hard and Soft Real Time Systems
(Operational Definition)

• Hard Real Time System
- Validation by provably correct procedures

or extensive simulation that the system
always meets the timings constraints

• Soft Real Time System
- Demonstration of jobs meeting some

statistical constraints suffices.

• Example–Multimedia System
- 25 frames per second on an average



Most Real-Time Systems are
embedded

• An embedded system is a computer built into
a system but not seen by users as being a
computer

• Examples
- FAX machines

- Copiers

- Printers

- Scanners

- Routers

- Robots



Role of an OS in Real Time Systems

• Standalone Applications
- Often no OS involved

- Micro controller based Embedded Systems

• Some Real Time Applications are huge &
complex
- Multiple threads

- Complicated Synchronization Requirements

- File system / Network / Windowing support

- OS primitives reduce the software design time



Features of Real Time OS
(RTOS)

• Scheduling.

• Resource Allocation.

• Interrupt Handling.

• Other issues like kernel size.



Foreground/Background Systems

• Small systems of low complexity

• These systems are also called“super-
loops”

• An application consists of an infinite
loop of desired operations (background)

• Interrupt service routines (ISRs)
handle asynchronous events
(foreground)



Foreground/Background Systems
(cont.)

• Critical operations must be performed
by the ISRs to ensure the timing
correctness

• Thus, ISRs tend to take longer than
they should

• Task-Level Response
- Information for a background module is not

processed until the module gets its turn



Foreground/Background Systems
(cont.)

• The execution time of typical code is
not constant

• If a code is modified, the timing of the
loop is affected

• Most high-volume microcontroller-based
applications are F/B systems
- Microwave ovens

- Telephones

- Toys



Foreground/Background Systems
(cont.)

• From a power
consumption
point of view,
it might be
better to halt
and perform all
processing in
ISRs



Multitasking Systems

• Like F/B systems with multiple
backgrounds

• Allow programmers to manage
complexity inherent in real-time
applications



Multitasking Systems (cont.)



Scheduling in RTOS

• More information about the tasks are
known
- Number of tasks

- Resource Requirements

- Execution time

- Deadlines

• Being a more deterministic system
better scheduling algorithms can be
devised.



Scheduling Algorithms in RTOS

• Clock Driven Scheduling

• Weighted Round Robin Scheduling

• Priority Scheduling



Scheduling Algorithms in RTOS (cont.)

• Clock Driven
- All parameters about jobs (execution

time/deadline) known in advance.

- Schedule can be computed offline or at
some regular time instances.

- Minimal runtime overhead.

- Not suitable for many applications.



Scheduling Algorithms in RTOS (cont.)

• Weighted Round Robin

- Jobs scheduled in FIFO manner

- Time quantum given to jobs is proportional to it’s
weight

- Example use : High speed switching network
• QOS guarantee.

- Not suitable for precedence constrained jobs.
• Job A can run only after Job B. No point in giving time

quantum to Job B before Job A.



Scheduling Algorithms in RTOS (cont.)

• Priority Scheduling
- Processor never left idle when there are

ready tasks

- Processor allocated to processes according
to priorities

- Priorities
• Static - at design time

• Dynamic - at runtime



Priority Scheduling

• Earliest Deadline First (EDF)
- Process with earliest deadline given highest

priority

• Least Slack Time First (LSF)
- slack = relative deadline –execution left

• Rate Monotonic Scheduling (RMS)
- For periodic tasks

- Tasks priority inversely proportional to it’s period



Schedulers

• Also called“dispatchers”

• Schedulers are parts of the kernel
responsible for determining which task
runs next

• Most real-time kernels use priority-
based scheduling
- Each task is assigned a priority based on its

importance

- The priority is application-specific



Priority-Based Kernels

• There are two types
- Non-preemptive

- Preemptive



Non-Preemptive Kernels

• Perform“cooperative multitasking”
- Each task must explicitly give up control of the

CPU

- This must be done frequently to maintain the
illusion of concurrency

• Asynchronous events are still handled by ISRs
- ISRs can make a higher-priority task ready to run

- But ISRs always return to the interrupted tasks



Non-Preemptive Kernels (cont.)



Advantages of Non-Preemptive
Kernels

• Interrupt latency is typically low

• Can use non-reentrant functions without fear
of corruption by another task
- Because each task can run to completion before it

relinquishes the CPU

- However, non-reentrant functions should not be
allowed to give up control of the CPU

• Task-response is now given by the time of the
longest task
- much lower than with F/B systems



Advantages of Non-Preemptive
Kernels (cont.)

• Less need to guard shared data through
the use of semaphores
- However, this rule is not absolute

- Shared I/O devices can still require the
use of mutual exclusion semaphores

- A task might still need exclusive access to a
printer



Disadvantages of Non-Preemptive
Kernels

• Responsiveness
- A higher priority task might have to wait

for a long time

- Response time is nondeterministic

• Very few commercial kernels are non-
preemptive



Preemptive Kernels

• The highest-priority task ready to run is
always given control of the CPU
- If an ISR makes a higher-priority task

ready, the higher-priority task is resumed
(instead of the interrupted task)

• Most commercial real-time kernels are
preemptive



Preemptive Kernels (cont.)



Advantages of Preemptive
Kernels

• Execution of the highest-priority task is
deterministic

• Task-level response time is minimized



Disadvantages of Preemptive
Kernels

• Should not use non-reentrant functions
unless exclusive access to these
functions is ensured



Reentrant Functions

• A reentrant function can be used by
more than one task without fear of data
corruption

• It can be interrupted and resumed at
any time without loss of data

• It uses local variables (CPU registers or
variables on the stack)

• Protect data when global variables are
used



Reentrant Function Example

void strcpy(char *dest, char *src)

{

while (*dest++ = *src++) {

…

}

*dest = NULL;

}



Non-Reentrant Function Example

int Temp;

void swap(int *x, int *y)

{

Temp = *x;

*x = *y;

*y = Temp;

}



Non-Reentrant Function Example
(cont.)



Resource Allocation in RTOS

• Resource Allocation
- The issues with scheduling applicable here.

- Resources can be allocated in
•Weighted Round Robin

• Priority Based

• Some resources are non preemptible
- Example: semaphores

• Priority inversion problem may occur if
priority scheduling is used



Priority Inversion Problem

• Common in real-time kernels

• Suppose task 1 has a higher priority
than task 2

• Also, task 2 has a higher priority than
task 3

• If mutual exclusion is used in accessing
a shared resource, priority inversion
may occur



Priority Inversion Example



A Solution to Priority Inversion
Problem

• We can correct the problem by raising
the priority of task 3
- Just for the time it accesses the shared

resource

- After that, return to the original priority

- What if task 3 finishes the access before
being preempted by task 1?
• incur overhead for nothing



A Better Solution to the Problem

• Priority Inheritance
- Automatically change the task priority when

needed

- The task that holds the resource will
inherit the priority of the task that waits
for that resource until it releases the
resource



Priority Inheritance Example



Assigning Task Priorities

• Not trivial

• In most systems, not all tasks are
critical
- Non-critical tasks are obviously low-

priorities

• Most real-time systems have a
combination of soft and hard
requirements



A Technique for Assigning Task
Priorities

• Rate Monotonic Scheduling (RMS)
- Priorities are based on how often tasks

execute

• Assumption in RMS
- All tasks are periodic with regular intervals

- Tasks do not synchronize with one another,
share data, or exchange data

- Preemptive scheduling



RMS Example



RMS: CPU Time and Number of
Tasks



RMS: CPU Time and Number of
Tasks (cont.)

• The upper bound for an infinite number
of tasks is 0.6973
- To meet all hard real-time deadlines based

on RMS, CPU use of all time-critical tasks
should be less than 70%

- Note that you can still have non-time-
critical tasks in a system

- So, 100% of CPU time is used

- But not desirable because it does not allow
code changes or added features later



RMS: CPU Time and Number of
Tasks (cont.)

• Note that, in some cases, the highest-
rate task might not be the most
important task
- Eventually, application dictates the

priorities

- However, RMS is a starting point



Other RTOS issues

• Interrupt Latency should be very small
- Kernel has to respond to real time events

- Interrupts should be disabled for minimum
possible time

• For embedded applications Kernel Size should
be small
- Should fit in ROM

• Sophisticated features can be removed
- No Virtual Memory

- No Protection



Mutual Exclusion

• The easiest way for tasks to
communicate is through shared data
structures
- Global variables, pointers, buffers, linked

lists, and ring buffers

• Must ensure that each task has
exclusive access to the data to avoid
data corruption



Mutual Exclusion (cont.)

• The most common methods are:
- Disabling interrupts

- Performing test-and-set operations

- Disabling scheduling

- Using semaphores



Disabling and Enabling Interrupts

• The easiest and fastest way to gain
exclusive access

• Example:

Disable interrupts;

Access the resource;

Enable interrupts;



Disabling and Enabling Interrupts
(cont.)

• This is the only way that a task can
share variables with an ISR

• However, do not disable interrupts for
too long

• Because it adversely impacts the “
interrupt latency”!

• Good kernel vendors should provide the
information about how long their kernels
will disable interrupts



Test-and-Set (TAS) Operations

• Two functions could agree to access a
resource based on a global variable value

• If the variable is 0, the function has the
access
- To prevent the other from accessing the resource,

the function sets the variable to 1

• TAS operations must be performed indivisibly
by the CPU (e.g., 68000 family)

• Otherwise, you must disable the interrupts
when doing TAS on the variable



TAS Example

Disable interrupts;
if (variable is 0) {

Set variable to 1;
Enable interrupts;
Access the resource;
Disable interrupts;
Set variable to 0;
Enable interrupts;

} else {
Enable interrupts;

}



Disabling and Enabling the
Scheduler

• Viable for sharing variables among tasks
but not with an ISR

• Scheduler is locked but interrupts are
still enabled
- Thus, ISR returns to the interrupted task

- Similar to a non-preemptive kernel (at
least, while the scheduler is locked)



Disabling and Enabling the
Scheduler (cont.)

• Example:
Lock scheduler;

Access shared data;

Unlock scheduler;

• Even though this works well, you should
avoid it because it defeats the purpose
of having a kernel



Semaphores

• Invented by Edgser Dijkstra in the mid-
1960s

• Offered by most multitasking kernels

• Used for:
- Mutual exclusion

- Signaling the occurrence of an event

- Synchronizing activities among tasks



Semaphores (cont.)

• A semaphore is a key that your code acquires
in order to continue execution

• If the key is already in use, the requesting
task is suspended until the key is released

• There are two types
- Binary semaphores
• 0 or 1

- Counting semaphores
• >= 0



Semaphore Operations

• Initialize (or create)
- Value must be provided

- Waiting list is initially empty

• Wait (or pend)
- Used for acquiring the semaphore
- If the semaphore is available (the semaphore value is

positive), the value is decremented, and the task is not
blocked

- Otherwise, the task is blocked and placed in the waiting list

- Most kernels allow you to specify a timeout
- If the timeout occurs, the task will be unblocked and an

error code will be returned to the task



Semaphore Operations (cont.)

• Signal (or post)
- Used for releasing the semaphore

- If no task is waiting, the semaphore value is
incremented

- Otherwise, make one of the waiting tasks
ready to run but the value is not
incremented

- Which waiting task to receive the key?
• Highest-priority waiting task

• First waiting task



Semaphore Example

Semaphore *s;

Time timeout;

INT8U error_code;

timeout = 0;

Wait(s, timeout, &error_code);

Access shared data;

Signal(s);



Applications of Binary
Semaphores

• Suppose task 1 prints“I am Task 1!”

• Task 2 prints“I am Task 2!”

• If they were allowed to print at the
same time, it could result in:

I Ia amm T Tasask k1!2!

• Solution:
- Binary semaphore



Sharing I/O Devices



Sharing I/O Device (cont.)

• In the example, each task must know
about the semaphore in order to access
the device

• A better solution:
- Encapsulate the semaphore



Encapsulating a Semaphore



Encapsulating a Semaphore
(cont.)

INT8U CommSendCmd(char *cmd, char *response,
INT16U timeout)

{
Acquire semaphore;
Send command to device;
Wait for response with timeout;
if (timed out) {

Release semaphore;
return error code;

} else {
Release semaphore;
return no error;

}
}



Applications of Counting
Semaphores

• A counting semaphore is used when a
resource can be used by more than one
task at the same time

• Example:
- Managing a buffer pool of 10 buffers



Buffer Management



Buffer Management (cont.)

BUF *BufReq(void)

{

BUF *ptr;

Acquire a semaphore;

Disable interrupts;

ptr = BufFreeList;

BufFreeList = ptr->BufNext;

Enable interrupts;

return (ptr);

}



Buffer Management (cont.)

void BufRel(BUF *ptr)

{

Disable interrupts;

ptr->BufNext = BufFreeList;

BufFreeList = ptr;

Enable interrupts;

Release semaphore;

}



Buffer Management (cont.)

• Semaphores are often overused

• The use of semaphore to access simple shared
variable is overkill in most situations

• For this simple access, disabling interrupts
are more cost-effective

• However, if the variable is floating-point and
CPU does not support floating-point in
hardware, disabling interrupts should be
avoided



Linux for Real Time Applications

• Scheduling
- Priority Driven Approach
• Optimize average case response time

- Interactive Processes Given Highest
Priority
• Aim to reduce response times of processes

- Real Time Processes
• Processes with high priority

• There was no notion of deadlines



Linux for Real Time Applications
(cont.)

• Resource Allocation
- There was no support for handling priority

inversion

• Since version 2.6.18, priority inheritance
available in both kernel and user space
mutexes for preventing priority
inversion



Interrupt Handling in Linux

• Interrupts were disabled in ISR/critical
sections of the kernel

• There was no worst case bound on
interrupt latency avaliable
- eg: Disk Drivers might disable interrupt for

few hundred milliseconds



Interrupt Handling in Linux
(cont.)

• Linux was not suitable for Real Time
Applications
- Interrupts may be missed

• Since 2. 6. 1 8, Hard IRQs executed in
kernel thread context
- (where differing priority levels can be

assigned)

- allows developers to better insulate
systems from external events



Other Problems with Linux

• Processes were not preemtible in Kernel Mode
- System calls like fork take a lot of time
- High priority thread might wait for a low priority

thread to complete it’s system call

• Processes are heavy weight
- Context switch takes several hundred

microseconds

• Linux 2.6.18 adds preemption points in kernel,
with the goal of achieving microsecond-level
latency;
- all but "kernel-critical" portions of kernel code

become preemptible involuntarily at any time



Why Linux?

• Coexistence of Real Time Applications
with non Real Time Ones
- Example http server

• Device Driver Base

• Stability



Why Linux? (cont.)

• Several real-time features are now
integrated into the main distribution of
Linux
- Improved POSIX compliancy
• including Linux's first implementation of

message queues and of priority inheritance,

• as well as an improved implementation of signals
less apt to disregard multiple inputs

- Hard IRQs executed in thread context



Why Linux? (cont.)
- Three levels of real-time preemptibility in

kernel, configurable at compile time
(throughput or real-time predictability):
• Voluntary preemption

• Preemptible kernel (ms level)

• Full real-time preemption (microsecond level)

- Priority inheritance available in both kernel
and user space mutexes



Why Linux? (cont.)
- High-resolution timers

• Added in 2.6.21, this allows the kernel to
actually use the high-resolution timers built into
most processors, enabling,

• For example, POSIX timers and nano_sleep calls
to be "as accurate as hardware allows,"

• The kernel's entire time management gets to
the level of microseconds



Why Linux? (cont.)
- Various kernel config options for monitoring

real-time behavior of kernel:
• CONFIG_LATENCY_TRACE

- Track the full trace of maximum latency

• CONFIG_WAKEUP_TIMING
- Tracking of the maximum recorded time between

» waking up for a high-priority task, and

» executing on the CPU, shown in microseconds


