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Planning problem 
Classical planning environment: fully observable, 
deterministic, finite, static and discrete. 

Find a sequence of actions that achieves a given goal when 
executed from a given initial world state.  That is, given  

 a set of action descriptions (defining the possible primitive 
actions by the agent),  

 an initial state description, and  

 a goal state description or predicate,  

 compute a plan, which is  

 a sequence of action instances, such that executing them in 
the initial state will change the world to a state satisfying the 
goal-state description.  

Goals are usually specified as a conjunction of subgoals to 
be achieved 
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Planning vs. problem solving 

Planning and problem solving methods can 
often solve the same sorts of problems 

Planning is more powerful because of the 
representations and methods used 

States, goals, and actions are decomposed into 
sets of sentences (usually in first-order logic) 

Search often proceeds through plan space 
rather than state space (though first we will 
talk about state-space planners) 

Subgoals can be planned independently, 
reducing the complexity of the planning 
problem 
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Planning vs. problem solving 
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Goal of Planning 

Choose actions to achieve a certain 
goal 

But isn’t it exactly the same goal as for 
problem solving? 

Some difficulties with problem solving: 

 The successor function is a black box: it 
must be “applied” to a state to know 
which actions are possible in that state 
and what are the effects of each one 
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Have(Milk) 

Suppose that the goal is HAVE(MILK).  

  From some initial state where 
HAVE(MILK) is not satisfied, the successor 
function must be repeatedly applied to 
eventually generate a state where 
HAVE(MILK) is satisfied.  

  An explicit representation of the possible 
actions and their effects would help the 
problem solver select the relevant actions   

 Otherwise, in the real world an agent 
would be overwhelmed by irrelevant 
actions 
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Have(Milk) 
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Planning vs Problem Solving 

Another difficulty with problem solving: 

 The goal test is another black-box function, 
states are domain-specific data structures, 
and heuristics must be supplied for each new 
problem 

 Suppose that the goal is 
HAVE(MILK)∧HAVE(BOOK) 

 Without an explicit representation of the goal, 
the problem solver cannot know that a state 
where HAVE(MILK) is already achieved is 
more promising than a state where neither 
HAVE(MILK) nor HAVE(BOOK) is achieved  
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Planning vs Problem Solving 

A third difficulty with problem solving: 

 The goal may consist of several nearly 
independent subgoals, but there is no way 
for the problem solver to know it 

 HAVE(MILK) and HAVE(BOOK) may be achieved 
by 
two nearly independent sequences of actions 
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Applications of Planning 

Military operations 

Construction tasks 

Machining tasks 

Mechanical assembly 

Design of experiments in genetics 

Command sequences for satellite 

Most applied systems use extended  
representation languages, nonlinear 

planning techniques, and domain-specific 
heuristics 



Representations in Planning 

   Planning opens up the black-boxes by 
using logic to represent: 

 Actions 

 States 

 Goals 
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Problem solving Logic representation 

Planning 



Planning language 

What is a good language? 

Must represent 

 States 

 Goals 

 Action. 

Must be  

 Expressive enough to describe a wide variety of 
problems. 

 Restrictive enough to allow efficient algorithms to 
operate. 
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Languages for Planning Problems 

STRIPS  

 Stanford Research Institute Problem Solver 

 Historically important 

ADL 

 Action Description Languages 

 Relaxed some of the restrictions that made STRIPS 
inadequate for real-world problems 

PDDL 

 Planning Domain Definition Language 

 Revised & enhanced for the needs of the International 
Planning Competition 

 Currently version 3.1  

 Includes STRIPS and ADL  
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STRIPS General language features 
Representation of states 

 Decompose world in logical conditions and 
represent state as conjunction of positive 
literals.  

Propositional literals: Poor ∧ Unknown 

FO-literals (grounded and function-
free):  

 at(plane1, phl) ∧ at(plane2, bwi) 

 does not allow  

 at(X,Y),  (not grounded) 

 at(father(fred),bwi),  (function) 

 ¬at(plane1, phl. (negative literal) 16 



STRIPS Cont 

Closed world assumption  

Representation of goals 

 Partially specified state and represented as 
a conjunction of positive ground literals 

 A goal is satisfied if the state contains all 
literals in goal. 

 e.g.:  at(paula, phl) ∧ at(john,bwi) 

satisfies the goal at(paula, phl) 
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General language features 
Representations of actions 

 Action = PRECOND + EFFECT 
 Action(Fly(p,from, to), 

 PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧ 

Airport(to) 

 EFFECT: ¬AT(p,from) ∧ At(p,to)) 

 = action schema (p, from, to need to be 
instantiated) 

 Action name and parameter list 

 Precondition (conj. of function-free literals) 

 Effect (conj of function-free literals and P is True 
and not P is false) 

 May split Add-list and delete-list in Effect 
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Example 
Paula flies from Philadelphia to Baltimore 

 Action(Fly(p,from,to) 

 PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧ 

Airport(to) 

 EFFECT: ¬At(p,from) ∧ At(p,to)) 

We begin with 

 At(paula,phl) ∧ Plane(phl)  ∧ Airport(phl)  ∧ Airport(bwi) 

We take the action 

 Fly(paula, phl, bwi) 

We end with 

 At(paula,phl) ∧ At(paula, bwi) 

Note that we haven’t said anything in the effect about 
what happened to the plane.  Do we care? 
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Language semantics? 

How do actions affect states? 

 An action is applicable in any state that 
satisfies the precondition. 

 For FO action schema applicability involves a 
substitution θ for the variables in the 
PRECOND. 

 At(P1,JFK) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2) 
∧ Airport(JFK) ∧ Airport(SFO) 

 Satisfies : At(p,from) ∧ Plane(p) ∧ Airport(from) 
∧ Airport(to) 

With θ ={p/P1,from/JFK,to/SFO} 

 Thus the action is applicable. 
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Language semantics? 

The result of executing action a in state 
s is the state s’  

 s’ is same as s except 

 Any positive literal P in the effect of a is added 
to s’ 

 Any negative literal ¬P is removed from s’ 

 EFFECT: ¬AT(p,from) ∧ At(p,to): 

 At(P1,SFO) ∧ At(P2,SFO) ∧ Plane(P1) ∧ 
Plane(P2) ∧ Airport(JFK) ∧ Airport(SFO) 

 STRIPS assumption: (avoids 
representational frame problem) 

 every literal NOT in the effect remains 
unchanged 21 



Planning Languages 
STRIPS is simplest   

 Important limit: function-free literals 

 Allows for propositional representation 

 Function symbols lead to infinitely many states and actions 

 But poor expressivity 

Extension:Action Description language (ADL) 

 Allows negative literals 

 Allows quantified variables, conjunctions, disjunctions in 
goals 

 Open World assumption 

 Action(Fly(p:Plane, from: Airport, to: Airport), 

  PRECOND: At(p,from) ∧ (from ≠ to) 

  EFFECT: ¬At(p,from) ∧ At(p,to)) 

22 



Planning Domain Definition Language 

Components: 

 Objects:  things we are interested in 

 Predicates:  properties of objects, true or 
false 

 Initial state:  state of the world we start in 

 Goal specification:  state we want to end 
up in 

 Actions:  ways we can change state 

Format 

 domain file:  predicates and actions 

 problem file:  objects, initial state, goal 
23 



Blocks world 
The blocks world is a micro-world that consists of a 
table, a set of blocks and a robot hand. 

Some domain constraints: 

 Only one block can be on another block 

 Any number of blocks can be on the table 

 The hand can only hold one block 

Typical representation: 

 ontable(a) 

 ontable(c) 

 on(b,a) 

 handempty 

 clear(b) 

 clear(c) 
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State Representation 

25 

Conjunction of propositions: 

BLOCK(A), BLOCK(B), BLOCK(C), 

ON(A,TABLE), ON(B,TABLE), ON(C,A),  

CLEAR(B), CLEAR(C), HANDEMPTY 

A B 

C 

TABLE 



Goal Representation 
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A 

B 

C 

Conjunction of propositions: 

ON(A,TABLE), ON(B,A), ON(C,B) 

The goal G is achieved in a state S if all  

the propositions in G are also in S  



Action Representation 
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Unstack(x,y) 

 P = HANDEMPTY, BLOCK(x), BLOCK(y),  

         CLEAR(x), ON(x,y) 

 E = ¬HANDEMPTY, ¬CLEAR(x), HOLDING(x), 

        ¬ ON(x,y), CLEAR(y) 

Effect: list of literals 

Precondition: conjunction of propositions 



Example 
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A B 

C 

Unstack(C,A) 

 P = HANDEMPTY, BLOCK(C), BLOCK(A),  

         CLEAR(C), ON(C,A) 

 E = ¬HANDEMPTY, ¬CLEAR(C), HOLDING(C), 

        ¬ ON(C,A), CLEAR(A) 

BLOCK(A), BLOCK(B), BLOCK(C), 

ON(A,TABLE), ON(B,TABLE), ON(C,A),  

CLEAR(B), CLEAR(C), HANDEMPTY 



Example 
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A B 

C 

BLOCK(A), BLOCK(B), BLOCK(C), 

ON(A,TABLE), ON(B,TABLE), ON(C,A),  

CLEAR(B), CLEAR(C), HANDEMPTY,  

HOLDING(C), CLEAR(A) 

Unstack(C,A) 

 P = HANDEMPTY, BLOCK(C), BLOCK(A),  

         CLEAR(C), ON(C,A) 

 E = ¬HANDEMPTY, ¬CLEAR(C), HOLDING(C), 

        ¬ ON(C,A), CLEAR(A) 



Action Representation 
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Action(Unstack(x,y) 

 P: HANDEMPTY, BLOCK(x), BLOCK(y), CLEAR(x), ON(x,y) 

 E: ¬HANDEMPTY, ¬CLEAR(x), HOLDING(x), ¬ ON(x,y), 

CLEAR(y) 

Action(Stack(x,y) 

 P: HOLDING(x), BLOCK(x), BLOCK(y), CLEAR(y) 

 E: ON(x,y), ¬CLEAR(y), ¬HOLDING(x), CLEAR(x), 

HANDEMPTY 



Actions 
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Action(Pickup(x) 

 P: HANDEMPTY, BLOCK(x), CLEAR(x), ON(x,TABLE) 

 E: ¬HANDEMPTY, ¬CLEAR(x), HOLDING(x), ¬ON(x,TABLE) 

Action(PutDown(x) 

 P: HOLDING(x) 

 E: ON(x,TABLE), ¬HOLDING(x), CLEAR(x), HANDEMPTY 



Example: Spare tire problem 
Init(At(Flat, Axle) ∧ At(Spare,trunk)) 

Goal(At(Spare,Axle)) 

Action(Remove(Spare,Trunk) 

 PRECOND: At(Spare,Trunk)  

 EFFECT: ¬At(Spare,Trunk) ∧ At(Spare,Ground))  

Action(Remove(Flat,Axle) 

 PRECOND: At(Flat,Axle)  

 EFFECT: ¬At(Flat,Axle) ∧ At(Flat,Ground))  

Action(PutOn(Spare,Axle) 

 PRECOND: At(Spare,Groundp) ∧¬At(Flat,Axle) 

 EFFECT: At(Spare,Axle) ∧ ¬At(Spare,Ground)) 

Action(LeaveOvernight 

 PRECOND: 

 EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,trunk) 
∧ ¬ At(Flat,Ground) ∧ ¬ At(Flat,Axle) ) 

This example is ADL: negative literal in pre-condition  
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State-Space Search 

Search the space of states (first 
chapters)  

 Initial state, goal test, step cost, etc. 

 Actions are the transitions between state 

Actions are invertible (why?) 

 Move forward from the initial state: 
Forward State-Space Search or Progression 
Planning 

 Move backward from goal state: Backward 
State-Space Search or Regression Planning 
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State-Space Formulation 
Formulation as state-space search 
problem: 

 Initial state = initial state of the planning 
problem 

 Literals not appearing are false 

 Actions = those whose preconditions are 
satisfied 

 Add positive effects, delete negative 

 Goal test = does the state satisfy the 
goal? 

 Step cost = each action costs 1 

 Solution is a sequence of actions. 34 



SRIPS in State-Space Search 
STRIPS representation makes it easy to focus on 
‘relevant’ propositions and  

 Work backward from goal (using EFFECTS) 

 Work forward from initial state (using PRECONDITIONS) 

 Facilitating bidirectional search 
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Relevant Action 

An action is relevant 

 In Progression planning when its preconditions 
match a subset of the current state 

 In Regression planning, when its effects match a 
subset of the current goal state 
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Consistent Action 

The purpose of applying an action is to 
‘achieves a desired literal’ 

We should be careful that the action does not 
undo a desired literal (as a side effect) 

A consistent action is an action that does not 
undo a desired literal 
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Progression Algorithm 

No functions, so the number of states is 
finite … any graph search that is 
complete is a complete planning 
algorithm. 

 E.g. A* 

Inefficient:  

 (1) irrelevant action problem  

 (2) good heuristic required for efficient 
search 
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Forward Planning 

A B 
C 

A B 
C 

A B C A C 

B 

A C 
B 

A 

C 

B 

A 

C 
B 

A 

B 

C 

A B 

C 

Unstack(C,A)) 

Pickup(B) 

Forward planning searches a state space 

In general, many actions are applicable 
to a state  huge branching factor 



Regression algorithm 

How to determine predecessors? 

 What  are the states from which applying 
a given action leads to the goal? 

Actions must not undo desired literals 
(consistent) 

Main advantage: only relevant actions 
are considered. 

 Often much lower branching factor than 
forward search. 
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Regression algorithm  
General process for predecessor construction 

 Give a goal description G 

 Let A be an action that is relevant and consistent 

 The predecessors is as follows: 

 Any positive effects of A that appear in G are deleted. 

 Each precondition literal of A is added , unless it already 
appears. 

Any standard search algorithm can be added to 
perform the search. 

Termination when predecessor satisfied by initial 
state. 

 In FO case, satisfaction might require a substitution. 



Computation of R[G,A] 

1. If any element of G is deleted by A 
then return False 

2. G’  Precondition of A 

3. For every element SG of G do 

 If SG is not added by A then add SG to G’ 

4. Return G’ 



Example 

G = CLEAR(B), ON(C,B) 

Stack(C,B) 

 P = HOLDING(C), BLOCK(C), BLOCK(B), CLEAR(B) 

 E = ON(C,B), CLEAR(B), HOLDING(C),  
      CLEAR(C), HANDEMPTY  

R[G,Stack(C,B)] = False 



Example 

G = ON(B,A), ON(C,B) 

Stack(C,B) 

 P = HOLDING(C), BLOCK(C), BLOCK(B), CLEAR(B) 

 E = ON(C,B), CLEAR(B), HOLDING(C),  
      CLEAR(C), HANDEMPTY  

R[G,Stack(C,B)] = 
ON(B,A), HOLDING(C), BLOCK(C), BLOCK(B),    

              CLEAR(B) 



Inconsistent Regression 

G = ON(B,A), ON(C,B) 

Stack(B,A) 
 P = HOLDING(B), BLOCK(A), CLEAR(A) 

 E = ON(B,A), CLEAR(A), HOLDING(B),  
      CLEAR(B), HANDEMPTY  

R[G,Stack(B,A)] = 
HOLDING(B), BLOCK(A), CLEAR(A), ON(C,B) 

impossible 

Inconsistency rules: 
HOLDING(x)  ON(y,x)  False 
HOLDING(x)  ON(x,y)  False 
HOLDING(x)  HOLDING(y)  False 
Etc… 

also called state constraints 



Computation of R[G,A] 

1. If any element of G is deleted by A 
then return False 

2. G’  Precondition of A 

3. For every element SG of G do 
 If SG is not added by A then add SG to G’ 

4. If an inconsistency rule applies to G’ 
then return False 

5. Return G’ 



Backward Chaining 

ON(B,A), ON(C,B) 

Stack(C,B) 

ON(B,A), HOLDING(C), CLEAR(B) 

A B 
C 

In general, there are much fewer actions  
relevant to a goal than there are actions  
applicable  smaller branching factor  

than with forward planning 



Backward Chaining 

ON(B,A), ON(C,B) 

Stack(C,B) 

ON(B,A), HOLDING(C), CLEAR(B) 
A B 
C 

CLEAR(C), ON(C,TABLE), CLEAR(A), HANDEMPTY, CLEAR(B), ON(B,TABLE) 

CLEAR(C), ON(C,TABLE), HOLDING(B), CLEAR(A) 

Stack(B,A) 

Pickup(B) 

Putdown(C) 

CLEAR(A), CLEAR(B), ON(B,TABLE), HOLDING(C) 

Unstack(C,A) 

CLEAR(B), ON(B,TABLE), CLEAR(C), HANDEMPTY, ON(C,A) 

Pickup(C) 

ON(B,A), CLEAR(B), HANDEMPTY, CLEAR(C), ON(C,TABLE) 

Backward planning searches a goal space 



Heuristic to Speed up Search 
Neither progression or regression are very 
efficient without a good heuristic. 

 How many actions are needed to achieve the 
goal? 

 Exact solution is NP hard, find a good estimate 

We can use A*, but we need an admissible 
heuristic 

1. Divide-and-conquer: sub-goal independence 
assumption 

 Problem relaxation by removing 

2. … all preconditions 

3. … all preconditions and negative effects 

4. … negative effects only: Empty-Delete-List  49 



1. Subgoal Independence Assumption 

The cost of solving a conjunction of subgoals is the 
sum of the costs of solving each subgoal 
independently 

Optimistic 

 Where subplans interact negatively 

 Example: one action in a subplan delete goal achieved by an 
action in another subplan  

Pessimistic (not admissible) 

 Redundant actions in subplans can be replaced by a single 
action in  merged plan 

50 



2. Problem Relaxation: Removing Preconditions 

Remove preconditions from action 
descriptions 

 All actions are applicable 

 Every literal in the goal is achievable in one step  

Number of steps to achieve the conjunction 
of literals in the goal is equal to the number 
of unsatisfied literals 

Alert 

 Some actions may achieve several literals 

 Some action may remove the effect of another 
action 
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3. Remove Preconditions & Negative Effects 

Considers only positive interactions among 
actions to achieve multiple subgoals 

The minimum number of actions required is 
the sum of the union of the actions’ positive 
effects that satisfy the goal 

The problem is reduced to a set cover 
problem, which is NP-hard 

 Approximation by a greedy algorithm cannot 
guarantee an admissible heuristic 
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4. Removing Negative Effects (Only) 

Remove all negative effects of actions (no 
action may destroy the effects of another) 

Known as the Empty-Delete-List heuristic 

Requires running a simple planning algorithm 

Quick & effective 

Usable in progression or regression planning 
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Partial-order planning 

Progression and regression planning 
are totally ordered plan search forms. 

 They cannot take advantage of problem 
decomposition. 

Decisions must be made on how to sequence 
actions on all the subproblems 

Least commitment strategy: 

 Delay choice during search 
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Shoe example 
Goal(RightShoeOn ∧ LeftShoeOn) 

Init() 

Action(RightShoe, PRECOND: RightSockOn 

 EFFECT: RightShoeOn) 

Action(RightSock, PRECOND:  

 EFFECT: RightSockOn) 

Action(LeftShoe, PRECOND: LeftSockOn 

 EFFECT: LeftShoeOn) 

Action(LeftSock, PRECOND:  

 EFFECT: LeftSockOn) 

Planner: combine two action sequences (1)leftsock, leftshoe 
(2)rightsock, rightshoe 
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Partial-order planning(POP) 

Any planning algorithm that can place 
two actions into a plan without which 
comes first is a PO plan. 
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Components of a Plan 

1. A set of actions 

2. A set of ordering constraints  

– A p B reads “A before B” but not necessarily immediately before B 

– Alert: caution to cycles A p B and B p A 

3. A set of causal links (protection intervals) between actions 

– A           B reads “A achieves p for B” and p must  remain true from 

the time A is applied to the time B is applied 

– Example “RightSock                      RightShoe 

4. A set of open preconditions 

– Planners work to reduce the set of open preconditions to the empty 

set w/o introducing contradictions 
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Consistent Plan (POP) 

• Consistent plan is a plan that has 

– No cycle in the ordering constraints 

– No conflicts with the causal links 

• Solution 

– Is a consistent plan with no open preconditions 

• To solve a conflict between a causal link A         B and 

an action C (that clobbers, threatens the causal link), we 

force C to occur outside the “protection interval”  by 

adding 

–  the constraint  C p A  (demoting C) or  

–  the constraint  B p C (promoting C) 
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Setting up the PoP 

• Add dummy states  

– Start 

• Has no preconditions 

• Its effects are the literals of the initial state 

– Finish 

• Its preconditions are the literals of the goal state 

• Has no effects 

• Initial Plan: 

– Actions: {Start, Finish} 

– Ordering constraints: {Start p Finish} 

– Causal links: {} 

– Open Preconditions: {LeftShoeOn,RightShoeOn} 
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Start 

Finish 

Start 

Finish 

LeftShoeOn, RightShoeOn 

Literal1, Literal2, … 

Literala, Literalb, … 



POP as a Search Problem 

• The successor function arbitrarily picks one open 

precondition p on an action B 

• For every possible consistent action A that achieves p 
– It generates a successor plan adding the causal link  A          B 

and the ordering constraint  A p B 

– If A was not in the plan, it adds  Start p A and  A p Finish 

– It resolves all conflicts between  

• the new causal link and all existing actions  

• between A and all existing causal links 

– Then it adds the successor states for  combination of resolved 

conflicts 

• It repeats until no open precondition exists 
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Process summary 
• Operators on partial plans 

– Add link from existing plan to open 

precondition. 

– Add a step to fulfill an open condition. 

– Order one step w.r.t another to remove 

possible conflicts 

• Gradually move from incomplete/vague 

plans to complete/correct plans 

• Backtrack if an open condition is 

unachievable or if a conflict is irresolvable. 
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Example: Flat tire problem 

Init(At(Flat, Axle) ∧ At(Spare,trunk)) 

Goal(At(Spare,Axle)) 

Action(Remove(Spare,Trunk) 

 PRECOND: At(Spare,Trunk)  

 EFFECT: ¬At(Spare,Trunk) ∧ At(Spare,Ground))  

Action(Remove(Flat,Axle) 

 PRECOND: At(Flat,Axle)  

 EFFECT: ¬At(Flat,Axle) ∧ At(Flat,Ground))  

Action(PutOn(Spare,Axle) 

 PRECOND: At(Spare,Groundp) ∧¬At(Flat,Axle) 

 EFFECT: At(Spare,Axle) ∧ ¬Ar(Spare,Ground)) 

Action(LeaveOvernight 

 PRECOND: 

 EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ 

At(Spare,trunk) ∧ ¬ At(Flat,Ground) ∧ ¬ At(Flat,Axle) ) 
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• See problem description in Fig 11.7 page 391 

 
 

 

• Only one open precondition 

• Only 1 applicable action 

 

 

 

 

 

Example of POP: Flat tire problem 
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Start 

Finish 

At(Spare,Trunk), At(Flat,Axle) 

At(Spare,Axle) 

PutOn(Spare,Axle) 

At(Spare,Ground), At(Flat,Axle) 

• Pick up At(Spare,Ground) 

• Choose only applicable action 

Remove(Spare,Trunk) 
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• Pick up At(Flat,Axle) 

• There are 2 applicable actions: LeaveOvernight and Remove(Flat,Axle) 

• Choose LeaveOvernight 

Add causal link between 

Remove(Spare,Trunk) and 

PutOn(Spare,Axle) 

• LeaveOvernight has effect 

At(Spare,Ground), which conflicts 

with the causal link 

• We remove the conflict by 

forcing LeaveOvernight to occur 

before Remove(Spare,Trunk) 
• Conflicts with effects of Remove(Spare,Trunk) 

• The only way to resolve the conflict is to undo LeaveOvernightuse the action 

Remove(Flat,Axle) 

Example of POP: Flat tire problem 
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• This time, we choose Remove(Flat,Axle) 

• Pick up At(Spare,Trunk) and choose Start to achieve it 

• Pick up At(Flat,Axle) and choose Start to achieve it. 

• We now have a complete consistent partially ordered plan 

Example of POP: Flat tire problem 



POP Algorithm (1) 

• Backtrack when fails to resolve a threat or find an 

operator 

• Causal links  

– Recognize when to abandon a doomed plan without wasting 

time expanding irrelevant part of the plan 

– allow early pruning of inconsistent combination of actions 

• When actions include variables, we need to find 

appropriate substitutions 

– Typically we try to delay commitments to instantiating a variable 

until we have no other choice (least commitment)  

• POP is sound, complete, and systematic (no repetition) 
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POP Algorithm (2) 

• Decomposes the problem (advantage)  

• But does not represent states explicitly: it is hard to 

design heuristic to estimate distance from goal 

– Example: Number of open preconditions – those that match the 

effects of the start node.  Not perfect (same problems as before) 

• A heuristic can be used to choose which plan to refine 

(which precondition to pick-up):  

– Choose the most-constrained precondition, the one satisfied by 

the least number of actions.  Like in CSPs!  

– When no action satisfies a precondition, backtrack! 

– When only one action satisfies a precondition, pick up the 

precondiction.  

 

 
67 



POP – Block Example 

P: 
-: 
+: ON(A,TABLE) 
     ON(B,TABLE) 
     ON(C,A) 
     CLEAR(B) 
     CLEAR(C) 

     HANDEMPTY  

P: ON(B,A) 
     ON(C,B) 
-: 
+: 



P: 
-: 
+: ON(A,TABLE) 
     ON(B,TABLE) 
     ON(C,A) 
     CLEAR(B) 
     CLEAR(C) 

     HANDEMPTY  

P: ON(B,A) 
     ON(C,B) 
-: 
+: 

P: HOLDING(B) 
    CLEAR(A) 
-: CLEAR(A) 
    HOLDING(B) 
+: ON(B,A) 
     CLEAR(B) 
     HANDEMPTY 

Stack(B,A) 

The plan is incomplete 

Open preconditions 



P: 
-: 
+: ON(A,TABLE) 
     ON(B,TABLE) 
     ON(C,A) 
     CLEAR(B) 
     CLEAR(C) 

     HANDEMPTY  

P: ON(B,A) 
     ON(C,B) 
-: 
+: 

P: HOLDING(B) 
    CLEAR(A) 
-: CLEAR(A) 
    HOLDING(B) 
+: ON(B,A) 
     CLEAR(B) 
     HANDEMPTY 

Stack(B,A) 

P: HOLDING(C) 
    CLEAR(B) 
-: CLEAR(B) 
    HOLDING(C) 
+: ON(C,B) 
     CLEAR(C) 
     HANDEMPTY 

Stack(C,B) 



P: 
-: 
+: ON(A,TABLE) 
     ON(B,TABLE) 
     ON(C,A) 
     CLEAR(B) 
     CLEAR(C) 

     HANDEMPTY  

P: ON(B,A) 
     ON(C,B) 
-: 
+: 

Stack(B,A) 

Stack(C,B) 

Pickup(C) 

Nonlinear planning  
searches a plan space 



P: 
-: 
+: ON(A,TABLE) 
     ON(B,TABLE) 
     ON(C,A) 
     CLEAR(B) 
     CLEAR(C) 

     HANDEMPTY  

P: ON(B,A) 
     ON(C,B) 
-: 
+: 

Stack(B,A) 

Stack(C,B) 

Pickup(C) 

Pickup(B) 

P: CLEAR(B) 

Achievers 

Threat 

Other possible 
achiever 



P: 
-: 
+: ON(A,TABLE) 
     ON(B,TABLE) 
     ON(C,A) 
     CLEAR(B) 
     CLEAR(C) 

     HANDEMPTY  

P: ON(B,A) 
     ON(C,B) 
-: 
+: 

Stack(B,A) 

Stack(C,B) 

Pickup(C) 

Pickup(B) 

P: CLEAR(B) 

P: CLEAR(B) 



P: 
-: 
+: ON(A,TABLE) 
     ON(B,TABLE) 
     ON(C,A) 
     CLEAR(B) 
     CLEAR(C) 

     HANDEMPTY  

P: ON(B,A) 
     ON(C,B) 
-: 
+: 

Stack(B,A) 

Stack(C,B) 

Pickup(C) 

Pickup(B) 

Note the similarity with 
constraint propagation 

A consistent plan is one in which 
there is no cycle and no conflict 
between achievers and threats 

A conflict can be eliminated 
by constraining the ordering 
among the actions or by  
adding new actions 



P: 
-: 
+: ON(A,TABLE) 
     ON(B,TABLE) 
     ON(C,A) 
     CLEAR(B) 
     CLEAR(C) 

     HANDEMPTY  

P: ON(B,A) 
     ON(C,B) 
-: 
+: 

Stack(B,A) 

Stack(C,B) 

Pickup(C) 

Pickup(B) 

P: HANDEMPTY 



P: 
-: 
+: ON(A,TABLE) 
     ON(B,TABLE) 
     ON(C,A) 
     CLEAR(B) 
     CLEAR(C) 

     HANDEMPTY  

P: ON(B,A) 
     ON(C,B) 
-: 
+: 

Stack(B,A) 

Stack(C,B) 

Pickup(C) 

Pickup(B) 

P: HANDEMPTY 

P: HANDEMPTY 



P: 
-: 
+: ON(A,TABLE) 
     ON(B,TABLE) 
     ON(C,A) 
     CLEAR(B) 
     CLEAR(C) 

     HANDEMPTY  

P: ON(B,A) 
     ON(C,B) 
-: 
+: 

Stack(B,A) 

Stack(C,B) 

Pickup(C) 

Pickup(B) 

P: HANDEMPTY 
    CLEAR(C) 
    ON(C,TABLE) 

P: HOLDING(C) 
    CLEAR(B) 

P: HOLDING(B) 
    CLEAR(A) 

P: HANDEMPTY 
    CLEAR(B) 
    ON(B,TABLE) 

~ Most-constrained-variable 
heuristic in CSP 
 choose the unachieved 

     precondition that can be 
     satisfied in the fewest 
     number of ways 
 ON(C,TABLE) 



P: 
-: 
+: ON(A,TABLE) 
     ON(B,TABLE) 
     ON(C,A) 
     CLEAR(B) 
     CLEAR(C) 

     HANDEMPTY  

P: ON(B,A) 
     ON(C,B) 
-: 
+: 

Stack(B,A) 

Stack(C,B) 

Pickup(C) 

Pickup(B) 

Putdown(C) 



P: 
-: 
+: ON(A,TABLE) 
     ON(B,TABLE) 
     ON(C,A) 
     CLEAR(B) 
     CLEAR(C) 

     HANDEMPTY  

P: ON(B,A) 
     ON(C,B) 
-: 
+: 

Stack(B,A) 

Stack(C,B) 

Pickup(C) 

Pickup(B) 

Putdown(C) 

Unstack(C,A) 



P: 
-: 
+: ON(A,TABLE) 
     ON(B,TABLE) 
     ON(C,A) 
     CLEAR(B) 
     CLEAR(C) 

     HANDEMPTY  

P: ON(B,A) 
     ON(C,B) 
-: 
+: 

Stack(B,A) 

Stack(C,B) 

Pickup(C) 

Pickup(B) 

Putdown(C) 

Unstack(C,A) 

P: HANDEMPTY 



P: 
-: 
+: ON(A,TABLE) 
     ON(B,TABLE) 
     ON(C,A) 
     CLEAR(B) 
     CLEAR(C) 

     HANDEMPTY  

P: ON(B,A) 
     ON(C,B) 
-: 
+: 

Stack(B,A) 

Stack(C,B) 

Pickup(C) 

Pickup(B) 

Putdown(C) 

Unstack(C,A) 



P: 
-: 
+: ON(A,TABLE) 
     ON(B,TABLE) 
     ON(C,A) 
     CLEAR(B) 
     CLEAR(C) 

     HANDEMPTY  

P: ON(B,A) 
     ON(C,B) 
-: 
+: 

Stack(B,A) 

Stack(C,B) 

Pickup(C) 

Pickup(B) 

Putdown(C) 

Unstack(C,A) 

P: HANDEMPTY 
    CLEAR(C) 
    ON(C,TABLE) 

P: HOLDING(C) 
    CLEAR(B) 

P: HOLDING(B) 
    CLEAR(A) 

P: HANDEMPTY 
    CLEAR(B) 
    ON(B,TABLE) 

P: HOLDING(C) 

P: HANDEMPTY 
    CLEAR(C) 
    ON(C,A) 

The plan is complete because every  
precondition of every step is added 
by some previous step, and no 
intermediate step deletes it 



Planning Graph 

• Is special data structure used for  

1. Deriving better heuristic estimates 

2. Extract a solution to the planning problem: GRAPHPLAN algorithm 

• Is a sequence S0,A0,S1,A1,…,Si of levels 

– Alternating state levels & action levels 

– Levels correspond to time stamps 

– Starting at initial state 

– State level is a set of (propositional) literals 
• All those literals that could be true at that level 

– Action level is a set of (propositionalized) actions 
• All those actions whose preconditions appear in the state level (ignoring all negative 

interactions, etc.) 

• Propositionalization may yield combinatorial explosition in the 

presence of a large number of objects 
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Example of a Planning Graph (1) 

Init(Have(Cake)) 

Goal(Have(Cake)Eaten(Cake)) 

84 

Action(Eat(Cake) 

Precond: Have(Cake) 

Effect: Have(Cake)Eaten(Cake)) 

Action(Bake(Cake) 

Precond: Have(Cake) 

Effect: Have(Cake)) 

Propositions true 

at the initial state 

Action is connected to its 

preconds & effects 

Persistence Actions (noop) 



Example of a Planning Graph (2) 
• At each state level, list all literals that may hold at that level 

• At each action level, list all noops & all actions whose preconditions may 

hold at previous levels 

• If some goal literal does not appear in the final level of the graph, the goal is 

not achievable 
– Repeat until plan ‘levels contains all the literal of the goal 

– Terminate if Si = Si+1 

• Building the Planning Graph is a polynomial process 

• Add (binary) mutual exclusion (mutex) links between conflicting actions and 

between conflicting literals 

 

85 Mutual exclusion links S1 represents multiple states 



Mutex Links between Actions 

1. Inconsistent effects: one action negates an effect of another 

– Eat(Cake) & noop of Have(Cake) disagree on effect Have(Cake) 

2. Interference: An action effect negates the precondition of another 

– Eat(Cake) negates precondition of the noop of Have(Cake):  

3. Competing needs: A precondition on an action is mutex with the 

precondition of another 

– Bake(Cake) & Eat(Cake): compete on Have(Cake) precondition 
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Mutex Links between Literals 

1. Two literals are negation of each other 

2. Inconsistent support: Each pair of actions that can 

achieve the two literals is mutex.  Examples: 

– In S1, Have(Cake) & Eaten(Cake) are mutex 

– In S2, they are not because Bake(Cake) & the noop of 

Eaten(Cake) are not mutex 
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Birthday Dinner Example 
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Planning Graph  
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Mutex between Actions 

• The first reason that 

actions can be mutex is 

due to inconsistent effects.  

– Carry and maintaining clean 

have inconsistent effects 

(because carry makes clean 

false). 

– Maintaining garb has 

inconsistent effects with both 

carry and dolly (which make 

garb false). 

– Maintaining quiet has 

inconsistent effects with dolly 

(which makes quiet false). 
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Mutex between Actions 

• Another kind of mutex is due 

to interference: one action 

negates the precondition of 

another.  

– We have interference between 

cook and carry (carry makes 

clean false, which is required 

for cook) 

– also have interference between 

wrap and dolly (dolly makes 

quiet false, which is required 

for wrap.).  

– we have interference between 

carry and dolly, because they 

each require that garbage be 

present, and they each remove 

it. 
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Mutex Links between Literals 

• First of all, 

every 

proposition is 

mutex with its 

negation. 
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Mutex Links between Literals 

• The other reason we might have 

mutexes is because of inconsistent 

support (all ways of achieving the 

propositions are pairwise mutex).  

• Here we have that garbage is mutex 

with not clean and with not quiet (the 

only way to make garbage true is to 

maintain it, which is mutex with carry 

and with dolly). 

• Dinner is mutex with not clean 

because cook and carry, the only 

way of achieving these propositions, 

are mutex at the previous level. 

• And present is mutex with not quiet 

because wrap and dolly are mutex at 

the previous level 

• Finally not clean is mutex with not 

quiet because carry and dolly are 

mutex at the previous level. 
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Planning Graph Propery 1 

Propositions monotonically increase 
(always carried forward by no-ops) 
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Planning Graph Propery 2 

Actions monotonically increase 
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Planning Graph Properties 3 

•  Proposition mutex relationships monotonically decrease 

•  Specifically, if p and q are in layer n and are not mutex then  

    they will not be mutex in future layers.  
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Planning Graph Propery 4 

Action mutex relationships monotonically decrease 
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Properties 5 

Planning Graph ‘levels off’.  

• After some time k all levels are identical 

– In terms of propositions, actions, mutexes 

• This is because there are a finite number 

of propositions and actions, the set of 

literals never decreases and mutexes 

don’t reappear. 
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Planning Graph Important Ideas 

• Plan graph construction is polynomial time 

– Though construction can be expensive when there are many 
“objects” and hence many propositions  

 

• The plan graph captures important properties of the planning 
problem 

– Necessarily unreachable literals and actions 

– Possibly reachable literals and actions 

– Mutually exclusive literals and actions 

 

• Significantly prunes search space compared to previously 
considered planners 

 

• Plan graphs can also be used for deriving admissible (and good 
non-admissible) heuristics 



Planning Graph for Heuristic Estimation 

• A literal that does not appear in the final level cannot be 

achieved by any plan 

– State-space search: Any state containing an unachievable literal 

has cost h(n)= 

– POP: Any plan with an unachievable open condition has cost 

h(n)= 

• The cost of achieving any goal literal can be estimated 

by counting the number of levels before it appears  

– This heuristic never overestimates 

– Estimate can be improved by serializing the graph (serial 

planning graph: one action per level) by adding mutex between 

all actions in a given level 

• The estimate of a conjunction of goal literals 

– Three heuristics: max level, level sum, set level  
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Estimate of Conjunction of Goal Literals 

• Max-level 

– The largest level of a literal in the conjunction 

– Admissible, not very accurate 

• Level sum heuristic,  

– following the subgoal independence assumption, returns the 

sum of the level costs of the goals; this is inadmissible but works 

very well in practice for problems that are largely decomposable 

• Set level 

– Finds the level  at which all literals appear without any pair of 

them being mutex 

– Dominates max-level, works extremely well on problems where 

there is a great deal of interaction among subplans 
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GRAPHPLAN algorithm 

GRAPHPLAN(problem) returns solution or failure 

graph  INITIALPLANNINGGRAPH(problem) 

goals  GOALS[problem] 

loop do 

    if goals all non-mutex in last level of graph then do 

       solution  EXTRACTSOLUTION(graph,goals,LENGTH(graph)) 

       if solution  failure then return solution 

       else if  NOSOLUTIONPOSSIBLE(graph) then return failure 

    graph  EXPANDGRAPH (graph,problem) 

   

• Two main stages 
1. Extract solution 

2. Expand the graph 
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Example of GRAPHPLAN Execution (1) 

103 

• At(Spare,Axle) is not in S0 

• No need to extract solution 

• Expand the plan 



Example of GRAPHPLAN Execution (2) 

104 

• Three actions 

are applicable 

• 3 actions and 5 

noops are added 

• Mutex links are 

added 

• At(Spare,Axle) 

still not in S1 

• Plan is expanded 



Example of GRAPHPLAN Execution (3) 

105 

• Illustrates well mutex links: inconsistent effects, 

interference, competing needs, inconsistent support 



Solution Extraction (Backward) 

106 

1. Solve a Boolean CSP:  Variables are actions, domains 

are {0=out of plan, 1=in plan), constraints are mutex 

2. Search problem from last level backward 



Backtrack Search for Solution Extraction 

• Starting at the highest fact level 

– Each goal is put in a goal list for the current fact layer 

– Search iterates thru each fact in the goal list trying to find an action to 

support it which is not mutex with any other chosen action 

– When an action is chosen, its preconditions are added to the goal list of 

the lower level 

– When all facts in the goal list of the current level have a consistent 

assignment of actions, the search moves to the next level 

 

• Search backtracks to the previous level when it fails to assign an 

action to each fact in the goal list at a given level 

 

• Search succeeds when the first level is reached. 
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Example of GRAPHPLAN Execution 
• For this particular problem, we start at S2 with the goal At(Spare, 

Axle).  

• The only choice we have for achieving the goal set is PutOn(Spare, 

Axle).  

• That brings us to a search state at S1 with goals At(Spare, Ground) 

and ¬At(Flat, Axle).  

• The former can be achieved only by Remove(Spare, Trunk), and the 

latter by either Remove(Flat, Axle) or LeaveOvernight.  

• But LeaveOvernight is mutex with Remove(Spare, Trunk), so the 

only solution is to choose Remove(Spare, Trunk) and Remove(Flat, 

Axle).  

• That brings us to a search state at S0 with the goals At(Spare, 

Trunk) and At(Flat, Axle).  

• Both of these are present in the state, so we have a solution: the 

actions Remove(Spare, Trunk) and Remove(Flat, Axle) in level A0, 

followed by PutOn(Spare, Axle) in A1. 
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Birthday Dinner Example 

• Our goal is !garbage 

and dinner and 

present.  

• Layer 2 contains 

!garbage and dinner 

and present.  

• So it looks like these 

could possibly be 

true. They're not 

obviously 

inconsistent. 
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Birthday Dinner Example 

• So, we’ll start looking for 

a plan by finding a way to 

make not garbage true. 

• We’ll try using the carry 

action. 

• Now, we’ll try to make 

dinner true the only way 

we can, with the cook 

action. 

• But cook and carry are 

mutex, so this won’t work. 
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Birthday Dinner Example 

• Because there aren’t any 

other ways to make dinner, 

we fail, and have to try a 

different way of making not 

garbage true. This time, we’ll 

try dolly. 

• Now, we can cook dinner, 

and we don’t have any mutex 

problems with dolly. 

• We have to make present 

true as well. The only way of 

doing that is with wrap, but 

wrap is mutex with dolly. So, 

we fail completely. 
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Birthday Dinner Example 
• There’s no way to achieve all of these goals in parallel. So we 

have to consider a depth two plan.  

• We start by adding another layer to the plan graph 

• Then find and show the Mutexs on the next level 
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Birthday Dinner Example 

• Final Solution 
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Improving search using Heuristic 

• The search may still degenerate to an 

exponential exploration 

• Heuristic: 

1. Pick the literal with a highest level cost 

2. To achieve this literal, pick actions with 

easiest preconditions (the set of 

preconditions which has the smallest 

max level cost) 
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Termination of GRAPHPLAN 

• GRAPHPLAN is guaranteed to terminate 

– Literal increase monotonically 

– Actions increase monotonically 

– Mutexes decrease monotinically 

• A solution is guaranteed not to exist when 

– The graph levels off with all goals present & 

non-mutex, and 

– EXTRACTSOLUTION fails to find solution 
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Optimality of GRAPHPLAN  

• The plans generated by GRAPHPLAN  

–  Are optimal in the number of steps needed to 

execute the plan 

– Not necessarily optimal in the number of 

actions in the plan  (GRAPHPLAN produces 

partially ordered plans) 
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