Artificial Intelligence ENCS 434

Adversarial Search & Games

Game Playing and Al

Why would game playing be a good problem for AI research?

- Game-playing is non-trivial
 - Need to display "human-like" intelligence
 - Some games (such as chess) are very complex
 - Requires decision-making within a time-limit
 - More realistic than other search problems
- Games are played in a controlled environment
 - Can do experiments, repeat games, etc
 - Good for evaluating research systems
- Can compare humans and computers directly
 - Can evaluate percentage of wins/losses to quantify performance
- All the information is available
 - Human and computer have equal information

How Does a Computer Play a Game?

- ☐ A way to play a game is to:
 - Consider all the legal moves you can make
 - Compute the new position resulting from each move
 - Evaluate each resulting position and determine which is best
 - Make that move
 - ⇒ Wait for your opponent to move and repeat
- Key problems are:
 - ⇒ Representing the "board"
 - Generating all next legal boards
 - Evaluating a position

Tic-Tac-Toe Game

Tic-Tac-Toe b ~ 5 legal moves, ■ d ~ total of 9 moves \bullet 5⁹ = 1,953,125 • 9! = 362,880 (Computer goes first) • 8! = 40,320 (Computer goes second)

Game Playing: Adversarial Search

- ☐ Introduction
- Different kinds of games:

	Deterministic	Chance
Perfect Information	Chess, Checkers Go, Othello	Backgammon, Monopoly
Imperfect Information	Battleship	Bridge, Poker, Scrabble,

- Games with perfect information. No randomness is involved.
- Games with imperfect information. Random factors are part of the game.

Games as Adversarial Search

- many games can be formulated as search problems
- the zero-sum utility function leads to an adversarial situation
 - in order for one agent to win, the other necessarily has to lose
- factors complicating the search task
 - potentially huge search spaces
 - elements of chance
 - multi-person games, teams
 - time limits
 - imprecise rules

Difficulties with Games

- games can be very hard search problems
 - yet reasonably easy to formalize
 - finding the *optimal* solution may be impractical
 - a solution that beats the opponent is "good enough"
 - unforgiving
 - a solution that is "not good enough" not only leads to higher costs, but to a loss to the opponent
- example: chess
 - size of the search space
 - branching factor around 35
 - about 50 moves per player
 - about 35¹⁰⁰ or 10¹⁵⁴ nodes
 - about 10⁴⁰ distinct nodes (size of the search graph)

Single-Person Game

- conventional search problem
 - identify a sequence of moves that leads to a winning state
 - examples: Solitaire, dragons and dungeons, Rubik's cube
 - little attention in AI
- some games can be quite challenging
 - some versions of solitaire
 - a heuristic for Rubik's cube was found by the Absolver program

Searching in a two player game

- Traditional (single agent) search methods only consider how close the agent is to the goal state (e.g. best first search).
- In two player games, decisions of both agents have to be taken into account: a decision made by one agent will affect the resulting search space that the other agent would need to explore.
- Question: Do we have randomness here since the decision made by the opponent is NOT known in advance?
- © No. Not if *all* the moves or choices that the opponent can make are finite and can be known in advance.

Searching in a two player game

To formalize a two player game as a search problem an agent can be called **MAX** and the opponent can be called **MIN**.

Problem Formulation:

- Initial state: board configurations and the player to move.
- Successor function: list of pairs (move, state) specifying legal moves and their resulting states. (moves + initial state = game tree)
- A terminal test: decide if the game has finished.
- A utility function: produces a numerical value for (only) the terminal states. Example: In chess, outcome = win/loss/draw, with values +1, -1, 0 respectively.
- Players need search tree to determine next move.

Partial game tree for Tic-Tac-Toe

- Root node represents the current board configuration; player must decide the best single move to make next
- Each level of search nodes in the tree corresponds to all possible board configurations for a particular player MAX or MIN.
- If it is my turn to move, then the root is labeled a "MAX" node; otherwise it is labeled a "MIN" node, indicating opponent's turn.
- Utility values found at the end can be returned back to their parent nodes.
- Idea: MAX chooses the board with the max utility value, MIN the minimum.

MiniMax Algorithm

- ☐ Create start node as a MAX node with current board configuration
- Expand nodes down to some depth of lookahead in the game
- ☐ Apply the evaluation function at each of the leaf nodes
- "Back up" values for each of the non-leaf nodes until a value is computed for the root node.
 - ⇒ At MIN nodes, the backed-up value is the minimum of the values associated with its children.
 - ⇒ At MAX nodes, the backed-up value is the maximum of the values associated with its children.
- □ Pick the operator associated with the child node whose backed-up value determined the value at the root.

terminal nodes: values calculated from the utility function

other nodes: values calculated via minimax algorithm

moves by Max and countermoves by Min

MiniMax Properties

Assume all terminal states are at depth d

Space complexity?

Depth-first search, so O(bd)

Time complexity?

Given branching factor b, so O(b^d)

- * Time complexity is a major problem!
 Computer typically only has a finite amount of time to make a move.
- Direct mini-max also is impractical in practice
- * Static Board Evaluator (SBE) function

 Uses heuristics to estimate the value of non-terminal states.

Pruning

- Discards parts of the search tree
 - Guaranteed not to contain good moves
 - Guarantee that the solution is not in that branch or sub-tree
 - If both players make optimal decisions, they will never end up in that part of the search tree
- **■** Use pruning to ignore those branches.
- Certain moves are not considered
 - ➡ Won't result in a better evaluation value than a move further up in the tree
 - They would lead to a less desirable outcome
- Applies to moves by both players
 - \circ α (alpha) indicates the best choice for Max so far never decreases
 - Highest Evaluation value seen so far (initialize to -infinity)
 - \triangleright β (beta) indicates the best choice for Min so far never increases
 - Lowest Evaluation value seen so far (initialize to +infinity)

Alpha-Beta Pruning

- Beta cutoff pruning occurs when maximizing if *child's alpha* >= parent's beta

 Stop expanding children. Why?
 - Opponent won't allow computer to take this move
- □ Alpha cutoff pruning occurs when minimizing if parent's alpha >= child's beta
 Stop expanding children. Why?
 - Computer has a better move than this

- α best choice for Max β best choice for Min
 - we assume a depth-first, left-to-right search as basic strategy
 - the range of the possible values for each node are indicated
 - initially $[-\infty, +\infty]$
 - from Max's or Min's perspective
 - these *local* values reflect the values of the sub-trees in that node; the *global* values α and β are the best overall choices so far for Max or Min

 α best choice for Max β best choice for Min

• Min obtains the first value from a successor node

α best choice for Maxβ best choice for Min

• Min obtains the second value from a successor node

α best choice for Maxβ best choice for Min

- Min obtains the third value from a successor node
- this is the last value from this sub-tree, and the exact value is known
- Max now has a value for its first successor node, but hopes that something better might still come

α best choice for Maxβ best choice for Min

- Min continues with the next sub-tree, and gets a better value
- Max has a better choice from its perspective, however, and will not consider a move in the sub-tree currently explored by Min
 - initially $[-\infty, +\infty]$

- α best choice for Maxβ best choice for Min
 - Min knows that Max won't consider a move to this sub-tree, and abandons it
 - this is a case of *pruning*, indicated by

- α best choice for Maxβ best choice for Min
 - Min explores the next sub-tree, and finds a value that is worse than the other nodes at this level
 - if Min is not able to find something lower, then Max will choose this branch, so Min must explore more successor nodes

- α best choice for Maxβ best choice for Min
 - Min is lucky, and finds a value that is the same as the current worst value at this level
 - Max can choose this branch, or the other branch with the same value

- α best choice for Maxβ best choice for Min
 - Min could continue searching this sub-tree to see if there is a value that is less than the current worst alternative in order to give Max as few choices as possible
 - this depends on the specific implementation
 - Max knows the best value for its sub-tree

Properties of Alpha-Beta Pruning

- in the ideal case, the best successor node is examined first
 - results in $O(b^{d/2})$ nodes to be searched instead of $O(b^d)$
 - alpha-beta can look ahead twice as far as minimax
 - in practice, simple ordering functions are quite useful
- assumes an idealized tree model
 - uniform branching factor, path length
 - random distribution of leaf evaluation values
- transpositions tables can be used to store permutations
 - sequences of moves that lead to the same position
- requires additional information for good players
 - game-specific background knowledge
 - empirical data

Imperfect Decisions

- complete search is impractical for most games
- alternative: search the tree only to a certain depth
 - requires a cutoff-test to determine where to stop
 - replaces the terminal test
 - the nodes at that level effectively become terminal leave nodes
 - uses a heuristics-based evaluation function to estimate the expected utility of the game from those leave nodes

Evaluation Function

- determines the performance of a game-playing program
- must be consistent with the utility function
 - values for terminal nodes (or at least their order) must be the same
- tradeoff between accuracy and time cost
 - without time limits, minimax could be used
- should reflect the actual chances of winning
- frequently weighted linear functions are used
 - $E = w_1 f_1 + w_2 f_2 + \dots + w_n f_n$
 - combination of features, weighted by their relevance

Example: Tic-Tac-Toe

simple evaluation function

$$E(s) = (rx + cx + dx) - (ro + co + do)$$

(number of rows, columns, and diagonals open for MAX) – (number of rows, columns, and diagonals open for MIN)

- 1-ply lookahead
 - start at the top of the tree
 - evaluate all 9 choices for player 1
 - pick the maximum E-value
- 2-ply lookahead
 - also looks at the opponents possible move
 - assuming that the opponents picks the minimum E-value

Tic-Tac-Toe 1-Ply

Tic-Tac-Toe 2-Ply

Checkers Case Study

initial board configuration

• Black single on 20 single on 21 king on 31

• Red single on 23 king on 22

evaluation function

$$E(s) = (5 x_1 + x_2) - (5r_1 + r_2)$$
where
$$x_1 = \text{black king advantage,}$$

 x_2 = black single advantage,

 $r_1 = \text{red king advantage},$

 r_2 = red single advantage

Checkers MiniMax Example

Checkers Alpha-Beta Example

Checkers Alpha-Beta Example

Aziz M. Qaroush - Birzeit University

Search Limits

- search must be cut off because of time or space limitations
- strategies like depth-limited or iterative deepening search can be used
 - don't take advantage of knowledge about the problem
- more refined strategies apply background knowledge
 - quiescent search
 - cut off only parts of the search space that don't exhibit big changes in the evaluation function

Horizon Problem

- moves may have disastrous consequences in the future, but the consequences are not visible
 - the corresponding change in the evaluation function will only become evident at deeper levels
 - they are "beyond the horizon"
- determining the horizon is an open problem without a general solution
 - only some pragmatic approaches restricted to specific games or situation

Games with Chance

- in many games, there is a degree of unpredictability through random elements
 - throwing dice, card distribution, roulette wheel, ...
- this requires chance nodes in addition to the Max and Min nodes
 - branches indicate possible variations
 - each branch indicates the outcome and its likelihood

Decisions with Chance

- the utility value of a position depends on the random element
 - the definite minimax value must be replaced by an expected value
- calculation of expected values
 - utility function for terminal nodes
 - for all other nodes
 - calculate the utility for each chance event
 - weigh by the chance that the event occurs
 - add up the individual utilities

Chapter Summary

- many game techniques are derived from search methods
- the minimax algorithm determines the best move for a player by calculating the complete game tree
- alpha-beta pruning dismisses parts of the search tree that are provably irrelevant
- an evaluation function gives an estimate of the utility of a state when a complete search is impractical
- chance events can be incorporated into the minimax algorithm by considering the weighted probabilities of chance events