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Overview 

 Search as Problem-Solving 
 problem formulation 

 problem types 

 

 Uninformed Search 
 breadth-first 

 depth-first 

 depth-limited search 

 iterative deepening 

 bi-directional search 
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Problem-Solving Agents 

 agents whose task it is to solve a particular problem 

 problem formulation 

 what are the possible states of the world relevant for solving the 

problem 

 what information is accessible to the agent 

 how can the agent progress from state to state 

 

 goal formulation 

 what is the goal state 

 what are important characteristics of the goal state 

 how does the agent know that it has reached the goal 

 are there several possible goal states 

 are they equal or are some more preferable 
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Well-Defined Problems 
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Selecting States and Actions 

 states describe distinguishable stages during the problem-

solving process 

 dependent on the task and domain 

 

 actions move the agent from one state to another one by 

applying an operator to a state 

 dependent on states, capabilities of the agent, and properties 

of the environment 

 

 choice of suitable states and operators  

 can make the difference between a problem that can or cannot 

be solved (in principle, or in practice) 
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Example Problems 
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Example Problems 
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n-Queens 

 Put n queens on an n × n board with no two queens on the 

same row, column, or diagonal 
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8-Queens 

 incremental formulation 

 states 

 arrangement of up to 8 queens on the board 

 initial state 

 empty board 

 successor function (operators) 

 add a queen to any square 

 goal test 

 all queens on board 

 no queen attacked 

 path cost 

 irrelevant (all solutions equally valid) 

 
 Properties: 3*1014 possible sequences; can be 

reduced to 2,057 
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The River Problem 

 The River Problem: 
F=Farmer  W=Wolf  D=Duck  C=Corn  /=River 

      

 

 

 

     

 

 

 

   How can the farmer safely transport the wolf, the duck and the corn to the 
opposite shore? 

FWCD/- 

-/FWCD 
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The River Problem 

 Problem formulation: 

 
 State representation: location of farmer and items in both sides of river  

 [items in South shore / items in North shore] : (FWDC/-, FD/WC, C/FWD …) 

 

 Initial State: farmer, wolf, duck and corn in the south shore         FWDC/- 

 

 Goal State: farmer, duck and corn in the north shore  

     -/FWDC 

 

 Operators: the farmer takes in the boat at most one item from one side to the other side  

(F-Takes-W, F-Takes-D, F-Takes-C, F-Takes-Self [himself only]) 

 

 Path cost: the number of crossings 
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Route Finding 

 states 

 locations 

 initial state 

 starting point 

 successor function (operators) 

 move from one location to another 

 goal test 

 arrive at a certain location 

 path cost 

 may be quite complex 

 money, time, travel comfort, scenery, ... 
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Romania Map 

 In Romania, on vacation, Currently in Arad. 

 Flight leaves tomorrow from Bucharest. 

 Formulate goal:  

  Be in Bucharest 

 Formulate problem: 

  States: various cities 

 Operators: drive between cities 

 Find solution: 

   Sequence of cities, such that total 

   driving distance is minimized, 

   e.g. Arad, Sibiu, Fagaras, Bucharest. 

 Finding shortest path 

    Action: Move from city X to city Y 

    State: Which city you’re on 

    Goal Test: Am I in Bucharest? 

    Cost: 1 for each city I visit 
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Romania Map 

16 Aziz M. Qaroush - Birzeit University 



Robotic assembly 

 
 
 
 
 
 

 states?: real-valued coordinates of robot joint angles parts of the object to 
be assembled 
 

 actions?: continuous motions of robot joints 
 

 goal test?: complete assembly 
 

 path cost?: time to execute 
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Searching for Solutions 

 traversal of the search space  

 from the initial state to a goal state 

 legal sequence of actions as defined by successor function (operators) 

 

 general procedure 

 check for goal state 

 expand the current state 

 determine the set of reachable states 

 return “failure” if the set is empty 

 select one from the set of reachable states 

 move to the selected state 

 

 a search tree is generated 

 nodes are added as more states are visited 
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Search Terminology 

 search tree 

 generated as the search space is traversed 

 the search space itself is not necessarily a tree, frequently it is a graph 

 the tree specifies possible paths through the search space 

 

 expansion of nodes 

 as states are explored, the corresponding nodes are expanded by applying the 

successor function 

 this generates a new set of (child) nodes 

 the fringe (frontier) is the set of nodes not yet visited 

 newly generated nodes are added to the fringe 

 

 search strategy 

 determines the selection of the next node to be expanded 

 can be achieved by ordering the nodes in the fringe 

 e.g. queue (FIFO), stack (LIFO), “best” node w.r.t. some measure (cost) 
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Search Methods - State space:  

A problem is solved by moving from the 
initial state to the goal state by applying valid 
operators in sequence.  

 
 Thus the state space is the set of states 

reachable from a particular initial state. 
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State space – Example 1  

F W D C

W D C

F

D C

F W

W C

F D

W D

F C

F W C

D

F W D C

W

F D C

F W C

D

W C

F D

C

F W D

F C

W D

F D C

W

D

F W C

F W D

C

F W

D C

F W C

D

W D

F C

W

F D C

C

F W D

D C

F W

D

F W C

F D C

W

F W D

C

F D

W C

F W D C

D

F W C

Initial state 

Goal state 

Dead ends 

Illegal states 

repeated state 
intermediate 

state 

Aziz M. Qaroush - Birzeit University 

The River Problem 



22 

State space – Example 1  

 Searching for a solution: 
 
 We start with the initial state and keep 

using the operators to expand the parent 
nodes till we find a goal state. 

 
 

 …but the search space might be large… 

 

 …really large… 

 

 So we need some systematic way to 
search. 
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State space – Example 1  

 Problem solution: 
 
 A problem solution is simply the set of 

operators (actions) needed to reach the goal 
state from the initial state: 

 
 

 F-Takes-D, F-Takes-Self, F-Takes-W,  

 

 F-Takes-D, F-Takes-C, F-Takes-Self,  

 

 F-Takes-D. 
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State space – Example 2 
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 A hungry monkey is in a room.  

 Bananas have been hung from the 

center of the ceiling of the room.  

 In the corner of the room there is a 

chair.  

 The monkey wants the bananas but 

he can’t reach them.  

 What shall he do? 

 



State space – Example 2 
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If the monkey is cleaver enough, he can reach the bananas by 

placing the chair directly below the bananas and climbing on 

the top of the chair. 



State space – Example 2 
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State space – Example 2  
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Solution 



State space – Example 3  

The 8 puzzle search space consists of 8! states (40320) 
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Generic Search Algorithms 

 Basic Idea: Off-line exploration of state space by generating 

successors of already-explored states (also known as 

expanding states). 

Function GENERAL-SEARCH (problem, strategy)  

   returns a solution or failure 

 Initialize the search tree using the initial state of problem 

 loop do 

  if there are no candidates for expansion, then return failure 

  Choose a leaf node for expansion according to strategy 

  if  node contains goal state  then return solution 

  else expand node and add resulting nodes to search tree. 

 end 
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Implementation of Generic Search Algorithm 

function general-search(problem, QUEUEING-FUNCTION)   

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))  

loop do 

 if EMPTY(nodes) then return "failure"  

   node = REMOVE-FRONT(nodes)  

 if problem.GOAL-TEST(node.STATE) succeeds then return solution(node) 

    nodes = QUEUEING-FUNCTION(nodes, EXPAND(node, 

problem.OPERATORS))   

 end 

A nice fact about this search algorithm is that we can use a single algorithm to do 

many kinds of search. The only difference is in how the nodes are placed in the 

queue. The choice of queuing function is the main feature.  
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Implementation: states vs. nodes 

 A state is a (representation of) a physical configuration 
 A node is a data structure constituting part of a search tree includes state, 

parent node, action, path cost g(x), depth 
 
 
 
 
 
 
 
 
 

 The Expand function creates new nodes, filling in the various fields and 
using the SuccessorFn of the problem to create the corresponding 
states. 
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Search Strategies 
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What Criteria are used to Compare different 

search techniques ? 
  

As we are going to consider different techniques to search the problem space, 
we need to consider what criteria we will use to compare them. 

 

 Completeness: Is the technique guaranteed to find an answer (if there is 
one).  

 

 Optimality/Admissibility : does it always find a least-cost solution? 

 - an admissible algorithm will find a solution with minimum cost 

 

  Time Complexity: How long does it take to find a solution. 

 

  Space Complexity: How much memory does it take to find a solution.  
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Time and Space Complexity ? 
 
Time and space complexity are measured in terms of: 
 

 The average number of new nodes we create when 
expanding a new node is the (effective) branching factor b. 

 The (maximum) branching factor b is defined as the 
maximum nodes created when a new node is expanded. 

 The length of a path to a goal is the depth d. 

 The maximum length of any path in the state space m.  
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Search Cost and Path Cost 

 the search cost indicates how expensive it is to generate a 

solution 

 time complexity (e.g. number of nodes generated) is usually 

the main factor 

 sometimes space complexity (memory usage) is considered as 

well 

 

 path cost indicates how expensive it is to execute the 

solution found in the search 

 distinct from the search cost, but often related 

 

 total cost is the sum of search cost and path costs 
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Breadth-First Search 

 all the nodes reachable from the current node are explored 

first 

 achieved by the TREE-SEARCH method by appending newly 

generated nodes at the end of the search queue 

function BREADTH-FIRST-SEARCH(problem) returns solution 
  

 return TREE-SEARCH(problem, FIFO-QUEUE()) 

b branching factor 

d depth of the tree 

Time Complexity bd+1 

Space Complexity bd+1 

Completeness yes (for finite b) 

Optimality yes (for non-negative 

path costs) 
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Breadth First Search 

 Application1:  

 Given the following state space (tree search), give the sequence of 

visited nodes when using BFS (assume that the nodeO is the goal 

state): 

A 

B C E D 

F G H I J 

K L 

O 

M N 
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Breadth First Search 

 A, 

A 

B C E D 

Aziz M. Qaroush - Birzeit University 



39 

Breadth First Search 

 A, 

 B, 

A 

B C E D 

F G 
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Breadth First Search 

 A, 

 B,C 

A 

B C E D 

F G H 
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Breadth First Search 

 A, 

 B,C,D 

A 

B C E D 

F G H I J 
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Breadth First Search 

 A, 

 B,C,D,E 

A 

B C E D 

F G H I J 
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Breadth First Search 

 A, 

 B,C,D,E, 

 F, 

 

A 

B C E D 

F G H I J 

Aziz M. Qaroush - Birzeit University 



44 

Breadth First Search 

 A, 

 B,C,D,E, 

 F,G 

 

A 

B C E D 

F G H I J 

K L 
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Breadth First Search 

 A, 

 B,C,D,E, 

 F,G,H 

 

A 

B C E D 

F G H I J 

K L 
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Breadth First Search 

 A, 

 B,C,D,E, 

 F,G,H,I 

 

A 

B C E D 

F G H I J 

K L M 
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Breadth First Search 

 A, 

 B,C,D,E, 

 F,G,H,I,J, 

 

A 

B C E D 

F G H I J 

K L M N 
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Breadth First Search 

 A, 

 B,C,D,E, 

 F,G,H,I,J, 

 K, 

 A 

B C E D 

F G H I J 

K L M N 
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Breadth First Search 

 A, 

 B,C,D,E, 

 F,G,H,I,J, 

 K,L 

 
A 

B C E D 

F G H I J 

K L 

O 

M N 
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Breadth First Search 

 A, 

 B,C,D,E, 

 F,G,H,I,J, 

 K,L, M, 

 
A 

B C E D 

F G H I J 

K L 

O 

M N 

Aziz M. Qaroush - Birzeit University 



51 

Breadth First Search 

 A, 

 B,C,D,E, 

 F,G,H,I,J, 

 K,L, M,N, 

 
A 

B C E D 

F G H I J 

K L 

O 

M N 

Aziz M. Qaroush - Birzeit University 



52 

Breadth First Search 

 A, 

 B,C,D,E, 

 F,G,H,I,J, 

 K,L, M,N, 

 Goal state: O 

 A 

B C E D 

F G H I J 

K L 

O 

M N 
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Breadth First Search 

 The returned solution is the sequence of operators in the path: 

     A, B, G, L, O 

 

A 

B C E D 

F G H I J 

K L 

O 

M N 
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Breadth-First Search: Evaluation 
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Breadth-First Search: Evaluation 
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Uniform-Cost -First 

 the nodes with the lowest cost are explored first 

 similar to BREADTH-FIRST, but with an evaluation of the 

cost for each reachable node 

 g(n) = path cost(n) = sum of individual edge costs to reach 

the current node 

function UNIFORM-COST-SEARCH(problem) returns solution 
  

 return TREE-SEARCH(problem, COST-FN, FIFO-QUEUE()) 

Time Complexity bC*/e 

Space Complexity bC*/e 

Completeness yes (finite b, step costs >= e) 

Optimality yes 

b branching factor 

C* cost of the optimal solution 

e minimum cost per action 
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Uniform-Cost Snapshot 

Initial 
Visited 
Fringe 
Current 
Visible 
Goal 

1 

2 3 

4 5 6 7 

8 9 10 11 12 13 14 15 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

4 3 

7 

2 

2 2 4 

5 4 4 4 3 6 9 

3 4 7 2 4 8 6 4 3 4 2 3 9 2 5 8 

Fringe: [27(10), 4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 15(16), 21(18)] 

                                                 + [22(16), 23(15)]  

Edge Cost 9 

57 Aziz M. Qaroush - Birzeit University 



Uniform Cost Fringe Trace 

1. [1(0)] 

2. [3(3), 2(4)] 

3. [2(4), 6(5), 7(7)] 

4. [6(5), 5(6), 7(7), 4(11)] 

5. [5(6), 7(7), 13(8), 12(9), 4(11)] 

6. [7(7), 13(8), 12(9), 10(10), 11(10), 4(11)] 

7. [13(8), 12(9), 10(10), 11(10), 4(11), 14(13), 15(16)] 

8. [12(9), 10(10), 11(10), 27(10), 4(11), 26(12), 14(13), 15(16)] 

9. [10(10), 11(10), 27(10), 4(11), 26(12), 25(12), 14(13), 24(13), 15(16)] 

10. [11(10), 27(10), 4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 15(16), 21(18)] 

11. [27(10), 4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 23(15), 15(16), 22(16), 21(18)] 

12. [4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 23(15), 15(16), 23(16), 21(18)] 

13. [25(12), 26(12), 14(13), 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)] 

14. [26(12), 14(13), 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)] 

15. [14(13), 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)] 

16. [24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 29(16),21(18), 28(21)] 

 Goal reached! 

 

Notation: [Bold+Yellow: Current Node; White: Old Fringe Node; Green+Italics: New Fringe Node]. 

Assumption: New nodes with the same cost as existing nodes are added after the existing node. 
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Uniform Cost Search: Evaluation 
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Breadth-First vs. Uniform-Cost 

 breadth-first always expands the shallowest node 

 only optimal if all step costs are equal 

 

 uniform-cost considers the overall path cost 

 optimal for any (reasonable) cost function 
 non-zero, positive 

 gets bogged down in trees with many fruitless, short branches 
 low path cost, but no goal node 

 

 both are complete for non-extreme problems 

 finite number of branches 

 strictly positive search function 

60 Aziz M. Qaroush - Birzeit University 



Depth-First  

 continues exploring newly generated nodes 

 achieved by the TREE-SEARCH method by appending newly 

generated nodes at the beginning of the search queue 

 utilizes a Last-In, First-Out (LIFO) queue, or stack 

function DEPTH-FIRST-SEARCH(problem) returns solution 
  

 return TREE-SEARCH(problem, LIFO-QUEUE()) 

b branching factor 

m maximum path length 

Time Complexity bm 

Space Complexity b*m 

Completeness no (for infinite branch length) 

Optimality no 
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Depth First Search (DFS) 

 Application2:  

 Given the following state space (tree search), give the sequence of 

visited nodes when using DFS (assume that the nodeO is the goal 

state): 

A 

B C E D 

F G H I J 

K L 

O 

M N 
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Depth First Search 

 A, 

A 

B C E D 
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Depth First Search 

 A,B, 

A 

B C E D 

F G 
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Depth First Search 

 A,B,F, 

A 

B C E D 

F G 
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Depth First Search 

 A,B,F, 

 G, 

A 

B C E D 

F G 

K L 
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Depth First Search 

 A,B,F, 

 G,K, 

A 

B C E D 

F G 

K L 
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Depth First Search 

 A,B,F, 

 G,K, 

 L, 

A 

B C E D 

F G 

K L 

O 
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Depth First Search 

 A,B,F, 

 G,K, 

 L, O: Goal State 

A 

B C E D 

F G 

K L 

O 
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Depth First Search 

The returned solution is the sequence of operators in the path:   

   A, B, G, L, O 

 

A 

B C E D 

F G 

K L 

O 
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Depth-First Search: Evaluation 
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Time Complexity of Depth-first 
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Space Complexity of Depth-first 
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Depth-First vs. Breadth-First 

 depth-first goes off into one branch until it reaches a leaf node 

 not good if the goal is on another branch 

 neither complete nor optimal 

 uses much less space than breadth-first 

 much fewer visited nodes to keep track of 

 smaller fringe 

 

 breadth-first is more careful by checking all alternatives 

 complete and optimal  

 under most circumstances 

 very memory-intensive 
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Depth-Limited Search 

 similar to depth-first, but with a limit 

 overcomes problems with infinite paths 

 sometimes a depth limit can be inferred or estimated from the problem 
description 
 in other cases, a good depth limit is only known when the problem is solved 

 based on the TREE-SEARCH method 

 must keep track of the depth 

function DEPTH-LIMITED-SEARCH(problem, depth-limit) returns solution 
  

 return TREE-SEARCH(problem, depth-limit, LIFO-QUEUE()) 

b branching factor 

l depth limit 

Time Complexity bl 

Space Complexity b*l 

Completeness no (goal beyond l, or infinite branch length) 

Optimality no 
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Iterative Deepening  

 applies LIMITED-DEPTH with increasing depth limits 

 combines advantages of BREADTH-FIRST and DEPTH-FIRST methods 

 many states are expanded multiple times 

 doesn’t really matter because the number of those nodes is small 

 in practice, one of the best uninformed search methods 

 for large search spaces, unknown depth  

function ITERATIVE-DEEPENING-SEARCH(problem) returns solution 
   for depth := 0  to unlimited  do 

       result := DEPTH-LIMITED-SEARCH(problem, depth-limit) 
 if result != cutoff then return result  

b branching factor 

d tree depth 

Time Complexity bd 

Space Complexity b*d 

Completeness yes 

Optimality yes (all step costs identical) 
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Iterative deepening search 

77 Aziz M. Qaroush - Birzeit University 



Iterative deepening search l =1 
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Iterative deepening search l =2 
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Iterative deepening search l =3 
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Bi-directional Search 

 search simultaneously from two directions 

 forward from the initial and backward from the goal state 

 may lead to substantial savings if it is applicable 

 has severe limitations 

 predecessors must be generated, which is not always possible 

 search must be coordinated between the two searches 

 one search must keep all nodes in memory 

b branching factor 

d tree depth 

Time Complexity bd/2 

Space Complexity bd/2 

Completeness yes (b finite, breadth-first for both directions) 

Optimality yes (all step costs identical, breadth-first for 

both directions) 
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Improving Search Methods 

 make algorithms more efficient 

 avoiding repeated states 

 utilizing memory efficiently 

 

 use additional knowledge about the problem 

 properties (“shape”) of the search space 

 more interesting areas are investigated first 

 pruning of irrelevant areas 

 areas that are guaranteed not to contain a solution can be discarded 
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Comparing Uninformed Search Strategies 
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