
Assembly Language

1

Processors Prior to 8086

• (1971) 4004 – First processor made by the Intel

Corporation. Allowed computer intelligence to be

put into small devices like cell phones, key chains,

calculators, etc.

• (1972) 8008 – Twice as powerful as the 4004, but

was used in the Mark-8. Mark-8 was one of first

personal computers.

Processors Prior to 8086 (cont.)

• (1974) 8080 – Slight improvement on the 8008

with a more complex instruction set. Started to

mass produce for personal computers. Last

processor update before 8086.

Intel’s 8086 and 8088

• (1978) 8086/8088 – Biggest improvement
of the 8-bit processors. Laid the
groundwork for the X86 architecture in
processors. X86 is still used in the newer
Pentium models today. The 8088 processor
was selected by IBM to be placed in the
“IBM PC” which was their most popular
product. Skyrocketed Intel’s stature as a
company and was honored by being named
a Fortune 500 company.

Processors After 8086/8088

• (1982-89) 286/386/486 – Started being able to run

multiple programs at one time and point and click

operating systems.

• (1993-2001) Pentium’s 1-4 – Much faster speeds

allowed multimedia elements like voice, sounds,

and graphics to run much clearer and faster.

8086 Programming

• 8086 is low level assembly language:

– Uses fetch/execute cycle.

– Registers hold addresses for data, instructions and
program flow counter.

– Flows from beginning to end, manipulated by
changing counter.

• Compatible in design with future 16bit or greater
microprocessors.

• 6 basic sets of instructions, not including string
manipulation.

8086 Programming (cont.)

– Arithmetic

• Addition, subtraction etc. ADD, SUB

– Logic

• Logical operations. AND, OR, XOR

– Shift

• Shifting bits, rotate, logic and arithmetic. SAR, SHL

– Data Transfer

• Moving data, copying. MOV, OUT, POP

– Control Transfer

• Flow control, jumps, and subroutines. JMP, RET

– Processor Control

• Processor instructions. NOP, CLI

8086 Programming (cont.)

• Instruction form

– Op-code Destination Operand, Source Operand

– MOV AX,100

• Variable declarations

– Variable Name Memory Directive Value

– Var1 DB 7

Memory Interfacing

• The 8086 has a 20-bit address bus.

• The subsystem is organized into 8-bit bytes

instead of 16-bit words.

• The memory is split into two 8-bit banks.

• Words can be stored at even or odd addresses.

Input / Output

• The 8086 uses three main methods of I/O:

Programmed, Interrupt-Driven and Direct

Memory Access.

• Programmed I/O relies on the processor to

poll the devices.

• Interrupt-Driven I/O is the opposite of

programmed because the devices signal

when they need service.

Input / Output

• The 8086 has two pins for hardware interrupts.

• The second pin can be expanded by the

Programmable Interrupt Controller (PIC).

• Direct memory access removes the processor from

the memory and I/O allowing a direct transfer.

• The 8086 uses the Direct Memory Access

controller (DMAC) to remove the processor from

the loop and control the system.

Overview of Assembly Language

Advantages:

 Disadvantages:

 Faster as compared to programs written using high-level languages

 Efficient memory usage

 Control down to bit level

 Need to know detail hardware implementation

 Not portable

 Slow to development and difficult to debug

 Basic components in assembly Language:

Instruction, Directive, Label, and Comment

12

Example of Assembly Language Program

;NUMOFF.ASM: Turn NUM-LOCK indicator off.

.MODEL SMALL

.STACK

.CODE

.STARTUP

MOV AX,40H ;set AX to 0040H

D1: MOV DS,AX ;load data segment with 0040H

MOV SI,17H ;load SI with 0017H

AND BYTE PTR [SI],0DFH ;clear NUM-LOCK bit

.EXIT

END

Comments

Assembly directive

Instructions

Assembly directive

Label

13

The Big (Simplified) Picture

char *tmpfilename;

int num_schedulers=0;

int num_request_submitters=0;

int i,j;

if (!(f = fopen(filename,"r"))) {

xbt_assert1(0,"Cannot open file %s",filename);

}

while(fgets(buffer,256,f)) {

if (!strncmp(buffer,"SCHEDULER",9))

num_schedulers++;

if (!strncmp(buffer,"REQUESTSUBMITTER",16))

num_request_submitters++;

}

fclose(f);

tmpfilename = strdup("/tmp/jobsimulator_

High-level code

COMPILER

sll $t3, $t1, 2

add $t3, $s0, $t3

sll $t4, $t0, 2

add $t4, $s0, $t4

lw $t5, 0($t3)

lw $t6, 0($t4)

slt $t2, $t5, $t6

beq $t2, $zero, endif

add $t0, $t1, $zero

sll $t4, $t0, 2

add $t4, $s0, $t4

lw $t5, 0($t3)

lw $t6, 0($t4)

slt $t2, $t5, $t6

beq $t2, $zero, endif

Assembly code

ASSEMBLER

010000101010110110

101010101111010101

101001010101010001

101010101010100101

111100001010101001

000101010111101011

010000000010000100

000010001000100011

101001010010101011

000101010010010101

010101010101010101

101010101111010101

101010101010100101

111100001010101001

Machine code

Control

UnitALU

Program counter register

register

register

CPU

14

The Big (Simplified) Picture

char *tmpfilename;

int num_schedulers=0;

int num_request_submitters=0;

int i,j;

if (!(f = fopen(filename,"r"))) {

xbt_assert1(0,"Cannot open file %s",filename);

}

while(fgets(buffer,256,f)) {

if (!strncmp(buffer,"SCHEDULER",9))

num_schedulers++;

if (!strncmp(buffer,"REQUESTSUBMITTER",16))

num_request_submitters++;

}

fclose(f);

tmpfilename = strdup("/tmp/jobsimulator_

High-level code

COMPILER

sll $t3, $t1, 2

add $t3, $s0, $t3

sll $t4, $t0, 2

add $t4, $s0, $t4

lw $t5, 0($t3)

lw $t6, 0($t4)

slt $t2, $t5, $t6

beq $t2, $zero, endif

add $t0, $t1, $zero

sll $t4, $t0, 2

add $t4, $s0, $t4

lw $t5, 0($t3)

lw $t6, 0($t4)

slt $t2, $t5, $t6

beq $t2, $zero, endif

Assembly code

ASSEMBLER

010000101010110110

101010101111010101

101001010101010001

101010101010100101

111100001010101001

000101010111101011

010000000010000100

000010001000100011

101001010010101011

000101010010010101

010101010101010101

101010101111010101

101010101010100101

111100001010101001

Machine code

Control

UnitALU

Program counter register

register

register

CPU

sll $t3, $t1, 2

add $t3, $s0, $t3

sll $t4, $t0, 2

add $t4, $s0, $t4

lw $t5, 0($t3)

lw $t6, 0($t4)

slt $t2, $t5, $t6

beq $t2, $zero, endif

Hand-written

Assembly code

15

What we do in this class:

char *tmpfilename;

int num_schedulers=0;

int num_request_submitters=0;

int i,j;

if (!(f = fopen(filename,"r"))) {

xbt_assert1(0,"Cannot open file %s",filename);

}

while(fgets(buffer,256,f)) {

if (!strncmp(buffer,"SCHEDULER",9))

num_schedulers++;

if (!strncmp(buffer,"REQUESTSUBMITTER",16))

num_request_submitters++;

}

fclose(f);

tmpfilename = strdup("/tmp/jobsimulator_

High-level code

COMPILER

sll $t3, $t1, 2

add $t3, $s0, $t3

sll $t4, $t0, 2

add $t4, $s0, $t4

lw $t5, 0($t3)

lw $t6, 0($t4)

slt $t2, $t5, $t6

beq $t2, $zero, endif

add $t0, $t1, $zero

sll $t4, $t0, 2

add $t4, $s0, $t4

lw $t5, 0($t3)

lw $t6, 0($t4)

slt $t2, $t5, $t6

beq $t2, $zero, endif

Assembly code

ASSEMBLER

010000101010110110

101010101111010101

101001010101010001

101010101010100101

111100001010101001

000101010111101011

010000000010000100

000010001000100011

101001010010101011

000101010010010101

010101010101010101

101010101111010101

101010101010100101

111100001010101001

Machine code

Control

UnitALU

Program counter register

register

register

CPU

sll $t3, $t1, 2

add $t3, $s0, $t3

sll $t4, $t0, 2

add $t4, $s0, $t4

lw $t5, 0($t3)

lw $t6, 0($t4)

slt $t2, $t5, $t6

beq $t2, $zero, endif

Hand-written

Assembly code

16

Performance : Bubble Sort Example

17

Software Model for the 8086

18

Overview

 Intel 8088 facts

8088

VDD (5V)

GND

CLK

20-bit

address
8-bit data


 



control

signals

To 8088

control

signals

from 8088

8088 signal classification

 20 bit address bus allow accessing

1 M memory locations

 16-bit internal data bus and 8-bit

external data bus. Thus, it need

two read (or write) operations to

read (or write) a 16-bit datum

 Byte addressable and byte-swapping

Memory locations

5A

2F18000

18001

Low byte of word

High byte of word

Word: 5A2F

19

Organization of 8088/8086

AH AL

BH BL

CH CL

DH DL

SP

BP

SI

DI

ALU

Flag register

Execution Unit

(EU)

EU

control



CS

DS

SS

ESALU Data bus

(16 bits)

Address bus (20 bits)

Instruction Queue

Bus

control
External bus

IP

Data bus

(16 bits)

Bus Interface Unit (BIU)

General purpose

register

Segment

register

20

The 8086 Registers

• To write assembly code for an ISA (Instruction Set
Architecture) you must know the name of registers

– Because registers are places in which you put data to perform
computation and in which you find the result of the computation
(think of them as variables)

– The registers are really numbered, but assembly languages give
them “easy-to-remember” names

• The 8086 offered 16-bit registers

• Four general purpose 16-bit registers

– AX

– BX

– CX

– DX

21

The 8086 Registers

• Each of the 16-bit registers consists of 8 “low bits” and 8
“high bits”

– Low: least significant

– High: most significant

AX BX CX DX

AH AL BH BL CH CL DH DL

• The ISA makes it possible to refer to the low or high

bits individually

– AH, AL

– BH, BL

– CH, CL

– DH, DL
22

The 8086 Registers

• The xH and xL registers can be used as 1-byte

register to store 1-byte quantities

• Important: both are “tied” to the 16-bit register

– Changing the value of AX will change the values of

AH and AL

– Changing the value of AH or AL will change the value

of AX

AX BX CX DX

AH AL BH BL CH CL DH DL

23

The 80x86 Registers

24

The 8086 Registers

• Two 16-bit index registers:

– SI

– DI

• These are basically general-purpose registers

• But by convention they are often used as

“pointers”, i.e., they contain addresses

• And they cannot be decomposed into High and

Low 1-byte registers

25

The 8086 Registers

• Two 16-bit special registers:

– BP: Base Pointer

– SP: Stack Pointer

– We’ll discuss these Later

• Four 16-bit segment registers:

– CS: Code Segment

– DS: Data Segment

– SS: Stack Segment

– ES: Extra Segment

– We’ll discuss them later as well

26

The 8086 Registers

• The 16-bit Instruction Pointer (IP) register:

– Points to the next instruction to execute

• The 16-bit FLAGS registers

– Information is stored in individual bits of the FLAGS

register

– Whenever an instruction is executed and produces a

result, it may modify some bit(s) of the FLAGS register

– Example: Z (or ZF) denotes one bit of the FLAGS

register, which is set to 1 if the previously executed

instruction produced 0, or 0 otherwise

27

Flag Register

 OF DF IF TF ZFSF  AF PF CF 

015

 Control Flags  Status Flags

IF: Interrupt enable flag

DF: Direction flag

TF: Trap flag

CF: Carry flag

PF: Parity flag

AF: Auxiliary carry flag

ZF: Zero flag

SF: Sign flag

OF: Overflow flag

 Flag register contains information reflecting the current status of a

microprocessor. It also contains information which controls the

operation of the microprocessor.

 

28

The 8086 Registers

Control

Unit
ALU

AH AL = AX

BH BL = BX

CH CL = CX

DH DL = DX

SI

DI

BP

SP

IP

= FLAGS

CS

DS

SS

ES

16 bits

29

General Purpose Registers

15 8 7 0

AX

BX

CX

DX

AH AL

BH BL

CH CL

DH DL

Accumulator

Base

Counter

Data

SP

BP

SI

DI

Data Group

Pointer and

Index Group

Stack Pointer

Base Pointer

Source Index

Destination Index

30

Arithmetic Logic Unit (ALU)

n bits n bits

A B

Y

F

Carry

Y= 0 ?

A > B ?

F Y

0 0 0 A + B

0 0 1 A - B

0 1 0 A - 1

0 1 1 A and B

1 0 0 A or B

1 0 1 not A

     

 Signal F control which function will be conducted by ALU.

 Signal F is generated according to the current instruction.

 Basic arithmetic operations: addition, subtraction, 

 Basic logic operations: and, or, xor, shifting,

31

Instruction Machine Codes

 Instruction machine codes are binary numbers

 For Example:

1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 MOV AL, BL

MOV

 Machine code structure

Opcode Operand1

 Opcode tells what operation is to be performed.

(EU control logic generates ALU control signals according to Opcode)

 Some instructions do not have operands, or have only one operand

 Operands tell what data should be used in the operation. Operands can

be addresses telling where to get data (or where to store results)

Register

mode

Mode Operand2

 Mode indicates the type of a instruction: Register type, or Memory type

32

EU Operation

ALU Data bus

(16 bits)

AH AL

BH BL

CH CL

DH DL

SP

BP

SI

DI

General purpose

register

ALU

Flag register

EU

control instruction

1011000101001010

1. Fetch an instruction from instruction

queue

2. According to the instruction, EU control

logic generates control signals.

(This process is also referred to as instruction

decoding)

3. Depending on the control signal,

EU performs one of the following

operations:

An arithmetic operation

A logic operation

 Storing a datum into a register

Moving a datum from a register

 Changing flag register

33

Generating Memory Addresses

 How can a 16-bit microprocessor generate 20-bit memory addresses?

Segment

(64K)

0000

+

16-bit register

16-bit register

20-bit memory address

00000

FFFFF
Left shift 4 bits

Intel 80x86 memory address generation 1M memory space

Offset

Segment

address

Offset
Addr1

Addr1 + 0FFFF

34

Code, Data, Stack

• A program constantly references all three
regions

• Therefore, the program constantly
references bytes in three different segments
– For now let’s assume that each region is fully

contained in a single segment, which is in fact
not always the case

• CS: points to the beginning of the code
segment

• DS: points to the beginning of the data
segment

• SS: points to the beginning of the stack
segment

code

data

stack

a
d
d
re

s
s
 s

p
a
c
e

35

Memory Segmentation

 A segment is a 64KB block of memory starting from any 16-byte

boundary

 For example: 00000, 00010, 00020, 20000, 8CE90, and E0840 are all valid

segment addresses

 The requirement of starting from 16-byte boundary is due to the 4-bit

left shifting

 Segment registers in BIU

CS

SS

DS

ES

Code Segment

Data Segment

Stack Segment

Extra Segment

015

36

Memory Address Calculation

 Segment addresses must be stored

in segment registers

 Offset is derived from the combination

of pointer registers, the Instruction

Pointer (IP), and immediate values

0000

+

Segment

address
Offset

Memory address

 Examples

3 4 8 A 0

4 2 1 4

8 A B 43

CS

IP +

Instruction address

5 0 0 0 0

F F E 0

F F E 05

SS

SP +

Stack address

1 2 3 4 0

0 0 2 2

2 3 6 21

DS

DI +

Data address

37

Fetching Instructions

Where to fetch the next instruction?

CS

IP

1 2 3 4

0 0 1 2

1 2 3 5 2

12352 MOV AL, 0

8088 Memory

 Update IP

— After an instruction is fetched, Register IP is updated as follows:

IP = IP + Length of the fetched instruction

— For Example: the length of MOV AL, 0 is 2 bytes. After fetching this instruction,

the IP is updated to 0014

38

Accessing Data Memory

 There is a number of methods to generate the memory address when

accessing data memory. These methods are referred to as

Addressing Modes

 Examples:

— Direct addressing: MOV AL, [0300H]

1 2 3 4 0

0 3 0 0

2 6 4 01

DS

Memory address

(assume DS=1234H)

— Register indirect addressing: MOV AL, [SI]

1 2 3 4 0

0 3 1 0

2 6 5 01

DS

Memory address

(assume DS=1234H)

(assume SI=0310H)

39

In-class Exercise

• Consider the byte at address 13DDE within

a 64K segment defined by selector value

10DE. What is its offset?

40

In-class Exercise

• Consider the byte at address 13DFE within

64K segment defined by selector value

10DE. What is its offset?

• 13DDE = 10DE * 1610 + offset

• offset = 13DFE - 10DE0

• offset = 301E (a 16-bit quantity)

41

Address Computation Example
• Consider the whole 1MB address space

• Say that we want a 64K segment whose end is 8K from the end of the
address space

• The address at the end of the address space is FFFFF

• 8K in binary is 10-0000-0000-0000, that is 02000 in hex

• So the address right after the end of the segment is
FFFFF - 02000 + 1 = FEFFF + 1 = FE000

• The length of the segment is 64K

• 64K in binary is 1-0000-0000-0000-0000, that is 10000

• So the address at the beginning of the segment is
FF000 - 10000 = EF000

• So the value to store in a segment register is EF00

• To reference the 43th byte in the segment, one must store 002A (= 4210) in
an index register

• The address of that byte is: EF000 + 002A = EF02A

• The address of the last byte in the segment is: EF000 + 07FFF = F6FFF
– Which is right before FF000, the beginning of the last 8K of the address space

42

Instructions Format and

Compilation

43

;NUMOFF.ASM: Turn NUM-LOCK indicator off.

;

.MODEL SMALL

.STACK

.CODE

.STARTUP

MOV AX,40H ;set AX to 0040H

MOV DS,AX ;load data segment with 0040H

MOV SI,17H ;load SI with 0017H

AND BYTE PTR [SI],0DFH ;clear NUM-LOCK bit

.EXIT

END

All characters following a “;” till the line end

are “comments”, ignored by the assembler

Assembler reserved words

Assembly language instructions

Developing software for the personal computer

.ASM file

44

Developing software for the personal computer

.ASM file

;NUMOFF.ASM: Turn NUM-LOCK indicator off.

;

.MODEL SMALL

.STACK

.CODE

.STARTUP

MOV AX,40H ;set AX to 0040H

MOV DS,AX ;load data segment with 0040H

MOV SI,17H ;load SI with 0017H

AND BYTE PTR [SI],0DFH ;clear NUM-LOCK bit

.EXIT

END

Register pair (16 bit) (destination of “MOV”)

Hexadecimal value to be loaded (source for “MOV”)

Data Segment register pair Prepare the Data Segment

Source Index

The complete address

of the byte containing

NumLock bit is

specified.

First operand and destination for

logical “AND” Memory address

specified by DS and SI together.

Second operand for logical “AND”

(immediate hexadecimal value)

ANDing with DFH=1101.1111B,

only b5 (bit 5) of specified memory

location is affected (reset to 0)
45

;NUMOFF.ASM: Turn NUM-LOCK indicator off.

;

.MODEL SMALL

.STACK

0000 .CODE

.STARTUP

0017 B8 0040 MOV AX,40H ;set AX to 0040H

001A 8E D8 MOV DS,AX ;load data segment with 0040H

001C BE 0017 MOV SI,17H ;load SI with 0017H

001F 80 24 DF AND BYTE PTR [SI],0DFH ;clear NUM-LOCK bit

.EXIT

END

Memory location addresses

Machine language codes generated by the assembler

1.7 Developing software for the personal computer

.LST file

46

Instruction Format

 General Format of Instructions

Label: Opcode Operands ; Comment

 Label: It is optional. It provides a symbolic address that can be used in branch instructions

 Opcode: It specifies the type of instructions

 Operands: Instructions of 80x86 family can have one, two, or zero operand

 Comments: Only for programmers’ reference

 Machine Code Format

Opcode Operand1Mode Operand2

1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1MOV AL, BL

MOV
Register

mode
47

DATA SEGMENT PARA 'DATA‘

ORG 7000H

POINTS DB 16 DUP(?)

SUM DB ?

DATA ENDS

CODE SEGMENT PARA 'CODE‘

ASSUME CS:CODE, DS:DATA

ORG 8000H

TOTAL: MOV AX,7000H

MOV DS,AX

MOV AL,0

•••••••••

CODE ENDS

END TOTAL

0000 DATA SEGMENT PARA 'DATA’

ORG 7000H

7000 0010 [00] POINTS DB 16 DUP(?)

7010 00 SUM DB ?

7011 DATA ENDS

0000 CODE SEGMENT PARA 'CODE'

ASSUME CS:CODE, DS:DATA

ORG 8000H

8000 B8 7000 TOTAL: MOV AX,7000H

8003 8E D8 MOV DS,AX

8005 B0 00 MOV AL,0

•••••••••

 Source File  List File

Assembler Directives

48

Assembler Directives

 SEGMENT directive

 ENDS directive

 END directive

 ORG directive

 DB: Define Byte; DW, ….

ASSUME directive

— Specifies the segment register (segment Register) that will be used to calculate the effective

addresses for all labels and variables defined under a given segment or group name (segment Name).

If CS = 1230H and DS = 5678H, what are the physical memory addresses of

label TOTAL and variable SUM?

49

Assembler Directives

.MODEL SMALL

.DATA

ORG 7000H

POINTS DB 16 DUP(?)

SUM DB ?

.CODE

ORG 8000H

TOTAL: MOV AX,7000H

MOV DS,AX

MOV AL,0

•••••••••

RET

END TOTAL

 Simplified Segment Directives  Predefined .MODEL Types

DATA

SEGMENT

CODE

SEGMENT

TINY one one

SMALL one one

MEDIUM one multiple

COMPACT multiple one

LARGE multiple multiple

HUGE multiple multiple

FLAT* one one

* Flat is used for 32-bit addressing

50

