
Adversarial Search &
Games

Artificial Intelligence

ENCS 434

1 Aziz M. Qaroush - Birzeit University

Game Playing and AI

Aziz M. Qaroush - Birzeit University 2

How Does a Computer Play a Game?

Aziz M. Qaroush - Birzeit University 3

Tic-Tac-Toe Game

Aziz M. Qaroush - Birzeit University 4

 Introduction

 Different kinds of games:

Deterministic Chance

Perfect

Information

Chess, Checkers

Go, Othello

Backgammon,

Monopoly

Imperfect

Information
Battleship Bridge, Poker, Scrabble,

 Games with perfect information. No randomness is involved.

 Games with imperfect information. Random factors are part of the

game.

Game Playing: Adversarial Search

5 Aziz M. Qaroush - Birzeit University

Games as Adversarial Search

 many games can be formulated as search problems

 the zero-sum utility function leads to an adversarial situation

 in order for one agent to win, the other necessarily has to lose

 factors complicating the search task

 potentially huge search spaces

 elements of chance

 multi-person games, teams

 time limits

 imprecise rules

6 Aziz M. Qaroush - Birzeit University

Difficulties with Games

 games can be very hard search problems

 yet reasonably easy to formalize
 finding the optimal solution may be impractical

 a solution that beats the opponent is “good enough”

 unforgiving

 a solution that is “not good enough” not only leads to higher costs, but to a loss
to the opponent

 example: chess

 size of the search space
 branching factor around 35

 about 50 moves per player

 about 35100 or 10154 nodes

 about 1040 distinct nodes (size of the search graph)

7 Aziz M. Qaroush - Birzeit University

Single-Person Game

 conventional search problem

 identify a sequence of moves that leads to a winning state

 examples: Solitaire, dragons and dungeons, Rubik’s cube

 little attention in AI

 some games can be quite challenging

 some versions of solitaire

 a heuristic for Rubik’s cube was found by the Absolver

program

8 Aziz M. Qaroush - Birzeit University

 Traditional (single agent) search methods only consider how close the
agent is to the goal state (e.g. best first search).

 In two player games, decisions of both agents have to be taken into

account: a decision made by one agent will affect the resulting search
space that the other agent would need to explore.

 Question: Do we have randomness here since the decision made by the

opponent is NOT known in advance?

  No. Not if all the moves or choices that the opponent can make
are finite and can be known in advance.

Searching in a two player game

9 Aziz M. Qaroush - Birzeit University

To formalize a two player game as a search problem an agent can be
called MAX and the opponent can be called MIN.

Problem Formulation:

 Initial state: board configurations and the player to move.

 Successor function: list of pairs (move, state) specifying legal
moves and their resulting states. (moves + initial state = game tree)

 A terminal test: decide if the game has finished.

 A utility function: produces a numerical value for (only) the
terminal states. Example: In chess, outcome = win/loss/draw, with
values +1, -1, 0 respectively.

 Players need search tree to determine next move.

Searching in a two player game

10 Aziz M. Qaroush - Birzeit University

Partial game tree for Tic-Tac-Toe

• Root node represents the current board

configuration; player must decide

the best single move to make next

• Each level of search nodes in the tree

corresponds to all possible board

configurations for a particular player MAX or

MIN.

• If it is my turn to move, then the root is

labeled a "MAX" node; otherwise it is

labeled a "MIN" node, indicating opponent's

turn.

• Utility values found at the end can be

returned back to their parent nodes.

• Idea: MAX chooses the board with the max

utility value, MIN the minimum.

11 Aziz M. Qaroush - Birzeit University

MiniMax Algorithm

Aziz M. Qaroush - Birzeit University 12

MiniMax Example

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

terminal nodes: values calculated from the utility function

13 Aziz M. Qaroush - Birzeit University

MiniMax Example

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

other nodes: values calculated via minimax algorithm

14 Aziz M. Qaroush - Birzeit University

MiniMax Example

Max

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

15 Aziz M. Qaroush - Birzeit University

MiniMax Example

Max

Min

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

16 Aziz M. Qaroush - Birzeit University

MiniMax Example

Max

Max

Min

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

5

17 Aziz M. Qaroush - Birzeit University

MiniMax Example

Max

Max

Min

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

5

moves by Max and countermoves by Min

18 Aziz M. Qaroush - Birzeit University

MiniMax Properties

19 Aziz M. Qaroush - Birzeit University

Pruning

20 Aziz M. Qaroush - Birzeit University

Alpha-Beta Pruning

21 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 1

Max

Min [-∞, +∞]

5

 we assume a depth-first, left-to-right search as basic strategy

 the range of the possible values for each node are indicated

 initially [-∞, +∞]

 from Max’s or Min’s perspective

 these local values reflect the values of the sub-trees in that node;
the global values α and β are the best overall choices so far for Max or Min

[-∞, +∞]

α best choice for Max ?

β best choice for Min ?

22 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 2

Max

Min

7

[-∞, 7]

5

 Min obtains the first value from a successor node

[-∞, +∞]

α best choice for Max ?

β best choice for Min 7

23 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 3

Max

Min

7 6

[-∞, 6]

5

 Min obtains the second value from a successor node

[-∞, +∞]

α best choice for Max ?

β best choice for Min 6

24 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 4

Max

Min

7 6 5

5

5 [5, +∞]

α best choice for Max 5

β best choice for Min 5

 Min obtains the third value from a successor node

 this is the last value from this sub-tree, and the exact value is known

 Max now has a value for its first successor node, but hopes that something better
might still come

25 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 5

Max

Min

7 6 5

5

5

 Min continues with the next sub-tree, and gets a better value

 Max has a better choice from its perspective, however, and will not consider a move in
the sub-tree currently explored by Min

 initially [-∞, +∞]

3

[5, +∞]

α best choice for Max 5

β best choice for Min 3

[-∞, 3]

26 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 6

Max

Min

7 6 5

5

5

 Min knows that Max won’t consider a move to this sub-tree, and abandons it

 this is a case of pruning, indicated by

3

[5, +∞]

α best choice for Max 5

β best choice for Min 3

[-∞, 3]

27 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 7

Max

Min

7 6 5 6

5

 Min explores the next sub-tree, and finds a value that is worse than the other nodes at
this level

 if Min is not able to find something lower, then Max will choose this branch, so Min
must explore more successor nodes

3

α best choice for Max 5

β best choice for Min 3

5

[5, +∞]

[-∞, 3] [-∞, 6]

28 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 8

Max

Min

7 6 5 6

5

 Min is lucky, and finds a value that is the same as the current worst value at this level

 Max can choose this branch, or the other branch with the same value

3

α best choice for Max 5

β best choice for Min 3

5

[5, +∞]

[-∞, 3] [-∞, 5]

5

29 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 9

Max

Min

7 6 5 6

5

 Min could continue searching this sub-tree to see if there is a value that is less than the
current worst alternative in order to give Max as few choices as possible

 this depends on the specific implementation

 Max knows the best value for its sub-tree

3

α best choice for Max 5

β best choice for Min 3

5

5

[-∞, 3] [-∞, 5]

5

30 Aziz M. Qaroush - Birzeit University

Properties of Alpha-Beta Pruning

 in the ideal case, the best successor node is examined first

 results in O(bd/2) nodes to be searched instead of O(bd)

 alpha-beta can look ahead twice as far as minimax

 in practice, simple ordering functions are quite useful

 assumes an idealized tree model

 uniform branching factor, path length

 random distribution of leaf evaluation values

 transpositions tables can be used to store permutations

 sequences of moves that lead to the same position

 requires additional information for good players

 game-specific background knowledge

 empirical data

32 Aziz M. Qaroush - Birzeit University

Imperfect Decisions

 complete search is impractical for most games

 alternative: search the tree only to a certain depth

 requires a cutoff-test to determine where to stop

 replaces the terminal test

 the nodes at that level effectively become terminal leave nodes

 uses a heuristics-based evaluation function to estimate the

expected utility of the game from those leave nodes

33 Aziz M. Qaroush - Birzeit University

Evaluation Function

 determines the performance of a game-playing program

 must be consistent with the utility function

 values for terminal nodes (or at least their order) must be the

same

 tradeoff between accuracy and time cost

 without time limits, minimax could be used

 should reflect the actual chances of winning

 frequently weighted linear functions are used

 E = w1 f1 + w2 f2 + … + wn fn

 combination of features, weighted by their relevance

34 Aziz M. Qaroush - Birzeit University

Example: Tic-Tac-Toe

 simple evaluation function

E(s) = (rx + cx + dx) - (ro + co + do)

 (number of rows, columns, and diagonals open for MAX) - (number
of rows, columns, and diagonals open for MIN)

 1-ply lookahead

 start at the top of the tree

 evaluate all 9 choices for player 1

 pick the maximum E-value

 2-ply lookahead

 also looks at the opponents possible move
 assuming that the opponents picks the minimum E-value

35 Aziz M. Qaroush - Birzeit University

 E(s12)

 8

- 6

= 2

 E(s13)

 8

- 5

= 3

 E(s14)

 8

- 6

= 2

 E(s15)

 8

- 4

= 4

 E(s16)

 8

- 6

= 2

 E(s17)

 8

- 5

= 3

 E(s18)

 8

- 6

= 2

 E(s19)

 8

- 5

= 3

Tic-Tac-Toe 1-Ply

X X X
X X X

X X X

 E(s11)

 8

- 5

= 3

 E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4

36 Aziz M. Qaroush - Birzeit University

 E(s2:16)

 5

- 6

= -1

 E(s2:15)

 5

-6

= -1

 E(s28)

 5

- 5

= 0

 E(s27)

 6

- 5

= 1

 E(s2:48)

 5

- 4

= 1

 E(s2:47)

 6

- 4

= 2

 E(s2:13)

 5

- 6

= -1

 E(s2:9)

 5

- 6

= -1

 E(s2:10)

 5

-6

= -1

 E(s2:11)

 5

- 6

= -1

 E(s2:12)

 5

- 6

= -1

 E(s2:14)

 5

- 6

= -1

 E(s25)

 6

- 5

= 1

 E(s21)

 6

- 5

= 1

 E(s22)

 5

- 5

= 0

 E(s23)

 6

- 5

= 1

 E(s24)

4

- 5

= -1

 E(s26)

 5

- 5

= 0

 E(s1:6)

 8

- 6

= 2

 E(s1:7)

 8

- 5

= 3

 E(s1:8)

 8

- 6

= 2

 E(s1:9)

 8

- 5

= 3

 E(s1:5)

 8

- 4

= 4

 E(s1:3)

 8

- 5

= 3

 E(s1:2)

 8

- 6

= 2

 E(s1:1)

 8

- 5

= 3

 E(s2:45)

 6

- 4

= 2

Tic-Tac-Toe 2-Ply

X X X
X X X

X X X

 E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4

 E(s1:4)

 8

- 6

= 2

X O X
O

X
O

 E(s2:41)

 5

- 4

= 1

 E(s2:42)

 6

- 4

= 2

 E(s2:43)

 5

- 4

= 1

 E(s2:44)

 6

- 4

= 2

 E(s2:46)

 5

- 4

= 1
O X

O
X

O
X

O
X X

O

X
O

X

O

X

O

X X
O

X O O X X

O

X
O

X

O

X

O

X
O

X
O

X O X O X

O

O

37 Aziz M. Qaroush - Birzeit University

31

Checkers Case Study

 initial board configuration

 Black single on 20

 single on 21

 king on 31

 Red single on 23

 king on 22

 evaluation function

E(s) = (5 x1 + x2) - (5r1 + r2)

where

 x1 = black king advantage,

 x2 = black single advantage,

 r1 = red king advantage,

 r2 = red single advantage

1 2 3 4

8 6 5

9 10 11 12

16 14 13

17 18 19 20

24 22 21

25 26 27 28

32 30 29

7

15

23

38 Aziz M. Qaroush - Birzeit University

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -8 -8

1

2
0

 -
>

 1
6

31

1 2 3 4

8 6 5

9 10 11 12

16 14 13

17 18 19 20

24 22 21

25 26 27 28

32 30 29

7

15

23

MAX

MAX

MIN

Checkers MiniMax Example

39 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β 6

MAX

MAX

MIN

40 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β 1

MAX

MAX

MIN

41 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β 1

β− cutoff: no need to

examine further branches

MAX

MAX

MIN

42 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β 1
MAX

MAX

MIN

43 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β 1

β− cutoff: no need to

examine further branches

MAX

MAX

MIN

44 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β 1
MAX

MAX

MIN

45 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β 0
MAX

MAX

MIN

46 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β -4

α− cutoff: no need to

examine further branches

MAX

MAX

MIN

47 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β -8
MAX

MAX

MIN

48 Aziz M. Qaroush - Birzeit University

Search Limits

 search must be cut off because of time or space limitations

 strategies like depth-limited or iterative deepening search

can be used

 don’t take advantage of knowledge about the problem

 more refined strategies apply background knowledge

 quiescent search

 cut off only parts of the search space that don’t exhibit big changes in

the evaluation function

49 Aziz M. Qaroush - Birzeit University

Horizon Problem

 moves may have disastrous consequences in the future, but

the consequences are not visible

 the corresponding change in the evaluation function will only

become evident at deeper levels

 they are “beyond the horizon”

 determining the horizon is an open problem without a

general solution

 only some pragmatic approaches restricted to specific games

or situation

50 Aziz M. Qaroush - Birzeit University

Games with Chance

 in many games, there is a degree of unpredictability through

random elements

 throwing dice, card distribution, roulette wheel, …

 this requires chance nodes in addition to the Max and Min

nodes

 branches indicate possible variations

 each branch indicates the outcome and its likelihood

51 Aziz M. Qaroush - Birzeit University

Decisions with Chance

 the utility value of a position depends on the random

element

 the definite minimax value must be replaced by an expected

value

 calculation of expected values

 utility function for terminal nodes

 for all other nodes

 calculate the utility for each chance event

 weigh by the chance that the event occurs

 add up the individual utilities

52 Aziz M. Qaroush - Birzeit University

Chapter Summary

 many game techniques are derived from search methods

 the minimax algorithm determines the best move for a player by

calculating the complete game tree

 alpha-beta pruning dismisses parts of the search tree that are

provably irrelevant

 an evaluation function gives an estimate of the utility of a state

when a complete search is impractical

 chance events can be incorporated into the minimax algorithm by

considering the weighted probabilities of chance events

53 Aziz M. Qaroush - Birzeit University

