Artificial Intelligence

ENCS 434

Uninformed Search

e

Overview

® Search as Problem—Solving
° problem formulation

® problem types

® Uninformed Search
® breadth-first
* depth-first
® depth-limited search
® iterative deepening

® bi-directional search

\a Aziz M. Qaroush - Birzeit University

e

Problem-Solving Agents

® agents whose task it is to solve a particular problem

® problem formulation

what are the possible states of the world relevant for solving the

problern
what information is accessible to the agent

how can the agent progress from state to state

® goal formulation
what is the goal state
what are important characteristics of the goal state
how does the agent know that it has reached the goal
are there several possible goal states

® are they equal Or are some more preferable

\Q Aziz M. Qaroush - Birzeit University

" Well-Defined Problems h

- Initial state: The state the agent knows itself to be in. (e.g., initial chessboard, current
positions of objects in world, ...)

O

Action/Operator: A set of actions that moves the problem from one state to another. (e.g.
chess move, robot action, simple change in location).

Neighbourhood: The set of all possible states reachable from a given state

State space: The set of all states reachable from the initial state by any sequence of actions.

B =

Path: Any sequence of actions leading from one state to another.

O

Goal test: A test applicable to a single state problem to determine if it is the goal state. (e.g.,
winning chess position, target location)

O

Path cost: The function that assigns a cost to the path; (e.g.How much it costs to take a
particular path).

Initial state

States

\6 Aziz M. Qaroush - Birzeit University /

/
Selecting States and Actions

® states describe distinguishable stages during the problem-
solving process

® dependent on the task and domain

® jctions move the agent from one state to another one by

applying an operator to a state

* dependent on states, capabilities of the agent, and properties

of the environment

® choice of suitable states and operators

® can make the difference between a problem that can or cannot

be solved (in principle, or in practice)

\e Aziz M. Qaroush - Birzeit University

/Example Problems

J There are two types of problems:

1. Toy problems, which intended to illustrate various problem solving methods.

< State: The location of each of the eight tiles in one of the nine squares.
< Operators: Blank moves left, right, up or down.
< Goal test: State matches the goal configuration shown.
< Path cost: Each step costs 1, so the path cost 1s just the length of the path.
3 1 1 2 3
1 6 2 8 +
> 1 8 4 Z 6 5
Start state Goal state
< 8-puzzle has 362,800 states
S 15-puzzle has 10"12 states
< 24-puzzle has 10725 states

O Why search algorithms?

So, we need a principled way to look for a solution in these huge search spaces

\a Aziz M. Qaroush - Birzeit University

™

/Example Problems

2. Real world problems, which tend to be more difficult and whose solutions
people actually care about

transitions along links between them. Its applications are (routing in

computer networks, automated travel advisory system)

VLSI layout: Positioning (transistors, resistors, capacitors, etc) and

connections among a million gates in the Silicon chip i1s complicated and

» Minimize surface area

» Minimize number of signal layers

» Minimize number of connections from one layer to another
» Minimize length of some signal lines (e.g., clock line)

» Distribute heat throughout board

d Robot navigation: Is similar to the route finding problem but in this case

there is infinite set of possible actions and states.

\e Aziz M. Qaroush - Birzeit University

O Route finding: Route finding is defined in terms of specified locations and

finding optimal way to place components on a printed circuit board so that:

\

/

s

n-Queens

® Put N queensonan N X N board with no two queens on the

same row, column, or diagonal

l‘ﬂ’lﬂ'
H

.

—

\@ Aziz M. Qaroush - Birzeit University

l‘ﬂ’l
_

.

W W T

—

4 N
8-Queens

® incremental formulation

® gtates

arrangement of up to 8 queens on the board

initial state
empty board
® successor function (operators)

add a queen to any square

goal test

all queens on board

no queen attacked

path cost

irrelevant (all solutions equally valid)

A solution

* Properties: 3*¥10'* possible sequences; can be

reduced to 2,057

\e Aziz M. Qaroush - Birzeit University /

4 I
The River Problem

® The River Problem:
F=Farmer W=Wolf D=Duck C=Corn /=River

-[FWCD
. |

L]

FWCD/-

How can the farmer safely transport the wolf, the duck and the corn to the
opposite shore?

\e Aziz M. Qaroush - Birzeit University /

e
The River Problem

® Problem formulation:

® State representation: location of farmer and items in both sides of river
[items in South shore / items in North shore] : (FWDC/-, FD/WC, C/FWD ...)

® [Initial State: farmer, wolf, duck and corn in the south shore FWDC/ -

® Goal State: farmer, duck and corn in the north shore

-/FWDC

® Operators: the farmer takes in the boat at most one item from one side to the other side

(F-Takes-W, F-Takes-D, F-Takes-C, F-Takes-Self [himself only])

e Path cost: the number of crossings

\. Aziz M. Qaroush - Birzeit University

e
Route Finding

® gstates

® locations
® initial state
® starting point
® successor function (operators)

® move from one location to another

° goal test

® arrive at a certain location

° path cost

® may be quite complex

@ Aziz M. Qaroush - Birzeit University

money, time, travel comfort, scenery, ...

e
Romania Map

* In Romania, on vacation, Currently in Arad.
* Flight leaves tomorrow from Bucharest.
* Formulate goal:
® Be in Bucharest
* Formulate problem:
® States: various cities
* Operators: drive between cities
¢ Find solution:
® Sequence of cities, such that total
® driving distance is minimized,
® ec.g. Arad, Sibiu, Fagaras, Bucharest.
* Finding shortest path
® Action: Move from city X to city Y
® State: Which city you're on
® Goal Test: Am I in Bucharest?
® Cost: 1 for each city I visit

@ Aziz M. Qaroush - Birzeit University

e

Romania Map

States

2 ad [}

Fagaras

Solution

118

Timisoara

Hirsova
Urziceni
826
: arest
Dobreta [% GO a I
Eforie

\@ Aziz M. Qaroush - Birzeit University

e

Robotic assembly

P

- - H/\ﬂﬁ

8 S\l .

® states?: real-valued coordinates of robot joint angles parts of the object to

be assembled

® actions?: continuous motions of robot joints

° goal test?: complete assembly

° path cost?: time to execute

\Q Aziz M. Qaroush - Birzeit University

e

Searching for Solutions

® traversal of the search space
® from the initial state to a goal state

® legal sequence of actions as defined by successor function (operators)

° general procedure
® check for goal state

° expand the current state
determine the set of reachable states

return “failure” if the set is empty
® select one from the set of reachable states

® move to the selected state

® 3 search tree is generated

® nodes are added as more states are visited

\@ Aziz M. Qaroush - Birzeit University

e

Search Terminology

® search tree

® generated as the search space is traversed
the search space itself is not necessarily a tree, frequently it is a graph

the tree specifies possible paths through the search space

® expansion of nodes

as states are explored, the corresponding nodes are expanded by applying the
successor function

¢ this generates a new set of (child) nodes

the fringe (frontier) is the set of nodes not yet visited

* newly generated nodes are added to the fringe

® search strategy
determines the selection of the next node to be expanded

can be achieved by ordering the nodes in the fringe

* e.g. queue (FIFO), stack (LIFO), “best” node w.r.t. some measure (cost)

\@ Aziz M. Qaroush - Birzeit University

s
Search Methods - State space:

* A problem is solved by moving from the
initial state to the goal state by applying valid
operators in sequence.

e Thus the state space 1s the set of states
reachable from a particular initial state.

@ Aziz M. Qaroush - Birzeit University

s
State space - Example 1

The River Problem

EWDc Inltlal state

T

Dead en
lllegal states =% / \
repeated State WDC A/F\IDC\A
/ — v
‘1’1 W
¥

&= |===]| Goal state

e Aziz M. Qaroush - Birzeit University

/State space - Example 1 A

° Searching for a solution:
Fuoe
We start with the initial state and keep / \
using the operators to expand the parent / X
nodes till we find a goal state. Fo
By
W 5t
* ...reallylarge... / N
m F DC F WD
w C
® So we need some systematic way to ‘/¢\] ‘/i\
search. Fwc e
A
FWDC FWDC
Y\

@ Aziz M. Qaroush - Birzeit University /

® ...but the search space might be large. ..

/State space - Example 1

® Problem solution:
A problem solution is simply the set of

state from the initial state:

operators (actions) needed to reach the goal / \
q

F-Takes-D, F-Takes-Self, F-Takes-W, / Jl \

F-Takes-D, F-Takes-C, F-Takes-Self,

@ Aziz M. Qaroush - Birzeit University

o
F-Takes-D. ‘/FVID{‘ T

F D FWD
W C C

e
State space - Example 2

o A hungry monkey is in a room.

® Bananas have been hung from the

center of the ceiling of the room.

® In the corner of the room there is a

chair.

e The monkey wants the bananas but

he can’t reach them.

® What shall he do?

@ Aziz M. Qaroush - Birzeit University

State space - Example 2

It the monkey is cleaver enough, he can reach the bananas by
placing the chair directly below the bananas and climbing on
the top of the chair.

\@ Aziz M. Qaroush - Birzeit University

(State space - Example 2

The state space (w, X, V, z)
w — monkey coordinates on the floor
x = {1, if monkey 1s on the chair; 0, otherwise}
y — coordinates of the chair on the floor
z = {1, if the monkey knocked the bananas down: 0, otherwise}

Production rules (or operators):

1. move (u): (w,0,y, z) —> (u,0,v, 2)
2. carry (v): (w, 0, w, z) —> (v, 0, v, 2)
3.cimb : (v.0,v,2z) —=> (v, 1,v. z2)
4. knock : (c,1,¢, 0) —=>(c.l.c. 1)

(c - coordinates of bananas in horizontal plane)

@ Aziz M. Qaroush - Birzeit University

(State space - Example 2

Solution (a. 0. b, 0)

(b: 1.1 b& 0)

vV=C move(u
climb (u)

(¢, 1,¢,0)
i knock
u=v
1 N move(u)
C!‘ 2 C!‘

\6 Aziz M. Qaroush - Birzeit University

Right

Down

4
?.E
8

4

1

5176

Left

117]6

Up
3
6
2

413
d
B|2
Right Up Down Left Right % Up Down

1 3..4 3

714|686

Left

6

4

.13

7

State space - Example 3
n
|
|
:

4 N
Generic Search Algorithms

= Basic Idea: Off-line exploration of state space by generating
successors of already-explored states (also known as

expandaing states).

Function GENERAL-SEARCH (problem, strategy)
returns a solution or failure

Initialize the search tree using the initial state of problem
loop do

If there are no candidates for expansion, then return failure
Choose a leaf node for expansion according to strategy

If node contains goal state then return solution

else expand node and add resulting nodes to search tree.

@ Aziz M. Qaroush - Birzeit University /

4 N

Implementation of Generic Search Algorithm

function general-search(problem, QUEUEING-FUNCTION)
nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
loop do
if EMPTY (nodes) then return "failure"
node = REMOVE-FRONT (nodes)
If problem.GOAL-TEST(node.STATE) succeeds then return solution(node)

nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
problem.OPERATORYS))

end

A nice fact about this search algorithm is that we can use a single algorithm to do
many kinds of search. The only difference is in how the nodes are placed in the

queue. 7he choice of queuing function Is the main feature.

@ Aziz M. Qaroush - Birzeit University /

4 .
Implementation: states vs. nodes

® A state is a (representation of) a physical configuration

® A node is a data structure constituting part of a search tree includes state,
parent node, action, path cost §(X), depth

parent, action

State || 5 ||| 4 Node depth =6
g=6
6 (|| 1]l 8
ate
7l 3 |l 2 st

® The Expand function creates new nodes, filling in the various fields and
using the SuccessorFn of the problem to create the corresponding
states.

\e Aziz M. Qaroush - Birzeit University

/Search Strategies A

J Uninformed (blind) search strategies: There is no information about the number of
steps or the path cost from the current state to the goal. All they can do is distinguish
a goal state from a non-goal.

Breadth-first search "

Uniform cost search

Depth-first search
Depth limited search * Ch.3

Iterative deepening search
Bl-directional Search J

OVOVOVLOLVO

O

Informed Search Strategies: There is an information about the path cost.

- When strategies can determine whether one non-goal state is better than another
— informed search.

Best-first search

Greedy best-first search

A" search

Hill-climbing search

Simulated annealing search

Local beam search

Genetic algorithms /

\@ Aziz M. Qaroush - Birzeit University /

* Ch. 4

OO0V LVLLVLOLO

/
What Criteria are used to Compare different

search techniques ?

As we are going to consider different techniques to search the problem space,
we need to consider what criteria we will use to compare them.

* Completeness: Is the technique guaranteed to find an answer (if there is
one).

° Optimality/ Admissibility : does it always find a least-cost solution?

- an admissible algorithm will find a solution with minimum cost
e Time Complexity: How long does it take to find a solution.

* Space Complexity: How much memory does it take to find a solution.

@ Aziz M. Qaroush - Birzeit University

/
Time and Space Complexity ?

Time and space complexity are measured in terms of:

® The average number of new nodes we create when
expanding a new node is the (effective) branching factor b.

® The (maximum) branching factor b is defined as the
maximum nodes created when a new node is expanded.

¢ The length of a path to a goal is the depth d.

¢ The maximum length of any path in the state space m.

"\
d
b Pm

@ Aziz M. Qaroush - Birzeit University

/
Search Cost and Path Cost

e the search cost indicates how expensive it is to generate a

solution

® time complexity (e.g. number of nodes generated) is usually

the main factor

® sometimes space complexity (memory usage) is considered as

well

e path cost indicates how expensive it is to execute the

solution found in the search

e distinct from the search cost, but often related

o fotal costis the sum of search cost and path costs

@ Aziz M. Qaroush - Birzeit University

/

Breadth-First Search

® all the nodes reachable from the current node are explored
first

® achieved by the TREE-SEARCH method by appending newly

generated nodes at the end of the search queue

\@ Aziz M. Qaroush - Birzeit University

Breadth First Search

= Applicationl;

Given the following state space (tree search), give the sequence of
visited nodes when using BFS (assume that the node O'is the goal
state):

\e Aziz M. Qaroush - Birzeit University

s

Breadth First Search

\@ Aziz M. Qaroush - Birzeit University

s

Breadth First Search

= A,
= B,

&G D,

\@ Aziz M. Qaroush - Birzeit University

s

Breadth First Search

= A,
= BC

oo

@ Aziz M. Qaroush - Birzeit University

/
Breadth First Search

= A,
= B,CD

e

\@ Aziz M. Qaroush - Birzeit University

/
Breadth First Search

= A,
= B,CD,E

RS

\@ Aziz M. Qaroush - Birzeit University

/
Breadth First Search

= A
= B,C,D,E,
« F

RS

\@ Aziz M. Qaroush - Birzeit University

/
Breadth First Search

= A,
= B,CD,E,
= FG

\
| H

/e’?e

@ Aziz M. Qaroush - Birzeit University

/
Breadth First Search

= A,
= B,CD,E,
= FGH

\
| H

/e’?e

\@ Aziz M. Qaroush - Birzeit University

/
Breadth First Search

= A,
= B,C,D,E,
« FGH,|I

%

\
| H

\@ Aziz M. Qaroush - Birzeit University

/
Breadth First Search

= A,
= B,C,D,E,
- F1G1H1|1‘J1

%

\
| H

©

\@ Aziz M. Qaroush - Birzeit University

Breadth First Search

\@ Aziz M. Qaroush - Birzeit University

s

Breadth First Search

= A

= B,C,D,E,
= FGH]IJ,
= KL

\@ Aziz M. Qaroush - Birzeit University

s

@ Aziz M. Qaroush - Birzeit University

Breadth First Search

= A

= B,C,D,E,
= FGH]IJ,
= KL, M,

/
Breadth First Search

= A

= B,C,D,E,

= FGH]IJ,
= KL, MN,

\@ Aziz M. Qaroush - Birzeit University

/
Breadth First Search

= A,

= B,C,D,E,

= FGH,ILJ,

= KL, M,N,

= Goal state: O

/e\’“\e

©

\@ Aziz M. Qaroush - Birzeit University

/
Breadth First Search

= The returned solution is the sequence of operators in the path:
ABGL, O

Breadth-First Search: Evaluation

. Completeness:
2 Does it always find a solution if one exists?
< YES
= [f shallowest goal node is at some finite depth d
» Condition: If b 18 finite (maximum num. of succor nodes is finite)

1 Completeness:
2 YES (if b is finite)

. Time complexity:
< Assume a state space where every state has b successors.
= Root has b successors, each node at the next level has again b successors (total b?),
» Assume solution is at depth d
» Worst case; expand all but the last node at depth d
= Total numb. of nodes generated:
» 1 +b+b*+...+bd+b(bd-1)=O(bd)
Space complexity:O(h?"")
Optimality:
2 Does it always find the least-cost solution?
2 In general YES
» Unless actions have different cost.

@ Aziz M. Qaroush - Birzeit University /

(N

4

L s:)

lessons:

Breadth-First Search: Evaluation

& Memory requirements are a bigger problem than execution time.

= Exponential complexity search problems cannot be solved by uninformed
search methods for any but the smallest instances.

DEPTH NODES TIME MEMORY
2 1100 0.11 seconds 1 megabyte
4 111100 11 seconds 106 megabytes
6 107 19 minutes 10 gigabytes
8 107 31 hours 1 terabyte
10 101 129 days 101 terabytes
12 101 35 years 10 petabytes
14 1015 3523 years 1 exabyte

Assumptions: b = 10; 10,000 nodes/sec; 1000 bytes/node

Aziz M. Qaroush - Birzeit University

/
Uniform-Cost -First

¢ the nodes with the lowest cost are explored first
e similar to BREADTH-FIRST, but with an evaluation of the

cost for each reachable node

° g(n) = path cost(n) = sum of individual edge costs to reach

the current node

@ Aziz M. Qaroush - Birzeit University

Uniform-Cost Snhapshot

Initial
Visited
Fringe ()
Current
Visible
Goal

Edge Cost

Fringe: [27(10), 4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 15(16), 21(18)]

I8 /ziz M. Qaroush - Birzeit University + [22(16), 23(15)]

e
Uniform Cost Fringe Trace

1. []
2. [, 2(D)]
3. [, 6(5), 7(7)]
4. [, 5(6),7(7), 4(11)]
5. [, 1(7), 13(8), 12(9), 4(11)]
6. [, 13(8), 12(9), 10(10), 11(10), 4(11)]
7. [, 12(9), 10(10), 11(10), 4(11), 14(13), 15(16)]
8. [, 10(10), 11(10), 27(10), 4(11), 26(12), 14(13), 15(16)]
9. [, 11(10), 27(10), 4(11), 26(12), 25(12), 14(13), 24(13), 15(16)]
10. [, 27(10), 4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 15(16), 21(18)]
11. [,4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 23(15), 15(16), 22(16), 21(18)]
12. [,25(12), 26(12), 14(13), 24(13), 20(14), 23(15), 15(16), 23(16), 21(18)]
13. [, 26(12), 14(13), 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)]
14. [, 14(13), 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)]
15. [, 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)]
16. [,8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 29(16),21(18), 28(21)]
Goal reached!
Notation: | ; White: Old Fringe Node; Green+ltalics: New Fringe Node].

Assumption: New nodes with the same cost as existing nodes are added after the existing node.

Aziz M. Qaroush - Birzeit University

4 N
Uniform Cost Search: Evaluation

« If COST = Depth, then Uniform Cost = Breadth-First
« Completeness: Solution 1s guaranteed
* Same complexity in worst case as for Breadth-First

= O(b?), i.e., exponential in d, because large sub-trees with

inexpensive steps can be explored before useful paths with costly
steps.

* Optimality
« If path cost never decreases, will stop at optimal solution
* Does not necessarily find best solution first

* Let g (n) = path cost at node n: need
g(child (n)) > g(n)

\@ Aziz M. Qaroush - Birzeit University /

/
Breadth-First vs. Uniform-Cost

® breadth-first always expands the shallowest node

© only optimal if all step costs are equal

® uniform-cost considers the overall path cost

® optimal for any (reasonable) cost function
non-zero, positive
® gets bogged down in trees with many fruitless, short branches

low path cost, but no goal node

® both are Complete for non-extreme problems
® finite number of branches

° strictly positive search function

@ Aziz M. Qaroush - Birzeit University

/

Depth-First

® continues exploring newly generated nodes

® achieved by the TREE-SEARCH method by appending newly

generated nodes at the beginning of the search queue

utilizes a Last-In, First-Out (LIFO) queue, or stack

\@ Aziz M. Qaroush - Birzeit University

/
Depth First Search (DFS)

= Application2:

Given the following state space (tree search), give the sequence of

visited nodes when using DFS (assume that the node O'is the goal
state):

\@ Aziz M. Qaroush - Birzeit University

s

Depth First Search

= A,

\@ Aziz M. Qaroush - Birzeit University

s

Depth First Search

= AB,

&G D,

\@ Aziz M. Qaroush - Birzeit University

s

Depth First Search

= ABJF

&G D,

\@ Aziz M. Qaroush - Birzeit University

s

Depth First Search

= ABJF
= G,

\@ Aziz M. Qaroush - Birzeit University

s

Depth First Search

= ABJF

\@ Aziz M. Qaroush - Birzeit University

s

Depth First Search

\@ Aziz M. Qaroush - Birzeit University

s

Depth First Search

= AB,F
» GK,
» L, O Goal State

\@ Aziz M. Qaroush - Birzeit University

s

Depth First Search

The returned solution is the sequence of operators in the path:
ABGL, O

@ Aziz M. Qaroush - Birzeit University

/
Depth-First Search: Evaluation

« Completeness: Does it always find a solution if one exists?
« NO: unless search space 1s finite and no loops are possible

* Time complexity: Still need to explore all nodes O(b™)
« Terrible 1f m 1s much larger than d (depth of optimal solution)
« But if many solutions, then faster than BFS

* Space complexity: O(bm +])
« Must store all nodes on current path
« Must store all unexplored sibling nodes on each hit
« At depth m, required to store b*m nodes

Much better than O(b™)

\e' Optimality: No (Might never find any solutions)

Aziz M. Qaroush - Birzeit University

s

Time Complexity of Depth-first

e In the worst case:
e The goal node may be on the right-most branch,

J Time complexity == bm+p™l 4+ 4 =pmtl g

- Thus: O(b™)

\@ Aziz M. Qaroush - Birzeit University

b-1

s
Space Complexity of Depth-first

« Largest number of nodes in QUEUE is reached in bottom left-most node.

« Exampleem=3, b=3:

J QUEUE contains all . nodes. Thus: 7.
J In General: ((b-1)*m) + 1
1 Order: O(m*b)

\@ Aziz M. Qaroush - Birzeit University

/
Depth-First vs. Breadth-First

* depth-first goes off into one branch until it reaches a leaf node
® not good if the goal is on another branch
® neither complete nor optimal

® uses much less space than breadth-first
much fewer visited nodes to keep track of

smaller fringe

® breadth-first is more caretul by checking all alternatives

® complete and optimal

under most circumstances

® very memory-intensive

@ Aziz M. Qaroush - Birzeit University

4 N
Depth-Limited Search

® similar to depth-first, but with a limit
® overcomes problems with infinite paths

® sometimes a depth limit can be inferred or estimated from the problem
description

© in other cases, a good depth limit is only known when the problem is solved

® based on the TREE-SEARCH method
® must keep track of the depth

Aziz M. Qaroush - Birzeit University /

/

\

lterative Deepening
* applies LIMITED-DEPTH with increasing depth limits

® combines advantages of BREADTH-FIRST and DEPTH-FIRST methods

® many states are expanded multiple times

doesn’t really matter because the number of those nodes is small

® in practice, one of the best uninformed search methods

for large search spaces, unknown depth

\@ Aziz M. Qaroush - Birzeit University /

/
lterative deepening search

Use an artificial depth cutoft, £.

O If search to depth k succeeds: DONE.
If not: increase k by 1; start over.
(Regenerate nodes, as necessary)

O Each iteration uses

Depth-limited Depth-First Search

Limit=0 LO8

- -
e

\6 Aziz M. Qaroush - Birzeit University

s

lterative deepening search | =1

e »@/@\@a o/@\@ -/‘\o
Gy G >
. ra 4 Fa £ S L kY £ S

@ Aziz M. Qaroush - Birzeit University

4 ™
lterative deepening search | =2

Limit =2 LOR (4]
o | 40] © (5 © (5] ©

o
kL G

R R R G R S - GRS o JRGIRG

\@ Aziz M. Qaroush - Birzeit University /

s

lterative deepening search | =3

Limit =3 2ON

@ Aziz M. Qaroush - Birzeit University

e

Bi-directional Search

® search simultaneously from two directions

® forward from the initial and backward from the goal state
® may lead to substantial savings if it is applicable

® has severe limitations
® predecessors must be generated, which is not always possible
® search must be coordinated between the two searches

® one search must keep all nodes in memory

Time Complexity a2

Space Complexity | bd?
Completeness yes (b finite, breadth-first for both directions)

b branching factor

d tree depth

Optimality yes (all step costs identical, breadth-first for
both directions)

\@ Aziz M. Qaroush - Birzeit University

/
Improving Search Methods

® make algorithms more efficient
o avoiding repeated states

o utilizing memory efficientiy

® use additional knowledge about the problem
® properties (“shape”) of the search space
more interesting areas are investigated first

® pruning of irrelevant areas

areas that are guaranteed not to contain a solution can be discarded

\@ Aziz M. Qaroush - Birzeit University

s
Comparing Uninformed Search Strategies

Criterion Breadth- Uninformed Depth- Depth- Iterative Bidirectional

first cost first limited deepening (if applicable)

Time b d b d b m b1 b d b (d/2)
Space b d b d bm bl bd b (d/2)
Optimal? Yes Yes No No Yes Yes
Complete? Yes Yes No Yesifl=d Yes Yes

= b — max branching factor of the search tree

= d— depth of the least-cost solution

> m — max depth of the state-space (may be infinity)
< | —depth cutoff

\@ Aziz M. Qaroush - Birzeit University

