
Artificial Intelligence

Planning

1

Planning Agent

2

environment
agent

?

sensors

actuators

A1 A2 A3

Outline

The Planning problem

Planning with State-space search

Partial-order planning

Planning graphs

3

Planning problem
Classical planning environment: fully observable,
deterministic, finite, static and discrete.

Find a sequence of actions that achieves a given goal when
executed from a given initial world state. That is, given

 a set of action descriptions (defining the possible primitive
actions by the agent),

 an initial state description, and

 a goal state description or predicate,

 compute a plan, which is

 a sequence of action instances, such that executing them in
the initial state will change the world to a state satisfying the
goal-state description.

Goals are usually specified as a conjunction of subgoals to
be achieved

4

Planning vs. problem solving

Planning and problem solving methods can
often solve the same sorts of problems

Planning is more powerful because of the
representations and methods used

States, goals, and actions are decomposed into
sets of sentences (usually in first-order logic)

Search often proceeds through plan space
rather than state space (though first we will
talk about state-space planners)

Subgoals can be planned independently,
reducing the complexity of the planning
problem

5

Planning vs. problem solving

6

Goal of Planning

Choose actions to achieve a certain
goal

But isn’t it exactly the same goal as for
problem solving?

Some difficulties with problem solving:

 The successor function is a black box: it
must be “applied” to a state to know
which actions are possible in that state
and what are the effects of each one

7

Have(Milk)

Suppose that the goal is HAVE(MILK).

 From some initial state where
HAVE(MILK) is not satisfied, the successor
function must be repeatedly applied to
eventually generate a state where
HAVE(MILK) is satisfied.

 An explicit representation of the possible
actions and their effects would help the
problem solver select the relevant actions

 Otherwise, in the real world an agent
would be overwhelmed by irrelevant
actions

8

Have(Milk)

9

Planning vs Problem Solving

Another difficulty with problem solving:

 The goal test is another black-box function,
states are domain-specific data structures,
and heuristics must be supplied for each new
problem

 Suppose that the goal is
HAVE(MILK)∧HAVE(BOOK)

 Without an explicit representation of the goal,
the problem solver cannot know that a state
where HAVE(MILK) is already achieved is
more promising than a state where neither
HAVE(MILK) nor HAVE(BOOK) is achieved

10

Planning vs Problem Solving

A third difficulty with problem solving:

 The goal may consist of several nearly
independent subgoals, but there is no way
for the problem solver to know it

 HAVE(MILK) and HAVE(BOOK) may be achieved
by
two nearly independent sequences of actions

11

Applications of Planning

Military operations

Construction tasks

Machining tasks

Mechanical assembly

Design of experiments in genetics

Command sequences for satellite

Most applied systems use extended
representation languages, nonlinear

planning techniques, and domain-specific
heuristics

Representations in Planning

 Planning opens up the black-boxes by
using logic to represent:

 Actions

 States

 Goals

13

Problem solving Logic representation

Planning

Planning language

What is a good language?

Must represent

 States

 Goals

 Action.

Must be

 Expressive enough to describe a wide variety of
problems.

 Restrictive enough to allow efficient algorithms to
operate.

14

Languages for Planning Problems

STRIPS

 Stanford Research Institute Problem Solver

 Historically important

ADL

 Action Description Languages

 Relaxed some of the restrictions that made STRIPS
inadequate for real-world problems

PDDL

 Planning Domain Definition Language

 Revised & enhanced for the needs of the International
Planning Competition

 Currently version 3.1

 Includes STRIPS and ADL

15

http://ipc.informatik.uni-freiburg.de/PddlExtension
http://ipc.informatik.uni-freiburg.de/PddlExtension
http://ipc.informatik.uni-freiburg.de/PddlExtension
http://ipc.informatik.uni-freiburg.de/PddlExtension

STRIPS General language features
Representation of states

 Decompose world in logical conditions and
represent state as conjunction of positive
literals.

Propositional literals: Poor ∧ Unknown

FO-literals (grounded and function-
free):

 at(plane1, phl) ∧ at(plane2, bwi)

 does not allow

 at(X,Y), (not grounded)

 at(father(fred),bwi), (function)

 ¬at(plane1, phl. (negative literal) 16

STRIPS Cont

Closed world assumption

Representation of goals

 Partially specified state and represented as
a conjunction of positive ground literals

 A goal is satisfied if the state contains all
literals in goal.

 e.g.: at(paula, phl) ∧ at(john,bwi)

satisfies the goal at(paula, phl)

17

General language features
Representations of actions

 Action = PRECOND + EFFECT
 Action(Fly(p,from, to),

 PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧

Airport(to)

 EFFECT: ¬AT(p,from) ∧ At(p,to))

 = action schema (p, from, to need to be
instantiated)

 Action name and parameter list

 Precondition (conj. of function-free literals)

 Effect (conj of function-free literals and P is True
and not P is false)

 May split Add-list and delete-list in Effect
18

Example
Paula flies from Philadelphia to Baltimore

 Action(Fly(p,from,to)

 PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧

Airport(to)

 EFFECT: ¬At(p,from) ∧ At(p,to))

We begin with

 At(paula,phl) ∧ Plane(phl) ∧ Airport(phl) ∧ Airport(bwi)

We take the action

 Fly(paula, phl, bwi)

We end with

 At(paula,phl) ∧ At(paula, bwi)

Note that we haven’t said anything in the effect about
what happened to the plane. Do we care?

19

Language semantics?

How do actions affect states?

 An action is applicable in any state that
satisfies the precondition.

 For FO action schema applicability involves a
substitution θ for the variables in the
PRECOND.

 At(P1,JFK) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2)
∧ Airport(JFK) ∧ Airport(SFO)

 Satisfies : At(p,from) ∧ Plane(p) ∧ Airport(from)
∧ Airport(to)

With θ ={p/P1,from/JFK,to/SFO}

 Thus the action is applicable.

20

Language semantics?

The result of executing action a in state
s is the state s’

 s’ is same as s except

 Any positive literal P in the effect of a is added
to s’

 Any negative literal ¬P is removed from s’

 EFFECT: ¬AT(p,from) ∧ At(p,to):

 At(P1,SFO) ∧ At(P2,SFO) ∧ Plane(P1) ∧
Plane(P2) ∧ Airport(JFK) ∧ Airport(SFO)

 STRIPS assumption: (avoids
representational frame problem)

 every literal NOT in the effect remains
unchanged 21

Planning Languages
STRIPS is simplest

 Important limit: function-free literals

 Allows for propositional representation

 Function symbols lead to infinitely many states and actions

 But poor expressivity

Extension:Action Description language (ADL)

 Allows negative literals

 Allows quantified variables, conjunctions, disjunctions in
goals

 Open World assumption

 Action(Fly(p:Plane, from: Airport, to: Airport),

 PRECOND: At(p,from) ∧ (from ≠ to)

 EFFECT: ¬At(p,from) ∧ At(p,to))

22

Planning Domain Definition Language

Components:

 Objects: things we are interested in

 Predicates: properties of objects, true or
false

 Initial state: state of the world we start in

 Goal specification: state we want to end
up in

 Actions: ways we can change state

Format

 domain file: predicates and actions

 problem file: objects, initial state, goal
23

Blocks world
The blocks world is a micro-world that consists of a
table, a set of blocks and a robot hand.

Some domain constraints:

 Only one block can be on another block

 Any number of blocks can be on the table

 The hand can only hold one block

Typical representation:

 ontable(a)

 ontable(c)

 on(b,a)

 handempty

 clear(b)

 clear(c)

24

A

B

C

TABLE

State Representation

25

Conjunction of propositions:

BLOCK(A), BLOCK(B), BLOCK(C),

ON(A,TABLE), ON(B,TABLE), ON(C,A),

CLEAR(B), CLEAR(C), HANDEMPTY

A B

C

TABLE

Goal Representation

26

A

B

C

Conjunction of propositions:

ON(A,TABLE), ON(B,A), ON(C,B)

The goal G is achieved in a state S if all

the propositions in G are also in S

Action Representation

27

Unstack(x,y)

 P = HANDEMPTY, BLOCK(x), BLOCK(y),

 CLEAR(x), ON(x,y)

 E = ¬HANDEMPTY, ¬CLEAR(x), HOLDING(x),

 ¬ ON(x,y), CLEAR(y)

Effect: list of literals

Precondition: conjunction of propositions

Example

28

A B

C

Unstack(C,A)

 P = HANDEMPTY, BLOCK(C), BLOCK(A),

 CLEAR(C), ON(C,A)

 E = ¬HANDEMPTY, ¬CLEAR(C), HOLDING(C),

 ¬ ON(C,A), CLEAR(A)

BLOCK(A), BLOCK(B), BLOCK(C),

ON(A,TABLE), ON(B,TABLE), ON(C,A),

CLEAR(B), CLEAR(C), HANDEMPTY

Example

29

A B

C

BLOCK(A), BLOCK(B), BLOCK(C),

ON(A,TABLE), ON(B,TABLE), ON(C,A),

CLEAR(B), CLEAR(C), HANDEMPTY,

HOLDING(C), CLEAR(A)

Unstack(C,A)

 P = HANDEMPTY, BLOCK(C), BLOCK(A),

 CLEAR(C), ON(C,A)

 E = ¬HANDEMPTY, ¬CLEAR(C), HOLDING(C),

 ¬ ON(C,A), CLEAR(A)

Action Representation

30

Action(Unstack(x,y)

 P: HANDEMPTY, BLOCK(x), BLOCK(y), CLEAR(x), ON(x,y)

 E: ¬HANDEMPTY, ¬CLEAR(x), HOLDING(x), ¬ ON(x,y),

CLEAR(y)

Action(Stack(x,y)

 P: HOLDING(x), BLOCK(x), BLOCK(y), CLEAR(y)

 E: ON(x,y), ¬CLEAR(y), ¬HOLDING(x), CLEAR(x),

HANDEMPTY

Actions

31

Action(Pickup(x)

 P: HANDEMPTY, BLOCK(x), CLEAR(x), ON(x,TABLE)

 E: ¬HANDEMPTY, ¬CLEAR(x), HOLDING(x), ¬ON(x,TABLE)

Action(PutDown(x)

 P: HOLDING(x)

 E: ON(x,TABLE), ¬HOLDING(x), CLEAR(x), HANDEMPTY

Example: Spare tire problem
Init(At(Flat, Axle) ∧ At(Spare,trunk))

Goal(At(Spare,Axle))

Action(Remove(Spare,Trunk)

 PRECOND: At(Spare,Trunk)

 EFFECT: ¬At(Spare,Trunk) ∧ At(Spare,Ground))

Action(Remove(Flat,Axle)

 PRECOND: At(Flat,Axle)

 EFFECT: ¬At(Flat,Axle) ∧ At(Flat,Ground))

Action(PutOn(Spare,Axle)

 PRECOND: At(Spare,Groundp) ∧¬At(Flat,Axle)

 EFFECT: At(Spare,Axle) ∧ ¬At(Spare,Ground))

Action(LeaveOvernight

 PRECOND:

 EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,trunk)
∧ ¬ At(Flat,Ground) ∧ ¬ At(Flat,Axle))

This example is ADL: negative literal in pre-condition

32

State-Space Search

Search the space of states (first
chapters)

 Initial state, goal test, step cost, etc.

 Actions are the transitions between state

Actions are invertible (why?)

 Move forward from the initial state:
Forward State-Space Search or Progression
Planning

 Move backward from goal state: Backward
State-Space Search or Regression Planning

33

State-Space Formulation
Formulation as state-space search
problem:

 Initial state = initial state of the planning
problem

 Literals not appearing are false

 Actions = those whose preconditions are
satisfied

 Add positive effects, delete negative

 Goal test = does the state satisfy the
goal?

 Step cost = each action costs 1

 Solution is a sequence of actions. 34

SRIPS in State-Space Search
STRIPS representation makes it easy to focus on
‘relevant’ propositions and

 Work backward from goal (using EFFECTS)

 Work forward from initial state (using PRECONDITIONS)

 Facilitating bidirectional search

35

Relevant Action

An action is relevant

 In Progression planning when its preconditions
match a subset of the current state

 In Regression planning, when its effects match a
subset of the current goal state

36

Consistent Action

The purpose of applying an action is to
‘achieves a desired literal’

We should be careful that the action does not
undo a desired literal (as a side effect)

A consistent action is an action that does not
undo a desired literal

37

Progression Algorithm

No functions, so the number of states is
finite … any graph search that is
complete is a complete planning
algorithm.

 E.g. A*

Inefficient:

 (1) irrelevant action problem

 (2) good heuristic required for efficient
search

38

Forward Planning

A B
C

A B
C

A B C A C

B

A C
B

A

C

B

A

C
B

A

B

C

A B

C

Unstack(C,A))

Pickup(B)

Forward planning searches a state space

In general, many actions are applicable
to a state  huge branching factor

Regression algorithm

How to determine predecessors?

 What are the states from which applying
a given action leads to the goal?

Actions must not undo desired literals
(consistent)

Main advantage: only relevant actions
are considered.

 Often much lower branching factor than
forward search.

41

Regression algorithm
General process for predecessor construction

 Give a goal description G

 Let A be an action that is relevant and consistent

 The predecessors is as follows:

 Any positive effects of A that appear in G are deleted.

 Each precondition literal of A is added , unless it already
appears.

Any standard search algorithm can be added to
perform the search.

Termination when predecessor satisfied by initial
state.

 In FO case, satisfaction might require a substitution.

Computation of R[G,A]

1. If any element of G is deleted by A
then return False

2. G’  Precondition of A

3. For every element SG of G do

 If SG is not added by A then add SG to G’

4. Return G’

Example

G = CLEAR(B), ON(C,B)

Stack(C,B)

 P = HOLDING(C), BLOCK(C), BLOCK(B), CLEAR(B)

 E = ON(C,B), CLEAR(B), HOLDING(C),
 CLEAR(C), HANDEMPTY

R[G,Stack(C,B)] = False

Example

G = ON(B,A), ON(C,B)

Stack(C,B)

 P = HOLDING(C), BLOCK(C), BLOCK(B), CLEAR(B)

 E = ON(C,B), CLEAR(B), HOLDING(C),
 CLEAR(C), HANDEMPTY

R[G,Stack(C,B)] =
ON(B,A), HOLDING(C), BLOCK(C), BLOCK(B),

 CLEAR(B)

Inconsistent Regression

G = ON(B,A), ON(C,B)

Stack(B,A)
 P = HOLDING(B), BLOCK(A), CLEAR(A)

 E = ON(B,A), CLEAR(A), HOLDING(B),
 CLEAR(B), HANDEMPTY

R[G,Stack(B,A)] =
HOLDING(B), BLOCK(A), CLEAR(A), ON(C,B)

impossible

Inconsistency rules:
HOLDING(x)  ON(y,x)  False
HOLDING(x)  ON(x,y)  False
HOLDING(x)  HOLDING(y)  False
Etc…

also called state constraints

Computation of R[G,A]

1. If any element of G is deleted by A
then return False

2. G’  Precondition of A

3. For every element SG of G do
 If SG is not added by A then add SG to G’

4. If an inconsistency rule applies to G’
then return False

5. Return G’

Backward Chaining

ON(B,A), ON(C,B)

Stack(C,B)

ON(B,A), HOLDING(C), CLEAR(B)

A B
C

In general, there are much fewer actions
relevant to a goal than there are actions
applicable  smaller branching factor

than with forward planning

Backward Chaining

ON(B,A), ON(C,B)

Stack(C,B)

ON(B,A), HOLDING(C), CLEAR(B)
A B
C

CLEAR(C), ON(C,TABLE), CLEAR(A), HANDEMPTY, CLEAR(B), ON(B,TABLE)

CLEAR(C), ON(C,TABLE), HOLDING(B), CLEAR(A)

Stack(B,A)

Pickup(B)

Putdown(C)

CLEAR(A), CLEAR(B), ON(B,TABLE), HOLDING(C)

Unstack(C,A)

CLEAR(B), ON(B,TABLE), CLEAR(C), HANDEMPTY, ON(C,A)

Pickup(C)

ON(B,A), CLEAR(B), HANDEMPTY, CLEAR(C), ON(C,TABLE)

Backward planning searches a goal space

Heuristic to Speed up Search
Neither progression or regression are very
efficient without a good heuristic.

 How many actions are needed to achieve the
goal?

 Exact solution is NP hard, find a good estimate

We can use A*, but we need an admissible
heuristic

1. Divide-and-conquer: sub-goal independence
assumption

 Problem relaxation by removing

2. … all preconditions

3. … all preconditions and negative effects

4. … negative effects only: Empty-Delete-List 49

1. Subgoal Independence Assumption

The cost of solving a conjunction of subgoals is the
sum of the costs of solving each subgoal
independently

Optimistic

 Where subplans interact negatively

 Example: one action in a subplan delete goal achieved by an
action in another subplan

Pessimistic (not admissible)

 Redundant actions in subplans can be replaced by a single
action in merged plan

50

2. Problem Relaxation: Removing Preconditions

Remove preconditions from action
descriptions

 All actions are applicable

 Every literal in the goal is achievable in one step

Number of steps to achieve the conjunction
of literals in the goal is equal to the number
of unsatisfied literals

Alert

 Some actions may achieve several literals

 Some action may remove the effect of another
action

51

3. Remove Preconditions & Negative Effects

Considers only positive interactions among
actions to achieve multiple subgoals

The minimum number of actions required is
the sum of the union of the actions’ positive
effects that satisfy the goal

The problem is reduced to a set cover
problem, which is NP-hard

 Approximation by a greedy algorithm cannot
guarantee an admissible heuristic

52

4. Removing Negative Effects (Only)

Remove all negative effects of actions (no
action may destroy the effects of another)

Known as the Empty-Delete-List heuristic

Requires running a simple planning algorithm

Quick & effective

Usable in progression or regression planning

53

Partial-order planning

Progression and regression planning
are totally ordered plan search forms.

 They cannot take advantage of problem
decomposition.

Decisions must be made on how to sequence
actions on all the subproblems

Least commitment strategy:

 Delay choice during search

54

Shoe example
Goal(RightShoeOn ∧ LeftShoeOn)

Init()

Action(RightShoe, PRECOND: RightSockOn

 EFFECT: RightShoeOn)

Action(RightSock, PRECOND:

 EFFECT: RightSockOn)

Action(LeftShoe, PRECOND: LeftSockOn

 EFFECT: LeftShoeOn)

Action(LeftSock, PRECOND:

 EFFECT: LeftSockOn)

Planner: combine two action sequences (1)leftsock, leftshoe
(2)rightsock, rightshoe

55

Partial-order planning(POP)

Any planning algorithm that can place
two actions into a plan without which
comes first is a PO plan.

56

Components of a Plan

1. A set of actions

2. A set of ordering constraints

– A p B reads “A before B” but not necessarily immediately before B

– Alert: caution to cycles A p B and B p A

3. A set of causal links (protection intervals) between actions

– A B reads “A achieves p for B” and p must remain true from

the time A is applied to the time B is applied

– Example “RightSock RightShoe

4. A set of open preconditions

– Planners work to reduce the set of open preconditions to the empty

set w/o introducing contradictions

57

p

RightSockOn

Consistent Plan (POP)

• Consistent plan is a plan that has

– No cycle in the ordering constraints

– No conflicts with the causal links

• Solution

– Is a consistent plan with no open preconditions

• To solve a conflict between a causal link A B and

an action C (that clobbers, threatens the causal link), we

force C to occur outside the “protection interval” by

adding

– the constraint C p A (demoting C) or

– the constraint B p C (promoting C)

58

p

Setting up the PoP

• Add dummy states

– Start

• Has no preconditions

• Its effects are the literals of the initial state

– Finish

• Its preconditions are the literals of the goal state

• Has no effects

• Initial Plan:

– Actions: {Start, Finish}

– Ordering constraints: {Start p Finish}

– Causal links: {}

– Open Preconditions: {LeftShoeOn,RightShoeOn}

59

Start

Finish

Start

Finish

LeftShoeOn, RightShoeOn

Literal1, Literal2, …

Literala, Literalb, …

POP as a Search Problem

• The successor function arbitrarily picks one open

precondition p on an action B

• For every possible consistent action A that achieves p
– It generates a successor plan adding the causal link A B

and the ordering constraint A p B

– If A was not in the plan, it adds Start p A and A p Finish

– It resolves all conflicts between

• the new causal link and all existing actions

• between A and all existing causal links

– Then it adds the successor states for combination of resolved

conflicts

• It repeats until no open precondition exists

 60

p

Process summary
• Operators on partial plans

– Add link from existing plan to open

precondition.

– Add a step to fulfill an open condition.

– Order one step w.r.t another to remove

possible conflicts

• Gradually move from incomplete/vague

plans to complete/correct plans

• Backtrack if an open condition is

unachievable or if a conflict is irresolvable.

61

Example: Flat tire problem

Init(At(Flat, Axle) ∧ At(Spare,trunk))

Goal(At(Spare,Axle))

Action(Remove(Spare,Trunk)

 PRECOND: At(Spare,Trunk)

 EFFECT: ¬At(Spare,Trunk) ∧ At(Spare,Ground))

Action(Remove(Flat,Axle)

 PRECOND: At(Flat,Axle)

 EFFECT: ¬At(Flat,Axle) ∧ At(Flat,Ground))

Action(PutOn(Spare,Axle)

 PRECOND: At(Spare,Groundp) ∧¬At(Flat,Axle)

 EFFECT: At(Spare,Axle) ∧ ¬Ar(Spare,Ground))

Action(LeaveOvernight

 PRECOND:

 EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬

At(Spare,trunk) ∧ ¬ At(Flat,Ground) ∧ ¬ At(Flat,Axle))

62

• See problem description in Fig 11.7 page 391

• Only one open precondition

• Only 1 applicable action

Example of POP: Flat tire problem

63

Start

Finish

At(Spare,Trunk), At(Flat,Axle)

At(Spare,Axle)

PutOn(Spare,Axle)

At(Spare,Ground), At(Flat,Axle)

• Pick up At(Spare,Ground)

• Choose only applicable action

Remove(Spare,Trunk)

64

• Pick up At(Flat,Axle)

• There are 2 applicable actions: LeaveOvernight and Remove(Flat,Axle)

• Choose LeaveOvernight

Add causal link between

Remove(Spare,Trunk) and

PutOn(Spare,Axle)

• LeaveOvernight has effect

At(Spare,Ground), which conflicts

with the causal link

• We remove the conflict by

forcing LeaveOvernight to occur

before Remove(Spare,Trunk)
• Conflicts with effects of Remove(Spare,Trunk)

• The only way to resolve the conflict is to undo LeaveOvernightuse the action

Remove(Flat,Axle)

Example of POP: Flat tire problem

65

• This time, we choose Remove(Flat,Axle)

• Pick up At(Spare,Trunk) and choose Start to achieve it

• Pick up At(Flat,Axle) and choose Start to achieve it.

• We now have a complete consistent partially ordered plan

Example of POP: Flat tire problem

POP Algorithm (1)

• Backtrack when fails to resolve a threat or find an

operator

• Causal links

– Recognize when to abandon a doomed plan without wasting

time expanding irrelevant part of the plan

– allow early pruning of inconsistent combination of actions

• When actions include variables, we need to find

appropriate substitutions

– Typically we try to delay commitments to instantiating a variable

until we have no other choice (least commitment)

• POP is sound, complete, and systematic (no repetition)

66

POP Algorithm (2)

• Decomposes the problem (advantage)

• But does not represent states explicitly: it is hard to

design heuristic to estimate distance from goal

– Example: Number of open preconditions – those that match the

effects of the start node. Not perfect (same problems as before)

• A heuristic can be used to choose which plan to refine

(which precondition to pick-up):

– Choose the most-constrained precondition, the one satisfied by

the least number of actions. Like in CSPs!

– When no action satisfies a precondition, backtrack!

– When only one action satisfies a precondition, pick up the

precondiction.

67

POP – Block Example

P:
-:
+: ON(A,TABLE)
 ON(B,TABLE)
 ON(C,A)
 CLEAR(B)
 CLEAR(C)

 HANDEMPTY

P: ON(B,A)
 ON(C,B)
-:
+:

P:
-:
+: ON(A,TABLE)
 ON(B,TABLE)
 ON(C,A)
 CLEAR(B)
 CLEAR(C)

 HANDEMPTY

P: ON(B,A)
 ON(C,B)
-:
+:

P: HOLDING(B)
 CLEAR(A)
-: CLEAR(A)
 HOLDING(B)
+: ON(B,A)
 CLEAR(B)
 HANDEMPTY

Stack(B,A)

The plan is incomplete

Open preconditions

P:
-:
+: ON(A,TABLE)
 ON(B,TABLE)
 ON(C,A)
 CLEAR(B)
 CLEAR(C)

 HANDEMPTY

P: ON(B,A)
 ON(C,B)
-:
+:

P: HOLDING(B)
 CLEAR(A)
-: CLEAR(A)
 HOLDING(B)
+: ON(B,A)
 CLEAR(B)
 HANDEMPTY

Stack(B,A)

P: HOLDING(C)
 CLEAR(B)
-: CLEAR(B)
 HOLDING(C)
+: ON(C,B)
 CLEAR(C)
 HANDEMPTY

Stack(C,B)

P:
-:
+: ON(A,TABLE)
 ON(B,TABLE)
 ON(C,A)
 CLEAR(B)
 CLEAR(C)

 HANDEMPTY

P: ON(B,A)
 ON(C,B)
-:
+:

Stack(B,A)

Stack(C,B)

Pickup(C)

Nonlinear planning
searches a plan space

P:
-:
+: ON(A,TABLE)
 ON(B,TABLE)
 ON(C,A)
 CLEAR(B)
 CLEAR(C)

 HANDEMPTY

P: ON(B,A)
 ON(C,B)
-:
+:

Stack(B,A)

Stack(C,B)

Pickup(C)

Pickup(B)

P: CLEAR(B)

Achievers

Threat

Other possible
achiever

P:
-:
+: ON(A,TABLE)
 ON(B,TABLE)
 ON(C,A)
 CLEAR(B)
 CLEAR(C)

 HANDEMPTY

P: ON(B,A)
 ON(C,B)
-:
+:

Stack(B,A)

Stack(C,B)

Pickup(C)

Pickup(B)

P: CLEAR(B)

P: CLEAR(B)

P:
-:
+: ON(A,TABLE)
 ON(B,TABLE)
 ON(C,A)
 CLEAR(B)
 CLEAR(C)

 HANDEMPTY

P: ON(B,A)
 ON(C,B)
-:
+:

Stack(B,A)

Stack(C,B)

Pickup(C)

Pickup(B)

Note the similarity with
constraint propagation

A consistent plan is one in which
there is no cycle and no conflict
between achievers and threats

A conflict can be eliminated
by constraining the ordering
among the actions or by
adding new actions

P:
-:
+: ON(A,TABLE)
 ON(B,TABLE)
 ON(C,A)
 CLEAR(B)
 CLEAR(C)

 HANDEMPTY

P: ON(B,A)
 ON(C,B)
-:
+:

Stack(B,A)

Stack(C,B)

Pickup(C)

Pickup(B)

P: HANDEMPTY

P:
-:
+: ON(A,TABLE)
 ON(B,TABLE)
 ON(C,A)
 CLEAR(B)
 CLEAR(C)

 HANDEMPTY

P: ON(B,A)
 ON(C,B)
-:
+:

Stack(B,A)

Stack(C,B)

Pickup(C)

Pickup(B)

P: HANDEMPTY

P: HANDEMPTY

P:
-:
+: ON(A,TABLE)
 ON(B,TABLE)
 ON(C,A)
 CLEAR(B)
 CLEAR(C)

 HANDEMPTY

P: ON(B,A)
 ON(C,B)
-:
+:

Stack(B,A)

Stack(C,B)

Pickup(C)

Pickup(B)

P: HANDEMPTY
 CLEAR(C)
 ON(C,TABLE)

P: HOLDING(C)
 CLEAR(B)

P: HOLDING(B)
 CLEAR(A)

P: HANDEMPTY
 CLEAR(B)
 ON(B,TABLE)

~ Most-constrained-variable
heuristic in CSP
 choose the unachieved

 precondition that can be
 satisfied in the fewest
 number of ways
 ON(C,TABLE)

P:
-:
+: ON(A,TABLE)
 ON(B,TABLE)
 ON(C,A)
 CLEAR(B)
 CLEAR(C)

 HANDEMPTY

P: ON(B,A)
 ON(C,B)
-:
+:

Stack(B,A)

Stack(C,B)

Pickup(C)

Pickup(B)

Putdown(C)

P:
-:
+: ON(A,TABLE)
 ON(B,TABLE)
 ON(C,A)
 CLEAR(B)
 CLEAR(C)

 HANDEMPTY

P: ON(B,A)
 ON(C,B)
-:
+:

Stack(B,A)

Stack(C,B)

Pickup(C)

Pickup(B)

Putdown(C)

Unstack(C,A)

P:
-:
+: ON(A,TABLE)
 ON(B,TABLE)
 ON(C,A)
 CLEAR(B)
 CLEAR(C)

 HANDEMPTY

P: ON(B,A)
 ON(C,B)
-:
+:

Stack(B,A)

Stack(C,B)

Pickup(C)

Pickup(B)

Putdown(C)

Unstack(C,A)

P: HANDEMPTY

P:
-:
+: ON(A,TABLE)
 ON(B,TABLE)
 ON(C,A)
 CLEAR(B)
 CLEAR(C)

 HANDEMPTY

P: ON(B,A)
 ON(C,B)
-:
+:

Stack(B,A)

Stack(C,B)

Pickup(C)

Pickup(B)

Putdown(C)

Unstack(C,A)

P:
-:
+: ON(A,TABLE)
 ON(B,TABLE)
 ON(C,A)
 CLEAR(B)
 CLEAR(C)

 HANDEMPTY

P: ON(B,A)
 ON(C,B)
-:
+:

Stack(B,A)

Stack(C,B)

Pickup(C)

Pickup(B)

Putdown(C)

Unstack(C,A)

P: HANDEMPTY
 CLEAR(C)
 ON(C,TABLE)

P: HOLDING(C)
 CLEAR(B)

P: HOLDING(B)
 CLEAR(A)

P: HANDEMPTY
 CLEAR(B)
 ON(B,TABLE)

P: HOLDING(C)

P: HANDEMPTY
 CLEAR(C)
 ON(C,A)

The plan is complete because every
precondition of every step is added
by some previous step, and no
intermediate step deletes it

Planning Graph

• Is special data structure used for

1. Deriving better heuristic estimates

2. Extract a solution to the planning problem: GRAPHPLAN algorithm

• Is a sequence S0,A0,S1,A1,…,Si of levels

– Alternating state levels & action levels

– Levels correspond to time stamps

– Starting at initial state

– State level is a set of (propositional) literals
• All those literals that could be true at that level

– Action level is a set of (propositionalized) actions
• All those actions whose preconditions appear in the state level (ignoring all negative

interactions, etc.)

• Propositionalization may yield combinatorial explosition in the

presence of a large number of objects

83

Example of a Planning Graph (1)

Init(Have(Cake))

Goal(Have(Cake)Eaten(Cake))

84

Action(Eat(Cake)

Precond: Have(Cake)

Effect: Have(Cake)Eaten(Cake))

Action(Bake(Cake)

Precond: Have(Cake)

Effect: Have(Cake))

Propositions true

at the initial state

Action is connected to its

preconds & effects

Persistence Actions (noop)

Example of a Planning Graph (2)
• At each state level, list all literals that may hold at that level

• At each action level, list all noops & all actions whose preconditions may

hold at previous levels

• If some goal literal does not appear in the final level of the graph, the goal is

not achievable
– Repeat until plan ‘levels contains all the literal of the goal

– Terminate if Si = Si+1

• Building the Planning Graph is a polynomial process

• Add (binary) mutual exclusion (mutex) links between conflicting actions and

between conflicting literals

85 Mutual exclusion links S1 represents multiple states

Mutex Links between Actions

1. Inconsistent effects: one action negates an effect of another

– Eat(Cake) & noop of Have(Cake) disagree on effect Have(Cake)

2. Interference: An action effect negates the precondition of another

– Eat(Cake) negates precondition of the noop of Have(Cake):

3. Competing needs: A precondition on an action is mutex with the

precondition of another

– Bake(Cake) & Eat(Cake): compete on Have(Cake) precondition

86

Mutex Links between Literals

1. Two literals are negation of each other

2. Inconsistent support: Each pair of actions that can

achieve the two literals is mutex. Examples:

– In S1, Have(Cake) & Eaten(Cake) are mutex

– In S2, they are not because Bake(Cake) & the noop of

Eaten(Cake) are not mutex

87

Birthday Dinner Example

88

Planning Graph

89

Mutex between Actions

• The first reason that

actions can be mutex is

due to inconsistent effects.

– Carry and maintaining clean

have inconsistent effects

(because carry makes clean

false).

– Maintaining garb has

inconsistent effects with both

carry and dolly (which make

garb false).

– Maintaining quiet has

inconsistent effects with dolly

(which makes quiet false).

90

Mutex between Actions

• Another kind of mutex is due

to interference: one action

negates the precondition of

another.

– We have interference between

cook and carry (carry makes

clean false, which is required

for cook)

– also have interference between

wrap and dolly (dolly makes

quiet false, which is required

for wrap.).

– we have interference between

carry and dolly, because they

each require that garbage be

present, and they each remove

it.

91

Mutex Links between Literals

• First of all,

every

proposition is

mutex with its

negation.

92

Mutex Links between Literals

• The other reason we might have

mutexes is because of inconsistent

support (all ways of achieving the

propositions are pairwise mutex).

• Here we have that garbage is mutex

with not clean and with not quiet (the

only way to make garbage true is to

maintain it, which is mutex with carry

and with dolly).

• Dinner is mutex with not clean

because cook and carry, the only

way of achieving these propositions,

are mutex at the previous level.

• And present is mutex with not quiet

because wrap and dolly are mutex at

the previous level

• Finally not clean is mutex with not

quiet because carry and dolly are

mutex at the previous level.

93

94

Planning Graph Propery 1

Propositions monotonically increase
(always carried forward by no-ops)

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B

95

Planning Graph Propery 2

Actions monotonically increase

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B

96

Planning Graph Properties 3

• Proposition mutex relationships monotonically decrease

• Specifically, if p and q are in layer n and are not mutex then

 they will not be mutex in future layers.

p

q

r

…

A

p

q

r

…

p

q

r

…

97

Planning Graph Propery 4

Action mutex relationships monotonically decrease

p

q

…
B

p

q

r

s

…

p

q

r

s

…

A

C

B

C

A

p

q

r

s

…

B

C

A

98

Properties 5

Planning Graph ‘levels off’.

• After some time k all levels are identical

– In terms of propositions, actions, mutexes

• This is because there are a finite number

of propositions and actions, the set of

literals never decreases and mutexes

don’t reappear.

99

Planning Graph Important Ideas

• Plan graph construction is polynomial time

– Though construction can be expensive when there are many
“objects” and hence many propositions

• The plan graph captures important properties of the planning
problem

– Necessarily unreachable literals and actions

– Possibly reachable literals and actions

– Mutually exclusive literals and actions

• Significantly prunes search space compared to previously
considered planners

• Plan graphs can also be used for deriving admissible (and good
non-admissible) heuristics

Planning Graph for Heuristic Estimation

• A literal that does not appear in the final level cannot be

achieved by any plan

– State-space search: Any state containing an unachievable literal

has cost h(n)=

– POP: Any plan with an unachievable open condition has cost

h(n)=

• The cost of achieving any goal literal can be estimated

by counting the number of levels before it appears

– This heuristic never overestimates

– Estimate can be improved by serializing the graph (serial

planning graph: one action per level) by adding mutex between

all actions in a given level

• The estimate of a conjunction of goal literals

– Three heuristics: max level, level sum, set level

100

Estimate of Conjunction of Goal Literals

• Max-level

– The largest level of a literal in the conjunction

– Admissible, not very accurate

• Level sum heuristic,

– following the subgoal independence assumption, returns the

sum of the level costs of the goals; this is inadmissible but works

very well in practice for problems that are largely decomposable

• Set level

– Finds the level at which all literals appear without any pair of

them being mutex

– Dominates max-level, works extremely well on problems where

there is a great deal of interaction among subplans

101

GRAPHPLAN algorithm

GRAPHPLAN(problem) returns solution or failure

graph  INITIALPLANNINGGRAPH(problem)

goals  GOALS[problem]

loop do

 if goals all non-mutex in last level of graph then do

 solution  EXTRACTSOLUTION(graph,goals,LENGTH(graph))

 if solution  failure then return solution

 else if NOSOLUTIONPOSSIBLE(graph) then return failure

 graph  EXPANDGRAPH (graph,problem)

• Two main stages
1. Extract solution

2. Expand the graph

102

Example of GRAPHPLAN Execution (1)

103

• At(Spare,Axle) is not in S0

• No need to extract solution

• Expand the plan

Example of GRAPHPLAN Execution (2)

104

• Three actions

are applicable

• 3 actions and 5

noops are added

• Mutex links are

added

• At(Spare,Axle)

still not in S1

• Plan is expanded

Example of GRAPHPLAN Execution (3)

105

• Illustrates well mutex links: inconsistent effects,

interference, competing needs, inconsistent support

Solution Extraction (Backward)

106

1. Solve a Boolean CSP: Variables are actions, domains

are {0=out of plan, 1=in plan), constraints are mutex

2. Search problem from last level backward

Backtrack Search for Solution Extraction

• Starting at the highest fact level

– Each goal is put in a goal list for the current fact layer

– Search iterates thru each fact in the goal list trying to find an action to

support it which is not mutex with any other chosen action

– When an action is chosen, its preconditions are added to the goal list of

the lower level

– When all facts in the goal list of the current level have a consistent

assignment of actions, the search moves to the next level

• Search backtracks to the previous level when it fails to assign an

action to each fact in the goal list at a given level

• Search succeeds when the first level is reached.

107

Example of GRAPHPLAN Execution
• For this particular problem, we start at S2 with the goal At(Spare,

Axle).

• The only choice we have for achieving the goal set is PutOn(Spare,

Axle).

• That brings us to a search state at S1 with goals At(Spare, Ground)

and ¬At(Flat, Axle).

• The former can be achieved only by Remove(Spare, Trunk), and the

latter by either Remove(Flat, Axle) or LeaveOvernight.

• But LeaveOvernight is mutex with Remove(Spare, Trunk), so the

only solution is to choose Remove(Spare, Trunk) and Remove(Flat,

Axle).

• That brings us to a search state at S0 with the goals At(Spare,

Trunk) and At(Flat, Axle).

• Both of these are present in the state, so we have a solution: the

actions Remove(Spare, Trunk) and Remove(Flat, Axle) in level A0,

followed by PutOn(Spare, Axle) in A1.

108

Birthday Dinner Example

• Our goal is !garbage

and dinner and

present.

• Layer 2 contains

!garbage and dinner

and present.

• So it looks like these

could possibly be

true. They're not

obviously

inconsistent.
109

Birthday Dinner Example

• So, we’ll start looking for

a plan by finding a way to

make not garbage true.

• We’ll try using the carry

action.

• Now, we’ll try to make

dinner true the only way

we can, with the cook

action.

• But cook and carry are

mutex, so this won’t work.

110

Birthday Dinner Example

• Because there aren’t any

other ways to make dinner,

we fail, and have to try a

different way of making not

garbage true. This time, we’ll

try dolly.

• Now, we can cook dinner,

and we don’t have any mutex

problems with dolly.

• We have to make present

true as well. The only way of

doing that is with wrap, but

wrap is mutex with dolly. So,

we fail completely.

111

Birthday Dinner Example
• There’s no way to achieve all of these goals in parallel. So we

have to consider a depth two plan.

• We start by adding another layer to the plan graph

• Then find and show the Mutexs on the next level

112

Birthday Dinner Example

• Final Solution

113

Improving search using Heuristic

• The search may still degenerate to an

exponential exploration

• Heuristic:

1. Pick the literal with a highest level cost

2. To achieve this literal, pick actions with

easiest preconditions (the set of

preconditions which has the smallest

max level cost)

114

Termination of GRAPHPLAN

• GRAPHPLAN is guaranteed to terminate

– Literal increase monotonically

– Actions increase monotonically

– Mutexes decrease monotinically

• A solution is guaranteed not to exist when

– The graph levels off with all goals present &

non-mutex, and

– EXTRACTSOLUTION fails to find solution

115

Optimality of GRAPHPLAN

• The plans generated by GRAPHPLAN

– Are optimal in the number of steps needed to

execute the plan

– Not necessarily optimal in the number of

actions in the plan (GRAPHPLAN produces

partially ordered plans)

116

