Artificial Intelligence

ENCS 434

Informed Search

/
Overview

Informed Search

¢ best-first search

¢ search with heuristics
¢memory-bounded search
¢iterative improvement search
¢local search and optimization

\e Aziz M. Qaroush - Birzeit University

/
Improving Search Methods

® make algorithms more efficient
o avoiding repeated states

o utilizing memory efficientiy

® use additional knowledge about the problem
® properties (“shape”) of the search space
more interesting areas are investigated first

® pruning of irrelevant areas

areas that are guaranteed not to contain a solution can be discarded

\e Aziz M. Qaroush - Birzeit University

e
Informed Search

® relies on additional knowledge about the problem or domain
® frequently expressed through heuristics (“rules of thumb”)

® A Heuristic is a function that, when applied to a state, returns a
number that tells us approximately how far the state is from the
goal state.

® used to distinguish more promising paths towards a goal

® may be mislead, depending on the quality of the heuristic

® in general, performs much better than uninformed search

® but frequen‘dy still exponential in time and space for realistic
problems

\° Aziz M. Qaroush - Birzeit University

a o .
Heuristic Functions

® A heuristic function is a function f{ ff n) that %h ves an estimation on the “cost” of
ettino from node n to the coal state — so that the node with the least cost
g g g
among all poss1ble choices ¢an be selected for expansion first.

A heuristic h(n) 1s admissible if for every node n,
h(n) =h"(n), where h*(n) is the true cost to reach the goal state from ».

J An admissible heuristic never overestimates the cost to reach the goal, 1.¢.,
will make the algorithm optimal.
® Three approaches to defining f:
® fmeasures the value of the current state (its “goodness”)

® fmeasures the estimated cost of getting to the goal from the current state:
f(n) = h(n) where h(n) = an estimate of the cost to get from n to a goal

measures the estimated cost of %ettln g to the oal state from the current state and the
cost of the existing path to it. Often, in this case we decompose

f(n) = g(n) + h(n) where g(n) = the cost to get to n (from initial state)

\e Aziz M. Qaroush - Birzeit University

e

Approach 1: f Measures the Value of the
Current State

° Usually the case when solving optimization problems

° Finding a state such that the value of the metric f is optimized

® Often, in these cases, f could be a weighted sum of a set of component

values:

® N-Queens

Example: the number of queens under attack ...

° Aziz M. Qaroush - Birzeit University

e

Approach 2: f Measures the Cost to the
Goal

A state X would be better than a state Y if the estimated cost of
getting from X to the goal is lower than that of Y — because X
would be closer to the goal than Y

* 8-Puzzle W 2 W 4 ;
h,: The number of misplaced tiles

: 5 6 3 ||| 4
(squares with number).
h,: The sum of the distances of the tiles 81| 3 || 1 6 1f| 7

from their goal positions.

Start State Goal State

@ Aziz M. Qaroush - Birzeit University

/
Approach 3: f measures the total cost of the

solution path (Admissible Heuristic Functions)

e A heuristic function 7f(n) = g(n) + h(n)is admissible if /#(n) never
overestimates the cost to reach the goal.

99, <<

e Admissible heuristics are “optimistic”: “the cost 1s not that much ...”

e However, g(n)is the exact cost to reach node » from the initial state.

o Therefore, f(n)never over-estimate the true cost to reach the goal state
through node 7.

Theorem: A search is optimal if A(n)is admissible.
e l.e. The search using /(n) returns an optimal solution.

Given h,(n) > h,(n)for all n, it’s always more efficient to use /,(n).
e /1,is more realistic than A, (more informed), though both are optimistic.

@ Aziz M. Qaroush - Birzeit University

g Best-First Search

J General approach of informed search: It is an improved combination of breadth-
first and depth-first algorithms.

S Best-first search: node is selected for expansion based on an evaluation
function f{n) that measures distance to the goal.

d Chooses the best node from the queue to continue the search regardless of the
node's actual position in the problem graph.

. The main steps of this algorithm are as follow:
1. Add the initial node (starting point) to the queue
2. Compare the front node to the goal state. If they match then the solution is found.
3. If they do not match then expand the front node by adding all the nodes from its
links to a queue.
4. If all nodes in the queue are expanded then the goal state 1s not found (e.g. there
1s no solution). Stop.
5. Apply the heuristic function to evaluate and reorder the nodes in the queue.
6. Go to step 2

J Special cases:

2 Greedy best first search
2 A¥*search

\a Aziz M. Qaroush - Birzeit University

e
Traditional informed search strategies

» Greedy Best first search

e “Always chooses the successor node with the best fvalue”
where f(n) = h(n)

* We choose the one that Is nearest to the final state among all
possible choices

e A* search

e Best first search using an “admissible” heuristic function £
that takes into account the current cost g

e Always returns the optimal solution path

@ Aziz M. Qaroush - Birzeit University

/
Greedy Best-First Search

® minimizes the estimated cost to a goal
° expand the node that seems to be closest to a goal

e utilizes a heuristic function as evaluation function

f(n) = h(n) = estimated cost from the current node to a goal
heuristic functions are problem—specific

often straight—line distance for route—finding and similar prob]ems

® often better than depth-first, although worst-time

complexities are equal or worse (space)

Completeness | Time Complexity | Space Complexity | Optimality

no b™ b™ no

b: branching factor, d: depth of the solution, m: maximum depth of the search tree, 1: depth limit

\@ Aziz M. Qaroush - Birzeit University

4 ™
Greedy Search

State Heuristic: h(n)

366

374

329

244

253

178

193

98

| T | O MmOl O| @

0

=" Goal f(n) = h (n) = straight-line distance heuristic

\. Aziz M. Qaroush - Birzeit University /

s

Greedy Search: Tree Search

@ Start

\@ Aziz M. Qaroush - Birzeit University

s
Greedy Search: Tree Search

Start
118 75

[329] 140 [374] 9

[253]

\@ Aziz M. Qaroush - Birzeit University

s

Greedy Search: Tree Search

@ Aziz M. Qaroush - Birzeit University

e

Greedy Search: Tree Search

\@ Aziz M. Qaroush - Birzeit University

e

Greedy Search: Tree Search

Start
75

Path cost(A-E-F-1) = 253 + 178 + 0 = 431
dist(A-E-F-1) = 140 + 99 + 211 = 450

\Q Aziz M. Qaroush - Birzeit University

Goal

[0]

Greedy Search: Optimal ?

m Start
11g N 75

H 211

101

I
— Goal

@ Aziz M. Qaroush - Birzeit University

State Heuristic: h(n)
366
B 374
C 329
D 244
F 178
I 0

f(n) = h (n) = straight-line distance heuristic

dist(A-E-G-H-1) =140+80+97+101= 418

e

211

Goal

\@ Aziz M. Qaroush - Birzeit University

Greedy Search: Complete ?

State Heuristic: h(n)

A 366
B 374

EC 250
D 244
E 253
F 178
G 193
H o8
I 0

f(n) = h (n) = straight-line distance heuristic

s

Greedy Search: Tree Search

@ Start

@ Aziz M. Qaroush - Birzeit University

s

Greedy Search: Tree Search

Start
118 75

[250] 140 [374] 9

[253]

\@ Aziz M. Qaroush - Birzeit University

s
Greedy Search: Tree Search

Start
118 75

140 [374] 9

[250]

" [253]
[244]

@ Aziz M. Qaroush - Birzeit University

s

Greedy Search: Tree Search

Start
118 75

140 [374] 9

[250]
111

[253]
[244]
Infinite Branch !
[250]

@ Aziz M. Qaroush - Birzeit University

e
Greedy Search: Tree Search

Start
118 75

140 [374] 9

[250]

11 [253]
[244]
Infinite Branch !
[250]
[244] é

@ Aziz M. Qaroush - Birzeit University

/
Greedy Search: Tree Search

Start
118 75

140 [374] 9

[250]
111

[253]
[244]
Infinite Branch !
[250]

\e Aziz M. Qaroush - Birzeit University

s
Greedy Best-First Search: 8-Puzzle Example

Initial State

O
u
|

4 Goal

HE [
u
5 4

\@ Aziz M. Qaroush - Birzeit University

/
Greedy Search: Time and Space Complexity ?

Start

 Greedy search Is not optimal.

 Greedy search Is incomplete
without systematic checking of
repeated states.

* In the worst case, the Time and
Space Complexity of Greedy
Search are both O(b™)

Where b is the branching factor and m
the maximum path length

\. Aziz M. Qaroush - Birzeit University

/

/
A* Search

J A* search is similar to Greedy best-first search with the

difference that:

J A¥* search includes in its evaluation function the cost from the
start node to the current node, in addition to the estimated cost

from the current node to the goal.

2 Evaluation function: f{n) = g(n) + h(n), where:
= g(n): Cost so far to reach n (Uniform cost search minimizes it)
< h(n): Estimated cost to goal from n (best-first search minimizes it)

< f(n): Estimated total cost of path from the starting node n0O through »

to the goal (best estimated cost for complete solution)

J Using current cost and estimated cost give this algorithm
completeness (if the solution exists, it will be found) and
optimality (it will find the best solution).

d All these advantages made A* algorithm the most popular search

algorithm in ATl applications.

@ Aziz M. Qaroush - Birzeit University

Goal

Current
Node n

e
A* Algorithm

1. Search queue Q is empty.
2. Place the start state s in Q with ' value h(s).
3. If Q is empty, return failure.
4. Take node n from Q with lowest f value.
(Keep Q sorted by { values and pick the first element).
5. Ifnisa goal node, stop and return solution.
Generate successors of node n.
7. For each successor n’ of n do:
a) Compute f(n’) = g(n) + cost(n,n’) + h(n’).
b) If n’ is new (never generated before), add n’ to Q.

c) If node n’ is already in Q with a higher f value, replace it with current
f(n”) and place it in sorted order in Q.

End for
8. Go back to step 3.

@ Aziz M. Qaroush - Birzeit University

A* Search

Start State Heuristic: h(n)
366
374
329
244
253
178
193
o8
0

| T | O MmOl O| @

N O RIG

@ _ - g(n): is the exact cost to reach node » from the initial state.
Aziz M. Qaroush - Birzeit University /

A* Search: Tree Search

@ Start

\e Aziz M. Qaroush - Birzeit University

A* Search: Tree Search

@ Aziz M. Qaroush - Birzeit University

A* Search: Tree Search

\@ Aziz M. Qaroush - Birzeit University

A* Search: Tree Search

@ Aziz M. Qaroush - Birzeit University

A* Search: Tree Search

@ Aziz M. Qaroush - Birzeit University

A* Search: Tree Search

@ Aziz M. Qaroush - Birzeit University

A* Search: Tree Search

\e Aziz M. Qaroush - Birzeit University

A* Search: Tree Search

@ Aziz M. Qaroush - Birzeit University

A* Search: h not admissible !

h() overestimates the cost to reach the goal state

Start State Heuristic: h(n)

366

374

329

244

253

178

QMmO @

193

I 0

f(n) =g(n) + h (n) — (H-I) Overestimated
- Goal
g(n): is the exact cost to reach node 7 from the initial state.
Aziz M. Qaroush - Birzeit University

A* Search: Tree Search

@ Start

@ Aziz M. Qaroush - Birzeit University

A* Search: Tree Search

\@ Aziz M. Qaroush - Birzeit University

A* Search: Tree Search

\@ Aziz M. Qaroush - Birzeit University

A* Search: Tree Search

\@ Aziz M. Qaroush - Birzeit University

A* Search: Tree Search

[455] @

@ Aziz M. Qaroush - Birzeit University

Goal

[450]

A* Search: Tree Search

[455] @

@ Aziz M. Qaroush - Birzeit University

Goal

[450]

A* Search: Tree Search

[455] @

\@ Aziz M. Qaroush - Birzeit University

Goal

[450]

[449]

A* Search: Tree Search

[455] @

@ Aziz M. Qaroush - Birzeit University

Goal

[450]

[449]

A* Search: Tree Search

s
[455] @ Goal

[450]

\@ Aziz M. Qaroush - Birzeit University

/8-Puzzle Example: A* Search

f(n) = g(n) + h(n): with h(n) = number of misplaced tiles (not including the blank)

O
[]
—
O 5+2
|
4+1 O
mN
5+0

[|
145 2+4

\@ Aziz M. Qaroush - Birzeit University

e
A* Search: Analysis

A Is complete except if there is an
Infinity of nodes with f < f(G).

A Is optimal If heuristic /#1s
admissible.

*Time complexity depends on the
quality of heuristic but is still
exponential.

For space complexity, A keeps all
nodes in memory. A* has worst case
O(bY) space complexity, but an

=7 Goal Iterative deepening version is possible

(IDA%).

\. Aziz M. Qaroush - Birzeit University

/

/
A* Properties

¢ the value of fnever decreases along any path starting from

the initial node
® also known as monotonicity of the function

® almost all admissible heuristics show monotonicity

those that don’t can be modified through minor changes

® this property can be used to draw contours
® regions where the f-cost is below a certain threshold
* with uniform cost search (h = 0), the contours are circular

e the better the heuristics h, the narrower the contour around
the optimal path

\e Aziz M. Qaroush - Birzeit University

A* Snapshot with Contour f=11

Initial
Visited
Fringe ()

(7 Current
Visible
Goal

(6) & (6)
Edge Cost 9
Heuristics 0
0 9 G 6 G 9 6 f-cost 10

;
000060060060 960 .06 00 @

(52 Aziz M. Qaroush - Birzeit University

A* Snapshot with Contour f=13

Initial
Visited
Fringe ()

@ Current
Visible
Goal

(6) €) (6}
Edge Cost 9
Heuristics 0
(7)9 (5) 10(4) N(3) (4) 14(5 336) fcost 10

(3)(4).(5)6)(7_ @’

000060060060

(53 Aziz M. Qaroush - Birzeit University

e

Optimality of A*

* A* will find the optimal solution

® the first solution found is the optimal one

o A*is optimally efficient

® no other algorithm is guaranteed to expand fewer nodes than A*

e A*isnot always “the best” algorithm
o optimality refers to the expansion of nodes
other criteria might be more relevant

® it generates and keeps all nodes in memory

improved in variations of A*

@ Aziz M. Qaroush - Birzeit University

e
Complexity of A*

® the number of nodes within the goal contour search space is

still exponential
* with respect to the length of the solution
® better than other algorithms, but still problematic

® frequently, space complexity is more severe than time
complexity

* A* keeps all generated nodes in memory

@ Aziz M. Qaroush - Birzeit University

.

| N

mproving A*: Memory-bounded Heuristic Search

 Iterative-Deepening A* (IDA¥)
= Using f(g+h) as a cut off rather than the depth for the iteration.

= Cutoff value 1s the smallest f-cost of any node that exceeded the
cutoff on the previous iteration; keep these nodes only.

= Space complexity O(bd)
J Recursive Best-First Search (RBFS)

= [t replaces the f-value of each node along the path with the best f-
value of its children.

= Space complexity O(bd)
J Simplified Memory Bounded A* (SMA¥)
= Works like A* until memory is full

= Then SMA* drops the node in the fringe with the largest f value and
“backs up” this value to its parent.

= When all children of a node n have been dropped, the smallest
backed up value replaces f(n)

@ Aziz M. Qaroush - Birzeit University /

/Iterative deepening A* A

J IDA¥ is similar to Iterative depth-first:

Depth- /d=1
first / d=2 \
JARCTIIRN
Y/ R N

Expand by depth-layers

Expands by f-contours

\@ Aziz M. Qaroush - Birzeit University /

e
IDA* Algorithm

® In the first iteration, we determine a

f(n,) = g(ny) T h(n,) = h(n,), where n, is the start node.

® We expand nodes using the and
backtrack whenever f(n) for an expanded node n exceeds the
cut-off value.

® If this search does not succeed, determine the
among the nodes that were visited but not expanded.

® Use this f-value as the
and do another depth-first search.

® Repeat this procedure until a goal node is found.

@ Aziz M. Qaroush - Birzeit University

e
8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

4
Cutoff=4

6

\‘ Aziz M. Qaroush - Birzeit University

e
8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

4
Cutoff=4

\‘ Aziz M. Qaroush - Birzeit University

e
8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

4
Cutoff=4

\. Aziz M. Qaroush - Birzeit University

e

8-Puzzie

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

4
Cutoff=4

\‘ Aziz M. Qaroush - Birzeit University

/8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

5
4
Cutoff=4 4 5
|
6 6

\‘ Aziz M. Qaroush - Birzeit University

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

\‘ Aziz M. Qaroush - Birzeit University

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

\‘ Aziz M. Qaroush - Birzeit University

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

4
Cutoff=5

\‘ Aziz M. Qaroush - Birzeit University

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

\‘ Aziz M. Qaroush - Birzeit University

e
8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

4
Cutoff=5

\‘ Aziz M. Qaroush - Birzeit University

e

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

\‘ Aziz M. Qaroush - Birzeit University

e

8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

\‘ Aziz M. Qaroush - Birzeit University

/
Simple Recursive Best-First Search

J Keeps track of the f-value of the best-alternative path available.

< If current f-values exceeds this alternative f-value then backtrack to
alternative path.

2 Upon backtracking change f-value to best f-value of its children.
2 It takes 2 arguments:

S anode

2 an upper bound

2 Upper bound= min (upper bound on it’s parent, current value of it’s lowest
cost brother).

2 It explores the sub-tree below the node as long as it contains child nodes whose
costs do not exceed the upper bound.

1 If the current node exceeds this limit, the recursion unwinds back to the
alternative path.

O As the recursion unwinds, RBFS replaces the f~value of each node along the
path with the best f~value of its children.

\e Aziz M. Qaroush - Birzeit University

/
SRBFS -The Algorithm

SRBFS (node: N ,bound B)
IF f(N) > B RETURN f(n)
IF N is a goal, EXIT algorithm
IF N has no children, RETURN Iinfinity
FOR each child Ni of N, F[i] := f(Ni)
sort Ni and F[i] in increasing order of FJi]
IF only one child, F[2] = Infinity
WHILE (F[1] £ B and f[1] < infinity)
F[1] := SRBFS (N1, MIN(B, F[2]))
Insert N1 and F[1] in sorted order
RETURN F[1]

\e Aziz M. Qaroush - Birzeit University

/
Simplified Memory-Bounded A* (SMA*)

J Idea
< Expand the best leaf (just like A*) until memory 1s full

® When memory is full, drop the worst leaf node (the one with the
highest f-value) to accommodate new node.

= [f all leaf nodes have the same f-value, SMA* deletes the oldest
worst leaf and expanding the newest best leaf.
< Avoids re-computation of already explored area

= Keeps information about the best path of a “forgotten™ subtree in
its ancestor.

< Complete if there 1s enough memory for the shortest solution path
< Often better than A* and IDA*

» Trade-off between time and space requirements

\e Aziz M. Qaroush - Birzeit University

Partial Searching

¥ The searches covered so far are characterized as partial searches. Why?
d Partial Searching:

2 Means, it looks through a set of nodes for shortest path to the goal state
using a heuristic function.

< The heuristic function is an estimate, based on domain-specific
information, of how close we are to a goal.

< Nodes: state descriptions, partial solutions

o Edges: action that changes state for some cost

< Solution: sequence of actions that change from the start to the goal state

2 BFS, IDS, UCS, Greedy, A®, etc.

& Ok for small search spaces that are often "toy world" problems

@ Not ok for Hard problems requiring exponential time to find the optimal

solution, 1.e. Traveling Salesperson Problem (TSP)

@ Aziz M. Qaroush - Birzeit University

/

Local Search and Optimization

J Previous searches:

< keep paths in memory, and remember alternatives so search can
backtrack. Solution is a path to a goal.

< Path may be irrelevant, if the final configuration only 1s needed (8-
queens, IC design, network optimization, ...)

J Local Search:

< Use a single current state and move only to neighbors.
< Use little space

< Can find reasonable solutions in large or infinite (continuous) state
spaces for which the other algorithms are not suitable

J Optimization:
< Local search 1s often suitable for optimization problems.

< Search for best state by optimizing an objective function.

\e Aziz M. Qaroush - Birzeit University /

e
Local Search Methods

» Applicable when seeking Goal State & don't care how to get
there. E.g.,

e N-queens,

e map coloring,

e finding shortest/cheapest round trips (TSP, VRP)
e finding models of propositional formulae (SAT)

@ Aziz M. Qaroush - Birzeit University

s

Example: 4 Queen

* States: 4 queens in 4 columns (256 states)
® Operators: move queen in column
® Goal test: no attacks

® Evaluation: h(n) = number of attacks

Q

-
N
A
\‘b
>

e
h=5

N
S&
Q
&

éok

\6 Aziz M. Qaroush - Birzeit University

s

Example: Graph Coloring

1. Start with random coloring of nodes
2. Change color of one node to reduce # of conflicts
3. Repeat 2
iteration A B C D E F # conflicts
1 b a g r b r |2 {[AE, DF}
2 b a g B b r|1 {AE}
3 R g g b b r|0 {}

@ Aziz M. Qaroush - Birzeit University

Example: Traveling Salesperson Problem (TSP)

J A salesman wants to visit a list of cities 5 Cities TSP

< Stopping in each city only once
= Returning to the first city
= Traveling the shortest distance

) Nodes are cities

1 Arcs are labeled with distances between cities

A (B |C |D |E
A |0 |5 [8 |9 (7
B |5 (0 |6 |5 |5
cC |8 |6 (0 |2 |3
D (9 |5 |2 |0 (|4
E |7 |5 |3 |4 |0

\@ Aziz M. Qaroush - Birzeit University

/
Example: Traveling Salesperson Problem (TSP)

J A solution is a permutation of cities, called a tour
2 eg A-B-C-D-E-A
< Length 24

J How many solutions exist?

5 City TSP

< (n-1)!/2 where n = # of cities

< nh= Sresultsin 12 tours
< nh =10 resultsin 181440 tours
< n =20 results in ~6*10!° tours

~N |© o |0 O |p»

o oo o [0 |m

w v oo (e |6
B o N oo o
o |~ |w ;o |~ |m

m | O b >

@ Aziz M. Qaroush - Birzeit University

™

e
Local search

* Key idea (surprisingly simple):

1. Select (random) initial state (generate
an initial guess)

2. Make local modification to improve
current state (evaluate current state
and move to other states)

3. Repeat Step 2 until goal state found (or
out of time)

\@ Aziz M. Qaroush - Birzeit University

e
Local Search Algorithms

e Basic idea: Local search algorithms operate on a single state — current

state — and move to one of its neighboring states.

® The principle: keep a single "current” state, try to improve it
® Therefore: Solution path needs not be maintained. Hence, the search is
(Cl l”
ocal”.

e Two advantages
e Use little memory.

® More applicable in searching large/infinite search space. They find
reasonable solutions in this case.
* Algorithms
* Hill Climbing
® [ocal Beam Search

® Genetics algorithms

\@ Aziz M. Qaroush - Birzeit University

s

Hill-Climbing Search

J *“Continuously moves in the direction of increasing value”
= It terminates when a peak 1s reached.
O Looks one step ahead to determine if any successor 1s better than the current

state; if there 1s, move to the best successor.
) If there exists a successor s for the current state n such that
= h(s) <h(n)
= h(s) <= h(t) for all the successors t of n,
1 Then move from n to s. Otherwise, halt at n.

O Similar to Greedy search in that it uses h, but does not allow backtracking or

jumping to an alternative path since i1t doesn’t “remember” where 1t has been.

LA

- Not complete since the search will terminate at "local minima," "plateaus," and

"ridges."

\@ Aziz M. Qaroush - Birzeit University /

/HiII-CIimbing Search

™

J Perform depth-first, BUT:

instead of left-to-right selection,

J FIRST select the child with the

best heuristic value

@ Aziz M. Qaroush - Birzeit University

Pick a random point in the search
space

Consider all the neighbors of the
current state

Choose the neighbor with the
best quality and move to that
state

Repeat 2 thru 4 until all the
neighboring states are of lower
quality

Return the current state as the
solution state

e

Move the queen
in this column

8 Queens Example

Move the queen
in this column

N NN

Y NNN

Conflicts

2
2
1
2
3
1
2
®
Y

Done!

::wmwm‘ww b

NNNNNYNY
Conflicts

NNNNNNNN

Conflicts

The numbers give the number of conflicts. Choose a move with
the lowest number of conflicts. Randomly break ties. Hill descending.

\@ Aziz M. Qaroush - Birzeit University

/

e

8 Puzzle Example

f(n) = (number of tiles out of place)

\@ Aziz M. Qaroush - Birzeit University

/Drawbacks of Hill Climbing

- Problems:
2 Local Maxima: peaks that aren’t the highest point in the space: No progress

2 Plateaus: the space has a broad flat region that gives the search algorithm no direction
(random selection to solve)

2 Ridges: flat like a plateau, but with drop-offs to the sides; Search may oscillate from side
to side, making little progress

J Remedy:
2 Introduce randomness

objective function global maximum
e Global Maximum

shoukler

\

Jocal maximam

flat" local maximam

»-siite space
curent

state

\6 Aziz M. Qaroush - Birzeit University

s
Drawbacks of Hill Climbing

3 start state (candidate solution)

Neighbor solutions
4 These numbers measure

value, not path length

12 Optimal goal (this
might not be reached)

Suboptimal goal

8 1&

®,

Aziz M. Qaroush - Birzeit University

/Drawbacks of Hill Climbing

In this example,
hill climbing does
not work!

All the nodes on 2|3
the fringe are 5
taking a step 7| g
“backwards”™
(local minima) \
1|2 |3 1
4 5 6 4 3
6 | 7| 8 6 8

\@ Aziz M. Qaroush - Birzeit University

1 Local Beam Search

Q

Q

OO

™

The 1dea 1s that you just keep around those states that are relatively good, and just
forget the rest.

Local beam search: somewhat similar to Hill Climbing:
= Start from N initial states.
= Expand all N states and keep k best successors.

This can avoid some local optima, but not always. It is most useful when the search
space 1s big and the local optima aren't too common.

Local Beam Search Algorithm
Keep track of k states instead of one

o Initially: k£ random states

< Next: determine all successors of k states

» Extend all paths one step
= Reject all paths with loops
= Sort all paths in queue by estimated distance to goal

= If any of successors 1s goal — finished

o Else select k best from successors and repeat.

@ Aziz M. Qaroush - Birzeit University /

s
Local Beam Search: Example

Travelling Salesman Problem

A—®) ® @
D—0©

Keeps track of k states rather than just 1.
k=2 in this example. Start with k randomly
generated states.

\@ Aziz M. Qaroush - Birzeit University

s
Local Beam Search: Example

Travelling Salesman Problem (k=2)

)
)

=

o
(>)

@)

©
©

>Zi
by

(A) A) (A
©) D) D)

L
I
Vi

Generate all successors of all the k states

\@ Aziz M. Qaroush - Birzeit University

e
Local Beam Search: Example

Travelling Salesman Problem (k=2)

A—® ® ®

A—B A—B8 A—B A—B A ® & 6

None of these is a goal state so we continue

\@ Aziz M. Qaroush - Birzeit University

s

Local Beam Search: Example

Travelling Salesman Problem (k=2)

)

P

A—{B A) (B

L&
Az s
oO—@© || O—0© | O—0O ©0—© 00— O0=—C

oL

Select the best k successors from the
complete list

@ Aziz M. Qaroush - Birzeit University

s
Local Beam Search: Example

Travelling Salesman Problem (k=2)

P

A =B A (B
o

Repeat the process until goal found

\@ Aziz M. Qaroush - Birzeit University

e
Genetic Algorithms

® An algorithm is a set of instructions that is repeated to solve a

problem.

® A genetic algorithm conceptually follows steps inspired by the
biological processes of evolution.

® (Genetic Algorithms follow the idea of SURVIVAL OFTHE

FITTEST- Better and better solutions evolve from previous
generations until a near optirnal solution is obtained.

* A genetic algorithm is an iterative procedure that represents its
candidate solutions as strings of genes called chromosomes.

e (Genetic Algorithms are often used to improve the performance of
other Al methods such as expert systems or neural networks.

@ Aziz M. Qaroush - Birzeit University

1.

4

‘Genetic Algorithms: Basic Terminology A

\e Aziz M. Qaroush - Birzeit University /

Chromosomes: Chromosome means a candidate solution to a problem and is
encoded as a string of bits.

Genes: a chromosome can be divided into functional blocks of DNA, genes, which
encode traits, such as eye color. A different settings for a trait (blue, green, brown,
etc.) are called alleles. Each gene 1s located at a particular position, called a locus,

on the chromosome. Genes are single bits or short blocks of adjacent bits.

Genome: the complete collection of chromosomes is called the organism’s
genome.

Population: A set of Chromosomes (Collection of Solutions)

Genotype: a set of genes contained in a genome.

Crossover (or recombination): occurs when two chromosomes bump into one
another exchanging chunks of genetic information, resulting in an offspring.

Mutation: offspring is subject to mutation, in which elementary bits of DNA are
changed from parent to offspring. In GAs, crossover and mutation are the two most
widely used operators.

Fitness/Evaluation Function: the probability that the sates will live to reproduce.

e

Genetic Algorithms: Basic Terminology

® Before we can apply Genetic Algorithm to a problem,
we need to answer:

- How 1s an individual represented?
- What is theﬁtnessfunction?
- How are individuals selected?

- How do individuals reproduce?

\@ Aziz M. Qaroush - Birzeit University

Representing an Individual

® An individual is data structure representing the “genetic

structure” of a possible solution.

® Genetic structure consists of an alphabet (usually 0,1)

* Binary Encoding
® Most Common — string of bits, 0 or 1.
Chrom:A=1011001011
Chrom:B=1111110000
® Gives you many possibilities
® Example Problem: Knapsack problem

® The problem: there are things with given value and size. The knapsack
has given capacity. Select things to maximize the values.

® Encoding: Each bit says, if the corresponding thing is in the knapsack

@ Aziz M. Qaroush - Birzeit University

e

Representing an Individual

* Permutation Encoding
® Used in “ordering problems”

® Every chromosome is a string of numbers, which represents
number is a sequence.

ChromA: 153264798
ChromB: 857723149
® Example: Travelling salesman problem
® The problem: cities that must be visited.

o Encoding says order of cities in which salesman willl visit.

\@ Aziz M. Qaroush - Birzeit University

/How offspring are produced A

® Reproduction- Through reproduction, genetic algorithms produce new

generations of improved solutions by selecting parents with higher
fitness ratings or by giving such parents a greater probability of being

contributors and by using random selection

® Crossover- Many genetic algorithms use strings of binary symbols for
chromosomes, as in our Knapsack example, to represent solutions.
Crossover means choosing a random position in the string (say, after 2
digits) and exchanging the segments either to the right or to the left of
this point with another string partitioned similarly to produce two new

off spring.

® Mutation- Mutation is an arbitrary change in a situation. Sometimes it is
used to prevent the algorithrn from getting stuck. The procedure changes
altoaOtoalinstead of duplicating them. This change occurs with a

very low probability (say 1 in 1000)

\@ Aziz M. Qaroush - Birzeit University /

/Crossover Example 1

Parent A 011011

Parent B 101100

“Mate the parents by splitting each number as shown between the
second and third digits (position is randomly selected)

01*%1011 10*1100

Now combine the first digits of A with the last digits of B, and the first
digits of B with the last digits of A

This gives you two new offspring

011100 101011

If these new solutions, or offspring, are better solutions than the parent
solutions, the system will keep these as more optimal solutions and
they will become parents. This is repeated until some condition (for
example number of populations or improvement of the best solution)
is satisfied.

\@ Aziz M. Qaroush - Birzeit University /

s

Crossover Example 2

Reproduction
(Crossover)

Parent state A

11101-

Parent state B

Parent state A o

10011000
Child of A and B

\@ Aziz M. Qaroush - Birzeit University

Parent state B °

< N
Mutation Example

Parent state A

Parent state A

e HOOROOE

10011101 | 10011111

X
/‘ Child of A e G e @ 6 @ 0

Child of A

Mutation

Aziz M. Qaroush - Birzeit University /

Genetic Algorithm Operators
Mutation and Crossover

Parent 1

Parent 2

Child 1

Child 2

101

0111

=

110

0011

101

0011

/V

110

01104

— Mutation

\@ Aziz M. Qaroush - Birzeit University

Selection Criteria

* Fitness proportionate selection, rank selection methods.

® Fitness proportionate — each individual, I, has the probability
fitness(l)/sum_over_all_individual_j Fitness(j), where Fitness(I) is
the fitness function value for individual I.
Represents a rank of the “representation”
It is usually a real number.
E.g. the length of the route in the traveling salesperson problem

is a good measure, because the shorter the route, the better the

solution

® Rank selection — sorts individual by fitness and the probability
that an individual will be selected is proportional to its rank in
this sorted list.

\@ Aziz M. Qaroush - Birzeit University

/
Outline of the Basic Genetic Algorithm

1. [Start] Generate random population of n

chromosomes (suitable solutions for the problem)

2. |Fitness] Evaluate the fitness f(x) of each

chromosome x in the population

3. [New population] Create a new population by
repeating following steps until the new population is
complete

4. [Selection] Select two parent chromosomes

from a population according to their fitness (the
better fitness, the bigger chance to be selected) The
idea is to choose the better parents.

\@ Aziz M. Qaroush - Birzeit University

/
Outline of the Basic Genetic Algorithm

5. [Crossover] With a crossover probability cross over the
parents to form a new offspring (children). It no crossover
was performed, offspring is an exact copy of parents.

6. [Mutation]| With a mutation probability mutate new
offspring at each locus (position in chromosome).

7. |Accepting] Place new offspring in a new
population

8. [Replace] Use new generated population for a further run
of algorithm

9. [Test] If the end condition is satistied, stop, and return the
best solution in current population

10. [Loop] Go to step 2

\@ Aziz M. Qaroush - Birzeit University

Step 1

v

Describe
Problem

\ 4
Generate
Initial
Solutions

l

Test: is initial

Step 2

Step 3

Yes

A 4

" Flow Diagram of the Genetic Algorithm Process

solution good enough?

lNo

Select parents
to reproduce

A 4

Apply crossover process
and create a set of offspring

Step 4
Step 5

\@ Aziz M. Qaroush - Birzeit University

Apply random mutation

Stop

™

/
Example: The Knapsack Problem

® You are going on an overnight hike and have a number of
items that you could take along.

* Each item has a weight (in pounds) and a benetfit or value
to you on the hike(for measurements sake let’s say, in US
dollars), and you can take one of each item at most.

® Thereisa capacity limit on the Weight you can carry
(constraint).

® This problem only illustrates one constraint, but in
reality there could be many constraints including
volume, time, etc.

\@ Aziz M. Qaroush - Birzeit University

e

GA Example: The Knapsack Problem

e ltem: 1 2 3 456 7

e Benefit: 5 8 3 27 9 14

e Weight: 7 8 410 4 6 4

e Knapsack holds a maximum of 22 pounds
 Fill it to get the maximum benefit

e Solutions take the form of a string of 1’s and 0’s. Also known
as strings of genes called Chromosomes

e 0101010
e 1101100
e 0100111

\@ Aziz M. Qaroush - Birzeit University

Example: The Knapsack Problem

® We represent a solution as a string of seven 1s and Os and the
fitness function as the total benefit, which is the sum of the
gene values in a string solution times their representative
benefit coefficient.

® The method generates a set of random solutions (initial
parents), uses total benefit as the fitness function and selects the
parents randomly to create generations of offspring by
crossover and mutation.

® Possible solutions generated by the system using Reproduction,
Crossover, or Mutations

e 0101010
e 1101100
e 0100110

\@ Aziz M. Qaroush - Birzeit University

e
Knhapsack Example

Solution 1
Item 1 (2 |3 |4
Solution 0 |1 |0 |1
Benefit |5 (8 (3 |2
Weight (7 (8 |4 |10

® Benefit 8 +2 +9 =19
'Weight S+ 10+ 6 =24

@ Aziz M. Qaroush - Birzeit University

e

Knhapsack Example

Solution 2
Item 1 2 3 |4 6 |7
Solution |1 |1 0O O 0O 0
Benefit |5 |8 3 |2 9 |4
Weight (7 |8 4 |10 6 |4

o

® Benefit5 + 8 +7 =20
‘Weight7-|—8-|—4: 19

Aziz M. Qaroush - Birzeit University

e
Knhapsack Example

Solution 3
Item 1 |2 |3 5
Solution 0 (1 |0 1
Benefit |5 (8 |3 7
Weight (7 8 |4 4

® Benefit8 + 7+ 9 +4 =28
o Weight 8 + 4 + 6 + 4 = 22

@ Aziz M. Qaroush - Birzeit University

/
Knapsack Example

® Solution 3 is clearly the best solution and has met our
conditions, therefore, item number 2, 5, 6, and 7 will be
taken on the hiking trip. We will be able to get the most
benefit out of these items while still having weight equal
to 22 pounds.

® Thisis a simple example illustrating a genetic algorithm

approach.

\@ Aziz M. Qaroush - Birzeit University

/8 Queen Example

>~
>~

24748552 &/)%: 32752411
32752411 | 23 29% 24748552
24415124 | 20 26% 32752411
32543213 | 11 14% 24415124
Fithess Selection Fairs

32748552

s274d1)s2

24752411

24752411

32952124

1|5 2124

242415411

24415417

Cross-0ver

O Fitness function: number of non-attacking pairs of queens (min =0, max =8 x 7/2 =

28)
24/(24+23+20+11) = 31%
23/(24+23+20+11) = 29% etc

oo

\@ Aziz M. Qaroush - Birzeit University

e

Summery

3

Q

U

Best-first search = general search, where the minimum-cost nodes (according to some
measure) are expanded first.

Greedy search = best-first with the estimated cost to reach the goal as a heuristic
measure.

- Generally faster than uninformed search
- Not optimal, Not complete.
A* search = best-first with measure = path cost so far + estimated path cost to goal.
- Combines advantages of uniform-cost and greedy searches
- Complete, optimal and optimally efficient
- Space complexity still exponential

Time complexity of heuristic algorithms depend on quality of heuristic function.
Good heuristics can sometimes be constructed by examining the problem definition or
by generalizing from experience with the problem class.

Iterative improvement algorithms keep only a single state in memory.

Can get stuck 1n local extreme; simulated annealing provides a way to escape local
extreme, and 1s complete and optimal given a slow enough cooling schedule.

\@ Aziz M. Qaroush - Birzeit University

s
Summery

* Hill Climbing
1. Moves in the direction of increasing value.
2. Terminates when 1t reaches a “peak™.
3. Does not look beyond immediate neighbors

. Local beam search:

1. Start with k randomly generated nodes.
2. Generate k successors of each.
3. Keep the best k out of the them.

. Genetic algorithms:
1. Start with k randomly generated nodes called the population.

2. Generate successors by combining pairs of nodes.
3. Allow mutations.

\@ Aziz M. Qaroush - Birzeit University

