

Computer Organization

ENCS 238

Homework Set #1

Second semester 2012/2013

Endianess

Q1) For the following data structures, draw the big-endian and little-endian layouts

1. struct {

 double i; //0x1112131415161718

 };

2. struct {

 int i; //0x11121314

 int j; //0x15161718

 };

3. struct {

 short i; //0x1112

 short j; //0x1314

 short k; //0x1516

 short l; //0x1718

 };

Stack-Oriented Instructions

Q2)

a) Convert the expression A + B - C to postfix notation. Show the steps involved.

b) Is the result equivalent to (A + B) - C or A + (B – C) ?

c) Does it matter?

Q3) Convert the following formulas from infix to reverse Polish:

a) A + B + C + D + E

b) (A + B) * (C + D) + E

c) (A * B) + (C * D) + E

d) (A - B) * (((C - D * E)/F)/G) * H

Shift Left/Right Operations

Q4)

a) Compute Arithmetic and Logical Left/Right Shift on the following numbers using

9-bit binary representation (two’s Complement).

a. Number: (27)10, Shift Left 3 positions.

b. Number: (155)10, Shift Left 3 positions.

c. Number: (-22)10, Shift Left 2 positions.

d. Number: (123)10, Shift Right 3 positions.

e. Number: (-167)10, Shift Right 4 positions.

b) It was stated that Arithmetic Shift Left correspond to multiplication by a power-

of-2 integer if there is no overflow. Demonstrate this fact for the above numbers

(a, b, c). Does this fact hold for Logical Shift Left? For cases where overflow

occurs, how many additional bits we need to avoid overflow and make the shift

operation result correspond to multiplication operation?

c) It was stated that Arithmetic Shift Right correspond to division by a power-of-2

integer. Demonstrate this fact for the above numbers (d, e). Does this fact hold for

Logical Shift Right? In what way are numbers rounded using arithmetic right shift

(e.g., round toward -∞ or toward +∞)?

Assembly Programs

Q5) Compare Zero-, one-, two-, and three-address machines by writing programs to

compute the following expression:

 (A - B) * (((C - D * E)/F)/G) * H

Q6) Given the Assembly code sample below:

a) Add comments to each instruction showing what does it do?

b) How many times the code between Loop Label and finish Label will be

executed (i.e. loop iterations)?

c) Assuming ‘a0’ is input register (16-bit) holding value 0xFA27 (in

Hexadecimal), and ‘v0’ is output register, compute the output value in ‘v0’.

d) If the processor doesn’t support move instruction, how we could re-write the code

below to remove move instructions? With what other instructions we can replace

them?

 move r0, 0
 move r3, 0
 move r1, 1
loop: BRE r1, 1024, finish
 add r0, r0, r1
 and r2, r0, a0
 add r3, r3, r2
 ashl r1, r1, 1
 BR loop
finish:
 move v0, r3

Addressing Modes

Q7) An address field in an instruction contains decimal value 14. Where is the

 Corresponding operand located for

a) Immediate addressing?

b) Direct addressing?

c) Indirect addressing?

d) Register addressing?

e) Register indirect addressing?

Q8) A PC-relative mode branch instruction is 3 bytes long. The address of the

instruction, in decimal, is 256028. Determine the branch target address if the signed

displacement in the instruction is –31.

