
Uninformed Search

Artificial Intelligence

ENCS 434

1 Aziz M. Qaroush - Birzeit University

Overview

 Search as Problem-Solving
 problem formulation

 problem types

 Uninformed Search
 breadth-first

 depth-first

 depth-limited search

 iterative deepening

 bi-directional search

2 Aziz M. Qaroush - Birzeit University

Problem-Solving Agents

 agents whose task it is to solve a particular problem

 problem formulation

 what are the possible states of the world relevant for solving the

problem

 what information is accessible to the agent

 how can the agent progress from state to state

 goal formulation

 what is the goal state

 what are important characteristics of the goal state

 how does the agent know that it has reached the goal

 are there several possible goal states

 are they equal or are some more preferable

4 Aziz M. Qaroush - Birzeit University

Well-Defined Problems

6 Aziz M. Qaroush - Birzeit University

Selecting States and Actions

 states describe distinguishable stages during the problem-

solving process

 dependent on the task and domain

 actions move the agent from one state to another one by

applying an operator to a state

 dependent on states, capabilities of the agent, and properties

of the environment

 choice of suitable states and operators

 can make the difference between a problem that can or cannot

be solved (in principle, or in practice)

7 Aziz M. Qaroush - Birzeit University

Example Problems

8 Aziz M. Qaroush - Birzeit University

Example Problems

9 Aziz M. Qaroush - Birzeit University

n-Queens

 Put n queens on an n × n board with no two queens on the

same row, column, or diagonal

10 Aziz M. Qaroush - Birzeit University

8-Queens

 incremental formulation

 states

 arrangement of up to 8 queens on the board

 initial state

 empty board

 successor function (operators)

 add a queen to any square

 goal test

 all queens on board

 no queen attacked

 path cost

 irrelevant (all solutions equally valid)

 Properties: 3*1014 possible sequences; can be

reduced to 2,057

11 Aziz M. Qaroush - Birzeit University

12

The River Problem

 The River Problem:
F=Farmer W=Wolf D=Duck C=Corn /=River

 How can the farmer safely transport the wolf, the duck and the corn to the
opposite shore?

FWCD/-

-/FWCD

Aziz M. Qaroush - Birzeit University

13

The River Problem

 Problem formulation:

 State representation: location of farmer and items in both sides of river

 [items in South shore / items in North shore] : (FWDC/-, FD/WC, C/FWD …)

 Initial State: farmer, wolf, duck and corn in the south shore FWDC/-

 Goal State: farmer, duck and corn in the north shore

 -/FWDC

 Operators: the farmer takes in the boat at most one item from one side to the other side

(F-Takes-W, F-Takes-D, F-Takes-C, F-Takes-Self [himself only])

 Path cost: the number of crossings

Aziz M. Qaroush - Birzeit University

Route Finding

 states

 locations

 initial state

 starting point

 successor function (operators)

 move from one location to another

 goal test

 arrive at a certain location

 path cost

 may be quite complex

 money, time, travel comfort, scenery, ...

14 Aziz M. Qaroush - Birzeit University

Romania Map

 In Romania, on vacation, Currently in Arad.

 Flight leaves tomorrow from Bucharest.

 Formulate goal:

 Be in Bucharest

 Formulate problem:

 States: various cities

 Operators: drive between cities

 Find solution:

 Sequence of cities, such that total

 driving distance is minimized,

 e.g. Arad, Sibiu, Fagaras, Bucharest.

 Finding shortest path

 Action: Move from city X to city Y

 State: Which city you’re on

 Goal Test: Am I in Bucharest?

 Cost: 1 for each city I visit

15 Aziz M. Qaroush - Birzeit University

Romania Map

16 Aziz M. Qaroush - Birzeit University

Robotic assembly

 states?: real-valued coordinates of robot joint angles parts of the object to
be assembled

 actions?: continuous motions of robot joints

 goal test?: complete assembly

 path cost?: time to execute

17 Aziz M. Qaroush - Birzeit University

Searching for Solutions

 traversal of the search space

 from the initial state to a goal state

 legal sequence of actions as defined by successor function (operators)

 general procedure

 check for goal state

 expand the current state

 determine the set of reachable states

 return “failure” if the set is empty

 select one from the set of reachable states

 move to the selected state

 a search tree is generated

 nodes are added as more states are visited

18 Aziz M. Qaroush - Birzeit University

Search Terminology

 search tree

 generated as the search space is traversed

 the search space itself is not necessarily a tree, frequently it is a graph

 the tree specifies possible paths through the search space

 expansion of nodes

 as states are explored, the corresponding nodes are expanded by applying the

successor function

 this generates a new set of (child) nodes

 the fringe (frontier) is the set of nodes not yet visited

 newly generated nodes are added to the fringe

 search strategy

 determines the selection of the next node to be expanded

 can be achieved by ordering the nodes in the fringe

 e.g. queue (FIFO), stack (LIFO), “best” node w.r.t. some measure (cost)

19 Aziz M. Qaroush - Birzeit University

20

Search Methods - State space:

A problem is solved by moving from the
initial state to the goal state by applying valid
operators in sequence.

 Thus the state space is the set of states

reachable from a particular initial state.

Aziz M. Qaroush - Birzeit University

21

State space – Example 1

F W D C

W D C

F

D C

F W

W C

F D

W D

F C

F W C

D

F W D C

W

F D C

F W C

D

W C

F D

C

F W D

F C

W D

F D C

W

D

F W C

F W D

C

F W

D C

F W C

D

W D

F C

W

F D C

C

F W D

D C

F W

D

F W C

F D C

W

F W D

C

F D

W C

F W D C

D

F W C

Initial state

Goal state

Dead ends

Illegal states

repeated state
intermediate

state

Aziz M. Qaroush - Birzeit University

The River Problem

22

State space – Example 1

 Searching for a solution:

 We start with the initial state and keep

using the operators to expand the parent
nodes till we find a goal state.

 …but the search space might be large…

 …really large…

 So we need some systematic way to
search.

F W D C

W D C

F

D C

F W

W C

F D

W D

F C

F W C

D

F W D C

W

F D C

F W C

D

W C

F D

C

F W D

F C

W D

F D C

W

D

F W C

F W D

C

F W

D C

F W C

D

W D

F C

W

F D C

C

F W D

D C

F W

D

F W C

F D C

W

F W D

C

F D

W C

F W D C

D

F W C

Aziz M. Qaroush - Birzeit University

23

State space – Example 1

 Problem solution:

 A problem solution is simply the set of

operators (actions) needed to reach the goal
state from the initial state:

 F-Takes-D, F-Takes-Self, F-Takes-W,

 F-Takes-D, F-Takes-C, F-Takes-Self,

 F-Takes-D.

F W D C

W D C

F

D C

F W

W C

F D

W D

F C

F W C

D

F W D C

W

F D C

F W C

D

W C

F D

C

F W D

F C

W D

F D C

W

D

F W C

F W D

C

F W

D C

F W C

D

W D

F C

W

F D C

C

F W D

D C

F W

D

F W C

F D C

W

F W D

C

F D

W C

F W D C

D

F W C

Aziz M. Qaroush - Birzeit University

State space – Example 2

Aziz M. Qaroush - Birzeit University 24

 A hungry monkey is in a room.

 Bananas have been hung from the

center of the ceiling of the room.

 In the corner of the room there is a

chair.

 The monkey wants the bananas but

he can’t reach them.

 What shall he do?

State space – Example 2

Aziz M. Qaroush - Birzeit University 25

If the monkey is cleaver enough, he can reach the bananas by

placing the chair directly below the bananas and climbing on

the top of the chair.

State space – Example 2

Aziz M. Qaroush - Birzeit University 26

State space – Example 2

Aziz M. Qaroush - Birzeit University 27

Solution

State space – Example 3

The 8 puzzle search space consists of 8! states (40320)

29

Generic Search Algorithms

 Basic Idea: Off-line exploration of state space by generating

successors of already-explored states (also known as

expanding states).

Function GENERAL-SEARCH (problem, strategy)

 returns a solution or failure

 Initialize the search tree using the initial state of problem

 loop do

 if there are no candidates for expansion, then return failure

 Choose a leaf node for expansion according to strategy

 if node contains goal state then return solution

 else expand node and add resulting nodes to search tree.

 end

Aziz M. Qaroush - Birzeit University

30

Implementation of Generic Search Algorithm

function general-search(problem, QUEUEING-FUNCTION)

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))

loop do

 if EMPTY(nodes) then return "failure"

 node = REMOVE-FRONT(nodes)

 if problem.GOAL-TEST(node.STATE) succeeds then return solution(node)

 nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))

 end

A nice fact about this search algorithm is that we can use a single algorithm to do

many kinds of search. The only difference is in how the nodes are placed in the

queue. The choice of queuing function is the main feature.

Aziz M. Qaroush - Birzeit University

Implementation: states vs. nodes

 A state is a (representation of) a physical configuration
 A node is a data structure constituting part of a search tree includes state,

parent node, action, path cost g(x), depth

 The Expand function creates new nodes, filling in the various fields and
using the SuccessorFn of the problem to create the corresponding
states.

31 Aziz M. Qaroush - Birzeit University

Search Strategies

32 Aziz M. Qaroush - Birzeit University

33

What Criteria are used to Compare different

search techniques ?

As we are going to consider different techniques to search the problem space,
we need to consider what criteria we will use to compare them.

 Completeness: Is the technique guaranteed to find an answer (if there is
one).

 Optimality/Admissibility : does it always find a least-cost solution?

 - an admissible algorithm will find a solution with minimum cost

 Time Complexity: How long does it take to find a solution.

 Space Complexity: How much memory does it take to find a solution.

Aziz M. Qaroush - Birzeit University

34

Time and Space Complexity ?

Time and space complexity are measured in terms of:

 The average number of new nodes we create when
expanding a new node is the (effective) branching factor b.

 The (maximum) branching factor b is defined as the
maximum nodes created when a new node is expanded.

 The length of a path to a goal is the depth d.

 The maximum length of any path in the state space m.

Aziz M. Qaroush - Birzeit University

Search Cost and Path Cost

 the search cost indicates how expensive it is to generate a

solution

 time complexity (e.g. number of nodes generated) is usually

the main factor

 sometimes space complexity (memory usage) is considered as

well

 path cost indicates how expensive it is to execute the

solution found in the search

 distinct from the search cost, but often related

 total cost is the sum of search cost and path costs

35 Aziz M. Qaroush - Birzeit University

Breadth-First Search

 all the nodes reachable from the current node are explored

first

 achieved by the TREE-SEARCH method by appending newly

generated nodes at the end of the search queue

function BREADTH-FIRST-SEARCH(problem) returns solution

 return TREE-SEARCH(problem, FIFO-QUEUE())

b branching factor

d depth of the tree

Time Complexity bd+1

Space Complexity bd+1

Completeness yes (for finite b)

Optimality yes (for non-negative

path costs)

36 Aziz M. Qaroush - Birzeit University

37

Breadth First Search

 Application1:

 Given the following state space (tree search), give the sequence of

visited nodes when using BFS (assume that the nodeO is the goal

state):

A

B C E D

F G H I J

K L

O

M N

Aziz M. Qaroush - Birzeit University

38

Breadth First Search

 A,

A

B C E D

Aziz M. Qaroush - Birzeit University

39

Breadth First Search

 A,

 B,

A

B C E D

F G

Aziz M. Qaroush - Birzeit University

40

Breadth First Search

 A,

 B,C

A

B C E D

F G H

Aziz M. Qaroush - Birzeit University

41

Breadth First Search

 A,

 B,C,D

A

B C E D

F G H I J

Aziz M. Qaroush - Birzeit University

42

Breadth First Search

 A,

 B,C,D,E

A

B C E D

F G H I J

Aziz M. Qaroush - Birzeit University

43

Breadth First Search

 A,

 B,C,D,E,

 F,

A

B C E D

F G H I J

Aziz M. Qaroush - Birzeit University

44

Breadth First Search

 A,

 B,C,D,E,

 F,G

A

B C E D

F G H I J

K L

Aziz M. Qaroush - Birzeit University

45

Breadth First Search

 A,

 B,C,D,E,

 F,G,H

A

B C E D

F G H I J

K L

Aziz M. Qaroush - Birzeit University

46

Breadth First Search

 A,

 B,C,D,E,

 F,G,H,I

A

B C E D

F G H I J

K L M

Aziz M. Qaroush - Birzeit University

47

Breadth First Search

 A,

 B,C,D,E,

 F,G,H,I,J,

A

B C E D

F G H I J

K L M N

Aziz M. Qaroush - Birzeit University

48

Breadth First Search

 A,

 B,C,D,E,

 F,G,H,I,J,

 K,

 A

B C E D

F G H I J

K L M N

Aziz M. Qaroush - Birzeit University

49

Breadth First Search

 A,

 B,C,D,E,

 F,G,H,I,J,

 K,L

A

B C E D

F G H I J

K L

O

M N

Aziz M. Qaroush - Birzeit University

50

Breadth First Search

 A,

 B,C,D,E,

 F,G,H,I,J,

 K,L, M,

A

B C E D

F G H I J

K L

O

M N

Aziz M. Qaroush - Birzeit University

51

Breadth First Search

 A,

 B,C,D,E,

 F,G,H,I,J,

 K,L, M,N,

A

B C E D

F G H I J

K L

O

M N

Aziz M. Qaroush - Birzeit University

52

Breadth First Search

 A,

 B,C,D,E,

 F,G,H,I,J,

 K,L, M,N,

 Goal state: O

 A

B C E D

F G H I J

K L

O

M N

Aziz M. Qaroush - Birzeit University

53

Breadth First Search

 The returned solution is the sequence of operators in the path:

 A, B, G, L, O

A

B C E D

F G H I J

K L

O

M N

Aziz M. Qaroush - Birzeit University

Breadth-First Search: Evaluation

54 Aziz M. Qaroush - Birzeit University

Breadth-First Search: Evaluation

55 Aziz M. Qaroush - Birzeit University

Uniform-Cost -First

 the nodes with the lowest cost are explored first

 similar to BREADTH-FIRST, but with an evaluation of the

cost for each reachable node

 g(n) = path cost(n) = sum of individual edge costs to reach

the current node

function UNIFORM-COST-SEARCH(problem) returns solution

 return TREE-SEARCH(problem, COST-FN, FIFO-QUEUE())

Time Complexity bC*/e

Space Complexity bC*/e

Completeness yes (finite b, step costs >= e)

Optimality yes

b branching factor

C* cost of the optimal solution

e minimum cost per action

56 Aziz M. Qaroush - Birzeit University

Uniform-Cost Snapshot

Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 3

7

2

2 2 4

5 4 4 4 3 6 9

3 4 7 2 4 8 6 4 3 4 2 3 9 2 5 8

Fringe: [27(10), 4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 15(16), 21(18)]

 + [22(16), 23(15)]

Edge Cost 9

57 Aziz M. Qaroush - Birzeit University

Uniform Cost Fringe Trace

1. [1(0)]

2. [3(3), 2(4)]

3. [2(4), 6(5), 7(7)]

4. [6(5), 5(6), 7(7), 4(11)]

5. [5(6), 7(7), 13(8), 12(9), 4(11)]

6. [7(7), 13(8), 12(9), 10(10), 11(10), 4(11)]

7. [13(8), 12(9), 10(10), 11(10), 4(11), 14(13), 15(16)]

8. [12(9), 10(10), 11(10), 27(10), 4(11), 26(12), 14(13), 15(16)]

9. [10(10), 11(10), 27(10), 4(11), 26(12), 25(12), 14(13), 24(13), 15(16)]

10. [11(10), 27(10), 4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 15(16), 21(18)]

11. [27(10), 4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 23(15), 15(16), 22(16), 21(18)]

12. [4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 23(15), 15(16), 23(16), 21(18)]

13. [25(12), 26(12), 14(13), 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)]

14. [26(12), 14(13), 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)]

15. [14(13), 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)]

16. [24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 29(16),21(18), 28(21)]

 Goal reached!

Notation: [Bold+Yellow: Current Node; White: Old Fringe Node; Green+Italics: New Fringe Node].

Assumption: New nodes with the same cost as existing nodes are added after the existing node.

58 Aziz M. Qaroush - Birzeit University

Uniform Cost Search: Evaluation

59 Aziz M. Qaroush - Birzeit University

Breadth-First vs. Uniform-Cost

 breadth-first always expands the shallowest node

 only optimal if all step costs are equal

 uniform-cost considers the overall path cost

 optimal for any (reasonable) cost function
 non-zero, positive

 gets bogged down in trees with many fruitless, short branches
 low path cost, but no goal node

 both are complete for non-extreme problems

 finite number of branches

 strictly positive search function

60 Aziz M. Qaroush - Birzeit University

Depth-First

 continues exploring newly generated nodes

 achieved by the TREE-SEARCH method by appending newly

generated nodes at the beginning of the search queue

 utilizes a Last-In, First-Out (LIFO) queue, or stack

function DEPTH-FIRST-SEARCH(problem) returns solution

 return TREE-SEARCH(problem, LIFO-QUEUE())

b branching factor

m maximum path length

Time Complexity bm

Space Complexity b*m

Completeness no (for infinite branch length)

Optimality no

61 Aziz M. Qaroush - Birzeit University

62

Depth First Search (DFS)

 Application2:

 Given the following state space (tree search), give the sequence of

visited nodes when using DFS (assume that the nodeO is the goal

state):

A

B C E D

F G H I J

K L

O

M N

Aziz M. Qaroush - Birzeit University

63

Depth First Search

 A,

A

B C E D

Aziz M. Qaroush - Birzeit University

64

Depth First Search

 A,B,

A

B C E D

F G

Aziz M. Qaroush - Birzeit University

65

Depth First Search

 A,B,F,

A

B C E D

F G

Aziz M. Qaroush - Birzeit University

66

Depth First Search

 A,B,F,

 G,

A

B C E D

F G

K L

Aziz M. Qaroush - Birzeit University

67

Depth First Search

 A,B,F,

 G,K,

A

B C E D

F G

K L

Aziz M. Qaroush - Birzeit University

68

Depth First Search

 A,B,F,

 G,K,

 L,

A

B C E D

F G

K L

O

Aziz M. Qaroush - Birzeit University

69

Depth First Search

 A,B,F,

 G,K,

 L, O: Goal State

A

B C E D

F G

K L

O

Aziz M. Qaroush - Birzeit University

70

Depth First Search

The returned solution is the sequence of operators in the path:

 A, B, G, L, O

A

B C E D

F G

K L

O

Aziz M. Qaroush - Birzeit University

Depth-First Search: Evaluation

71 Aziz M. Qaroush - Birzeit University

Time Complexity of Depth-first

72 Aziz M. Qaroush - Birzeit University

Space Complexity of Depth-first

73 Aziz M. Qaroush - Birzeit University

Depth-First vs. Breadth-First

 depth-first goes off into one branch until it reaches a leaf node

 not good if the goal is on another branch

 neither complete nor optimal

 uses much less space than breadth-first

 much fewer visited nodes to keep track of

 smaller fringe

 breadth-first is more careful by checking all alternatives

 complete and optimal

 under most circumstances

 very memory-intensive

74 Aziz M. Qaroush - Birzeit University

Depth-Limited Search

 similar to depth-first, but with a limit

 overcomes problems with infinite paths

 sometimes a depth limit can be inferred or estimated from the problem
description
 in other cases, a good depth limit is only known when the problem is solved

 based on the TREE-SEARCH method

 must keep track of the depth

function DEPTH-LIMITED-SEARCH(problem, depth-limit) returns solution

 return TREE-SEARCH(problem, depth-limit, LIFO-QUEUE())

b branching factor

l depth limit

Time Complexity bl

Space Complexity b*l

Completeness no (goal beyond l, or infinite branch length)

Optimality no

75 Aziz M. Qaroush - Birzeit University

Iterative Deepening

 applies LIMITED-DEPTH with increasing depth limits

 combines advantages of BREADTH-FIRST and DEPTH-FIRST methods

 many states are expanded multiple times

 doesn’t really matter because the number of those nodes is small

 in practice, one of the best uninformed search methods

 for large search spaces, unknown depth

function ITERATIVE-DEEPENING-SEARCH(problem) returns solution
 for depth := 0 to unlimited do

 result := DEPTH-LIMITED-SEARCH(problem, depth-limit)
 if result != cutoff then return result

b branching factor

d tree depth

Time Complexity bd

Space Complexity b*d

Completeness yes

Optimality yes (all step costs identical)

76 Aziz M. Qaroush - Birzeit University

Iterative deepening search

77 Aziz M. Qaroush - Birzeit University

Iterative deepening search l =1

78 Aziz M. Qaroush - Birzeit University

Iterative deepening search l =2

79 Aziz M. Qaroush - Birzeit University

Iterative deepening search l =3

80 Aziz M. Qaroush - Birzeit University

Bi-directional Search

 search simultaneously from two directions

 forward from the initial and backward from the goal state

 may lead to substantial savings if it is applicable

 has severe limitations

 predecessors must be generated, which is not always possible

 search must be coordinated between the two searches

 one search must keep all nodes in memory

b branching factor

d tree depth

Time Complexity bd/2

Space Complexity bd/2

Completeness yes (b finite, breadth-first for both directions)

Optimality yes (all step costs identical, breadth-first for

both directions)

81 Aziz M. Qaroush - Birzeit University

Improving Search Methods

 make algorithms more efficient

 avoiding repeated states

 utilizing memory efficiently

 use additional knowledge about the problem

 properties (“shape”) of the search space

 more interesting areas are investigated first

 pruning of irrelevant areas

 areas that are guaranteed not to contain a solution can be discarded

82 Aziz M. Qaroush - Birzeit University

Comparing Uninformed Search Strategies

83 Aziz M. Qaroush - Birzeit University

