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  Introduction 

 Different kinds of games: 

 

 

 

 

 

 

 

 

 

 

Deterministic Chance 

Perfect 

Information 

Chess, Checkers 

Go, Othello 

Backgammon, 

Monopoly 

Imperfect 

Information 
Battleship Bridge, Poker, Scrabble, 

  Games with perfect information. No randomness is involved.  

 

 Games with imperfect information. Random factors are part of the 

game.  

 

Game Playing: Adversarial Search 
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Games as Adversarial Search 

 many games can be formulated as search problems 

 

 the zero-sum utility function leads to an adversarial situation 

 in order for one agent to win, the other necessarily has to lose 

 

 factors complicating the search task 

 potentially huge search spaces 

 elements of chance  

 multi-person games, teams 

 time limits 

 imprecise rules 
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Difficulties with Games 

 games can be very hard search problems 

 yet reasonably easy to formalize 
 finding the optimal solution may be impractical 

 a solution that beats the opponent is “good enough” 

 unforgiving 

 a solution that is “not good enough” not only leads to higher costs, but to a loss 
to the opponent 

 

 example: chess 

 size of the search space 
 branching factor around 35 

 about 50 moves per player 

 about 35100 or 10154 nodes 

 about 1040 distinct nodes (size of the search graph) 

7 Aziz M. Qaroush - Birzeit University 



Single-Person Game 

 conventional search problem 

 identify a sequence of moves that leads to a winning state 

 examples: Solitaire, dragons and dungeons, Rubik’s cube 

 little attention in AI 

 

 some games can be quite challenging 

 some versions of solitaire 

 a heuristic for Rubik’s cube was found by the Absolver 

program 
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 Traditional (single agent) search methods only consider how close the 
agent is to the goal state (e.g. best first search). 

 
 In two player games, decisions of both agents have to be taken into 

account: a decision made by one agent will affect the resulting search 
space that the other agent would need to explore. 

 
 Question: Do we have randomness here since the decision made by the 

opponent is NOT known in advance? 
 

  No. Not if all the moves or choices that the opponent can make 
are finite and can be known in advance.  

 
 

Searching in a two player game 
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To formalize a two player game as a search problem an agent can be 
called MAX and the opponent can be called MIN. 

 

Problem Formulation:  

 

 Initial state: board configurations and the player to move. 

 Successor function: list of pairs (move, state) specifying legal 
moves and their resulting states. (moves + initial state = game tree) 

 A terminal test: decide if the game has finished. 

 A utility function: produces a numerical value for (only) the 
terminal states. Example: In chess, outcome = win/loss/draw, with 
values +1, -1, 0 respectively. 

 

 Players need search tree to determine next move. 

 

Searching in a two player game 
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Partial game tree for Tic-Tac-Toe 

• Root node represents the current board 

configuration; player must decide                          

the best single move to make next  

• Each level of search nodes in the tree 

corresponds to all possible board 

configurations for a particular player MAX or 

MIN. 

• If it is my turn to move, then the root is 

labeled a "MAX" node; otherwise it is 

labeled a "MIN" node, indicating opponent's 

turn. 

• Utility values found at the end can be  

returned back to their parent nodes. 

• Idea: MAX chooses the board with the max 

utility value, MIN the minimum. 
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MiniMax  Algorithm 
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MiniMax Example 

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3 

terminal nodes: values calculated from the utility function 
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MiniMax Example 

Min 

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3 

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3 

other nodes: values calculated via minimax algorithm 
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MiniMax Example 

Max 

Min 

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3 

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3 

7 6 5 5 6 4 

15 Aziz M. Qaroush - Birzeit University 



MiniMax Example 

Max 

Min 

Min 

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3 

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3 

7 6 5 5 6 4 

5 3 4 
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MiniMax Example 

Max 

Max 

Min 

Min 

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3 

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3 

7 6 5 5 6 4 

5 3 4 

5 
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MiniMax Example 

Max 

Max 

Min 

Min 

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3 

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3 

7 6 5 5 6 4 

5 3 4 

5 

moves by Max and countermoves by Min  
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MiniMax Properties 
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Pruning 
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Alpha-Beta Pruning 
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Alpha-Beta Example 1 

Max 

Min [-∞, +∞] 

5 

 we assume a depth-first, left-to-right search as basic strategy 

 the range of the possible values for each node are indicated 

 initially [-∞, +∞] 

 from Max’s or Min’s perspective 

 these local values reflect the values of the sub-trees in that node;  
the global values α and β are the best overall choices so far for Max or Min 

[-∞, +∞] 

α best choice for Max ?  

β best choice for Min ? 
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Alpha-Beta Example 2 

Max 

Min 

7 

[-∞, 7] 

5 

 Min obtains the first value from a successor node 

[-∞, +∞] 

α best choice for Max ?  

β best choice for Min 7 
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Alpha-Beta Example 3 

Max 

Min 

7 6 

[-∞, 6] 

5 

 Min obtains the second value from a successor node 

[-∞, +∞] 

α best choice for Max ?  

β best choice for Min 6 
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Alpha-Beta Example 4 

Max 

Min 

7 6 5 

5 

5 [5, +∞] 

α best choice for Max 5  

β best choice for Min 5 

 Min obtains the third value from a successor node 

 this is the last value from this sub-tree, and the exact value is known 

 Max now has a value for its first successor node, but hopes that something better 
might still come 
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Alpha-Beta Example 5 

Max 

Min 

7 6 5 

5 

5 

 Min continues with the next sub-tree, and gets a better value  

 Max has a better choice from its perspective, however, and will not consider a move in 
the sub-tree currently explored by  Min 

 initially [-∞, +∞] 

3 

[5, +∞] 

α best choice for Max 5  

β best choice for Min 3 

[-∞, 3] 

26 Aziz M. Qaroush - Birzeit University 



Alpha-Beta Example 6 

Max 

Min 

7 6 5 

5 

5 

 Min knows that Max won’t consider a move to this sub-tree, and abandons it 

 this is a case of pruning, indicated by  

3 

[5, +∞] 

α best choice for Max 5  

β best choice for Min 3 

[-∞, 3] 
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Alpha-Beta Example 7 

Max 

Min 

7 6 5 6 

5 

 Min explores the next sub-tree, and finds a value that is worse than the other nodes at 
this level 

 if Min is not able to find something lower, then Max will choose this branch, so Min 
must explore more successor nodes 

3 

α best choice for Max 5  

β best choice for Min 3 

5 

[5, +∞] 

[-∞, 3] [-∞, 6] 
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Alpha-Beta Example 8 

Max 

Min 

7 6 5 6 

5 

 Min is lucky, and finds a value that is the same as the current worst value at this level 

 Max can choose this branch, or the other branch with the same value 

3 

α best choice for Max 5  

β best choice for Min 3 

5 

[5, +∞] 

[-∞, 3] [-∞, 5] 

5 
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Alpha-Beta Example 9 

Max 

Min 

7 6 5 6 

5 

 Min could continue searching this sub-tree to see if there is a value that is less than the 
current worst alternative in order to give Max as few choices as possible 

 this depends on the specific implementation 

 Max knows the best value for its sub-tree  

3 

α best choice for Max 5 

β best choice for Min 3 

5 

5 

[-∞, 3] [-∞, 5] 

5 
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Properties of Alpha-Beta Pruning 

 in the ideal case, the best successor node is examined first 

 results in O(bd/2) nodes to be searched instead of O(bd) 

 alpha-beta can look ahead twice as far as minimax 

 in practice, simple ordering functions are quite useful 

 assumes an idealized tree model 

 uniform branching factor, path length 

 random distribution of leaf evaluation values 

 transpositions tables can be used to store permutations 

 sequences of moves that lead to the same position 

 requires additional information for good players 

 game-specific background knowledge 

 empirical data 
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Imperfect Decisions 

 complete search is impractical for most games 

 alternative: search the tree only to a certain depth 

 requires a cutoff-test to determine where to stop 

 replaces the terminal test 

 the nodes at that level effectively become terminal leave nodes 

 uses a heuristics-based evaluation function to estimate the 

expected utility of the game from those leave nodes 
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Evaluation Function 

 determines the performance of a game-playing program 

 must be consistent with the utility function 

 values for terminal nodes (or at least their order) must be the 

same 

 tradeoff between accuracy and time cost 

 without time limits, minimax could be used 

 should reflect the actual chances of winning 

 frequently weighted linear functions are used 

 E = w1 f1  + w2 f2 + … + wn fn 

 combination of features, weighted by their relevance 
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Example: Tic-Tac-Toe 

 simple evaluation function 

E(s) = (rx + cx + dx) - (ro + co + do) 

 (number of rows, columns, and diagonals open for MAX) - (number 
of rows, columns, and diagonals open for MIN ) 

 

 1-ply lookahead 

 start at the top of the tree 

 evaluate all 9 choices for player 1 

 pick the maximum E-value 

 2-ply lookahead 

 also looks at the opponents possible move 
 assuming that the opponents picks the minimum E-value 
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 E(s12) 

 8 

- 6 

= 2 

 E(s13) 

 8 

- 5 

= 3 

 E(s14) 

 8 

- 6 

= 2 

 E(s15) 

 8 

- 4 

= 4 

 E(s16) 

 8 

- 6 

= 2 

 E(s17) 

 8 

- 5 

= 3 

 E(s18) 

 8 

- 6 

= 2 

 E(s19) 

 8 

- 5 

= 3 

Tic-Tac-Toe 1-Ply 

X X X 
X X X 

X X X 

 E(s11) 

 8 

- 5 

= 3 

   E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4  
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 E(s2:16) 

 5 

- 6 

= -1 

 E(s2:15) 

 5 

-6 

= -1 

 E(s28) 

 5 

- 5 

= 0 

 E(s27) 

 6 

- 5 

= 1 

 E(s2:48) 

 5 

- 4 

= 1 

 E(s2:47) 

 6 

- 4 

= 2 

 E(s2:13) 

 5 

- 6 

= -1 

 E(s2:9) 

 5 

- 6 

= -1 

 E(s2:10) 

 5 

-6 

= -1 

 E(s2:11) 

 5 

- 6 

= -1 

 E(s2:12) 

 5 

- 6 

= -1 

 E(s2:14) 

 5 

- 6 

= -1 

 E(s25) 

 6 

- 5 

= 1 

 E(s21) 

 6 

- 5 

= 1 

 E(s22) 

 5 

- 5 

= 0 

 E(s23) 

 6 

- 5 

= 1 

 E(s24) 

4 

- 5 

= -1 

 E(s26) 

 5 

- 5 

= 0 

 E(s1:6) 

 8 

- 6 

= 2 

 E(s1:7) 

 8 

- 5 

= 3 

 E(s1:8) 

 8 

- 6 

= 2 

 E(s1:9) 

 8 

- 5 

= 3 

 E(s1:5) 

 8 

- 4 

= 4 

 E(s1:3) 

 8 

- 5 

= 3 

 E(s1:2) 

 8 

- 6 

= 2 

 E(s1:1) 

 8 

- 5 

= 3 

 E(s2:45) 

 6 

- 4 

= 2 

Tic-Tac-Toe 2-Ply 

X X X 
X X X 

X X X 

   E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4  

 E(s1:4) 

 8 

- 6 

= 2 

X O X 
O 

X 
O 

 E(s2:41) 

 5 

- 4 

= 1 

 E(s2:42) 

 6 

- 4 

= 2 

 E(s2:43) 

 5 

- 4 

= 1 

 E(s2:44) 

 6 

- 4 

= 2 

 E(s2:46) 

 5 

- 4 

= 1 
O X 

O 
X 

O 
X 

O 
X X 

O 

X 
O 

X 

O 

X 

O 

X X 
O 

X O O X X 

O 

X 
O 

X 

O 

X 

O 

X 
O 

X 
O 

X O X O X 

O 

O 
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31 

Checkers Case Study 

 initial board configuration 

 Black   single on 20 

   single on 21 

   king on 31 

 Red  single on 23 

   king on 22 

 evaluation function 

E(s) = (5 x1 + x2) - (5r1 + r2) 

where  

 x1 = black king advantage,  

 x2 = black single advantage, 

  r1 = red king advantage,  

 r2 = red single advantage 

1 2 3 4 

8 6 5 

9 10 11 12 

16 14 13 

17 18 19 20 

24 22 21 

25 26 27 28 

32 30 29 

7 

15 

23 
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1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -8 -8 

1 

2
0

 -
>

 1
6
 

31 

1 2 3 4 

8 6 5 

9 10 11 12 

16 14 13 

17 18 19 20 

24 22 21 

25 26 27 28 

32 30 29 

7 

15 

23 

MAX 

MAX 

MIN 

Checkers MiniMax Example 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  6 

MAX 

MAX 

MIN 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  1 

MAX 

MAX 

MIN 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  1 

β− cutoff: no need to 

examine further branches 

MAX 

MAX 

MIN 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  1 
MAX 

MAX 

MIN 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  1 

β− cutoff: no need to 

examine further branches 

MAX 

MAX 

MIN 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  1 
MAX 

MAX 

MIN 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  0 
MAX 

MAX 

MIN 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  -4 

α− cutoff: no need to 

examine further branches 

MAX 

MAX 

MIN 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  -8 
MAX 

MAX 

MIN 
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Search Limits 

 search must be cut off because of time or space limitations 

 strategies like depth-limited or iterative deepening search 

can be used 

 don’t take advantage of knowledge about the problem 

 more refined strategies apply background knowledge 

 quiescent search 

 cut off only parts of the search space that don’t exhibit big changes in 

the evaluation function 
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Horizon Problem 

 moves may have disastrous consequences in the future, but 

the consequences are not visible 

 the corresponding change in the evaluation function will only 

become evident at deeper levels 

 they are “beyond the horizon” 

 determining the horizon is an open problem without a 

general solution 

 only some pragmatic approaches restricted to specific games 

or situation  
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Games with Chance 

 in many games, there is a degree of unpredictability through 

random elements 

 throwing dice, card distribution, roulette wheel, … 

 this requires chance nodes in addition to the Max and Min 

nodes 

 branches indicate possible variations 

 each branch indicates the outcome and its likelihood 
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Decisions with Chance 

 the utility value of a position depends on the random 

element 

 the definite minimax value must be replaced by an expected 

value 

 calculation of expected values 

 utility function for terminal nodes 

 for all other nodes 

 calculate the utility for each chance event 

 weigh by the chance that the event occurs 

 add up the individual utilities 
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Chapter Summary 

 many game techniques are derived from search methods 

 the minimax algorithm determines the best move for a player by 

calculating the complete game tree 

 alpha-beta pruning dismisses parts of the search tree that are 

provably irrelevant  

 an evaluation function gives an estimate of the utility of a state 

when a complete search is impractical 

 chance events can be incorporated into the minimax algorithm by 

considering the weighted probabilities of chance events 
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