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Game Playing and Al

"' Why would game playing be a good problem for Al research?

& Game-playing is non-trivial

= Need to display “human-like” intelligence

= Some games (such as chess) are very complex

» Requires decision-making within a time-limit

« More realistic than other search problems

& Games are played in a controlled environment

= Can do experiments, repeat games, etc

= Good for evaluating research systems
< Can compare humans and computers directly

= Can evaluate percentage of wins/losses to quantify performance
< All the information 1s available

» Human and computer have equal information
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How Does a Computer Play a Game?

O A way to play a game is to:
< Consider all the legal moves you can make
2 Compute the new position resulting from each move
2 Evaluate each resulting position and determine which is best
< Make that move
2 Wait for your opponent to move and repeat
O Key problems are:
< Representing the “board”
<2 Generating all next legal boards

< Evaluating a position
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Tic-Tac-Toe Game

< Tic-Tac-Toe
= b~ 5 legal moves,
* d ~ total of 9 moves
» 57=1,953,125
* 91 =362,880 (Computer goes first)
= 8! =40,320 (Computer goes second)
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Game Playing: Adversarial Search

O Introduction

= Different kinds of games:

Deterministic Chance
Perfect Chess, Checkers Backgammon,
Information Go, Othello Monopoly
Imperfect _ :
_ Battleship Bridge, Poker, Scrabble,
Information

game.
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" (Games with perfect information. No randomness is involved.

® Games with imperfect information. Random factors are part of the




/
Games as Adversarial Search

® many games can be formulated as search problems

® the zero-sum utility function leads to an adversarial situation

® in order for one agent to win, the other necessarily has to lose

® factors complicating the search task
® potentially huge search spaces
® clements of chance
o multi—person games, teams
® time limits

® imprecise rules
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Difficulties with Games

® games can be very hard search problems

® yet reasonably casy to formalize

* finding the optimal solution may be impractical
a solution that beats the opponent is “good enough”

* unforgiving
a solution that is “not good enough” not only leads to higher costs, but to a loss
to the opponent

® example: chess

® size of the search space
branching factor around 35

about 50 moves per player
about 3519 or 10'** nodes

* about 10* distinct nodes (size of the search graph)
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Single-Person Game

® conventional search problem
o identify a sequence of moves that leads to a winning state
® examples: Solitaire, dragons and dungeons, Rubik’s cube

e little attention in Al

® some games can be quite challengin
g q gmg
® some versions of solitaire

® 3 heuristic for Rubik’s cube was found by the Absolver

program
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Searching in a two player game

= Traditional (single agent) search methods only consider how close the
agent is to the goal state (e.g. best first search).

= In two player games, decisions of both agents have to be taken into
account: a decision made by one agent will affect the resulting search
space that the other agent would need to explore.

* Question: Do we have randomness here since the decision made by the
opponent is NOT known in advance?

= © No. Not if all the moves or choices that the opponent can make
are finite and can be known in advance.
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Searching in a two player game

To formalize a two player game as a search problem an agent can be

called MAX and the opponent can be called MIN.

Problem Formulation:

= Initial state: board configurations and the player to move.

= Successor function: list of pairs (move, state) specitying legal
moves and their resulting states. (moves + initial state = game tree)

= A terminal test: decide if the game has finished.

= A utility function: produces a numerical value for (only) the
terminal states. Example: In chess, outcome = win/loss/draw, with
values +1, -1, O respectively.

n Players need search tree to determine next move.
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Root node represents the current board
configuration; player must decide

the best single move to make next

Each level of search nodes in the tree
board
configurations for a particular player MAX or
MIN.

If it is my turn to move, then the root is
labeled a "MAX" node; otherwise it is
labeled a "MIN" node, indicating opponent's

corresponds to all

possible

turn.

Utility values found at the end can be
returned back to their parent nodes.

Idea: MAX chooses the board with the max

/

utility value, MIN the minimum.
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MiniMax Algorithm

J Create start node as a MAX node with current board configuration
Expand nodes down to some depth of lookahead in the game

Apply the evaluation function at each of the leaf nodes

D O O

“Back up” values for each of the non-leaf nodes until a value is
computed for the root node.

o At MIN nodes, the backed-up value 1s the minimum of the values
associated with its children.

o At MAX nodes, the backed-up value 1s the maximum of the values
associated with 1ts children.

J Pick the operator associated with the child node whose backed-up value

determined the value at the root.
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MiniMax Example

eoeo
000
N
eoeo eoeo eoeo eoeo eoeo
4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9

terminal nodes: values calculated from the utility function
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MiniMax Example

[ONON0©]
000
al 7 6 2 O 3 4/1\ 1 2 5 4 1 2 6 3 4 3
Min
[ONON0©] [ONON0©] [ONON0©] [ONON0©] [ONON0©]
4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9

other nodes: values calculated via minimax algorithm
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MiniMax Example
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MiniMax Example

7 6 5 000 5 6
Max
Q000
al 7 6 2 dN 3 4/1\ 1 2 5 4 1 2 6 3 4 3
Min
(OO N0 (OO N0 (OO N0 (OO N0 (OO N0
4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9
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MiniMax Example
5
Max
; s 4 Min
7 6 5 000 5 6
Max
000
ax V4 6 2 O 3 4/1\ 1 2 5 4 1 2 6 3 4 3
Min
[ONON0©] [ONON0©] [ONON0©] [ONON0©] [ONON0©]
4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9
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MiniMax Example

o000 5
o000
4/1\ 1 2 5 4
eo0o0 ‘ eo0o0
8 8 5 6 7 5 2

moves by Max and countermoves by Min

eoeo
4 7 9 6 9

Max

\@ Aziz M. Qaroush - Birzeit University

3

2

Min




/
MiniMax Properties

Assume all terminal states are at depth d
¥~ Space complexity?

Depth-first search, so O(bd)
¥ Time complexity?

Given branching factor b, so O(b")

* Time complexity is a major problem!
Computer typically only has a finite amount of time to make a move.

1 Direct mini-max also is impractical in practice

% Static Board Evaluator (SBE) function

Uses heuristics to estimate the value of non-terminal states.
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Pruning

- Discards parts of the search tree
< Guaranteed not to contain good moves
< Guarantee that the solution is not in that branch or sub-tree

= If both players make optimal decisions, they will never end up in that
part of the search tree

J Use pruning to ignore those branches.

- Certain moves are not considered
< Won’t result in a better evaluation value than a move further up in the tree

< They would lead to a less desirable outcome

J Applies to moves by both players

2 o (alpha) indicates the best choice for Max so far never decreases

= Highest Evaluation value seen so far (initialize to -infinity)

2 B (beta) indicates the best choice for Min so far never increases

» Lowest Evaluation value seen so far (initialize to +infinity)
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Alpha-Beta Pruning

O Beta cutoff pruning occurs when maximizing
if child’s alpha >= parent's beta
Stop expanding children. Why?

® Opponent won't allow computer to take this move

O Alpha cutoff pruning occurs when minimizing
if parent's alpha >= child’s beta
Stop expanding children. Why?

< Computer has a better move than this
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/Alpha—Beta Example 1 A

[-00, +o0]

o best choice for Max ?
B best choice for Min ?

® we assume a depth-first, left-to-right search as basic strategy

® the range of the possible values for each node are indicated
initially [-00, +00]
from Max’s or Min’s perspective

these local values reflect the values of the sub-trees in that node;
the global values ol and [3 are the best overall choices so far for Max or Min
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Alpha-Beta Example 2

[-00, +o0]

o, best choice for Max ?
B best choice for Min 7

® Min obtains the first value from a successor node
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Alpha-Beta Example 3

[-00, +o0]

o best choice for Max
B best choice for Min 6

® Min obtains the second value from a successor node
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Alpha-Beta Example 4

[5, t0o0]

0. best choice for Max 5
B best choice for Min 5

® Min obtains the third value from a successor node
e this is the last value from this sub-tree, and the exact value is known

® Max now has a value for its first successor node, but hopes that something better

might still come
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Alpha-Beta Example 5

[5, t0o0]

0. best choice for Max 5
B best choice for Min 3

® Min continues with the next sub-tree, and gets a better value

® Max has a better choice from its perspective, however, and will not consider a move in
the sub-tree currently explored by Min

initially [-00, +00]

\@ Aziz M. Qaroush - Birzeit University /




Alpha-Beta Example 6

[5, +00]

5 [-00, 3]

0. best choice for Max 5
B best choice for Min 3

® Min knows that Max won’t consider a move to this sub-tree, and abandons it

® this is a case of pruning, indicated by
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Alpha-Beta Example 7

[5, T00]

; 0, 3] Min

0. best choice for Max 5
B best choice for Min 3

® Min explores the next sub-tree, and finds a value that is worse than the other nodes at
this level

* if Min is not able to find something lower, then Max will choose this branch, so Min
must explore more successor nodes
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Alpha-Beta Example 8

[5, T00]

; [0, 3] Min

0. best choice for Max 5
B best choice for Min 3

® Min is lucky, and finds a value that is the same as the current worst value at this level

® Max can choose this branch, or the other branch with the same value
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Alpha-Beta Example 9

Min
N
7 6 5 5
o, best choice for Max 5
B best choice for Min 3

® Min could continue searching this sub-tree to see if there is a value that is less than the
current worst alternative in order to give Max as few choices as possible

this depends on the specific implementation

e Max knows the best value for its sub-tree
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Properties of Alpha-Beta Pruning

¢ in the ideal case, the best successor node is examined first
® results in O(b%'?) nodes to be searched instead of O(b9)

° alpha—beta can look ahead twice as far as minimax

® in practice, simple ordering functions are quite useful

® assumes an idealized tree model
® uniform branching factor, path length
¢ random distribution of leaf evaluation values

® transpositions tables can be used to store permutations
® sequences of moves that lead to the same position

® requires additional information for good players

° game—specific background knowledge

° empirical data
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Imperfect Decisions

® complete search is impractical for most games

® alternative: search the tree only to a certain depth

® requires a cutoff-test to determine where to stop
replaces the terminal test
the nodes at that level effectively become terminal leave nodes
® uses a heuristics-based evaluation function to estimate the

expected utility of the game from those leave nodes
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Evaluation Function

® determines the performance of a game—playing program

® must be consistent with the utility function

® values for terminal nodes (or at least their order) must be the

Saime

¢ tradeoff between accuracy and time cost

¢ without time limits, minimax could be used
® should reflect the actual chances of winning

® frequently Weighted linear functions are used

'E:WIfI +W2f2+°"+ann

® combination of features, weighted by their relevance
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Example: Tic-Tac-Toe

* simple evaluation function
E(s) = (rx + cx + dx) - (ro + co + do)

(number' of rows, columns, and diagonals open for MAX) — (humber
of rows, columns, and diagonals open for MIN )

© l-ply lookahead
® start at the top of the tree
® evaluate all 9 choices for player 1

o pick the maximum E-value

© 2—ply lookahead

® also looks at the opponents possible move

assuming that the opponents picks the minimum E-value
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Tic-Tac-Toe 1-Ply

E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4

E(s11) E EI3T—— (04 |EQIS) e (s E(s18)  E(s19)

|;j‘ .

1

w o1
1

N O 0
1

w O1 0
1

N O 0
1

w
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Tic-Tac-Toe 2-Ply

E(s21) E(s22) E(s23)
6 5 6
asn 5 Iy 5 -5

=1 =0
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=1

E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4

ST —+(sl: E(s1:8)

-6
=2
E(s2:48)

5
-4
D| =1

E(s1:9)

1
w
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Checkers Case Study

® initial board configuration

e Black single on 20
single on 21
king on 31
e Red single on 23
king on 22
® evaluation function
Eis)=(5x, +x,)-(5r, +1,)

where

x; = black king advantage,

x, = black single advantage,

r; = red king advantage,

r, = red single advantage

@ Aziz M. Qaroush - Birzeit University




Checkers MiniMax Example
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Checkers Alpha-Beta Example
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Checkers Alpha—Beta Example
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Checkers Alpha-Beta Example

[a—
[a—
[a—
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Checkers Alpha-Beta Example
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Checkers Alpha-Beta Example

o 1
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Checkers Alpha-Beta Example
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Checkers Alpha-Beta Example
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Checkers Alpha-Beta Example
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Checkers Alpha-Beta Example
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Search Limits

® search must be cut off because of time or space limitations

® strategies like depth—limited or iterative deepening search
can be used

® don’t take advantage of knowledge about the problem

® more refined strategies apply background knowledge

® quiescent search

cut off only parts of the search space that don’t exhibit big changes in

the evaluation function
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Horizon Problem

® moves may have disastrous consequences in the tuture, but
the consequences are not visible
® the corresponding change in the evaluation function will only

become evident at deeper levels

they are “beyond the horizon”
® determining the horizon is an open problem without a
general solution

o only some pragmatic approaches restricted to specific games

or situation
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Games with Chance

® in many games, there is a degree of unpredictability through

random elements
* throwing dice, card distribution, roulette wheel, ...
® this requires chance nodes in addition to the MaX and Min
nodes
® branches indicate possible variations

® cach branch indicates the outcome and its likelihood
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Decisions with Chance

® the utﬂity value of a position depends on the random

element
® the definite minimax value must be replaced by an expected
value
® calculation of expected values
* utility function for terminal nodes

e for all other nodes
calculate the utility for each chance event
weigh by the chance that the event occurs
add up the individual utilities
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Chapter Summary

® many game techniques are derived from search methods

® the minimax algorithm determines the best move for a player by

Calculating the complete game tree

o alpha—beta pruning dismisses parts of the search tree that are

provably irrelevant

® an evaluation function gives an estimate of the utility of a state

when a complete search is impractical

® chance events can be incorporated into the minimax algorithrn by

considering the Weighted probabilities of chance events
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