
Assembly Language Fundamentals

Integer Constants

• binary, decimal, hexadecimal, or octal digits

• Common radix characters:

 h – hexadecimal

 d – decimal

 b – binary

• Optional leading + or – sign

Examples: 30d, 6Ah, 42, 1101b

Hexadecimal beginning with letter: 0A5h

Character and String Constants

• Enclose character in single or double quotes

 'A', "x"

 ASCII character = 1 byte

• Enclose strings in single or double quotes

 "ABC"

 'xyz'

 Each character occupies a single byte

• Embedded quotes:

 'Say "Goodnight," Mohammad'

Labels

• Act as place markers

 marks the address (offset) of code and data

• Data label

 must be unique

 example: myArray (not followed by colon)

• Code label

 target of jump and loop instructions

 example: L1: (followed by colon)

Data Allocation

Data Allocation

• Variable declaration in a high-level language such as C
char response

int value

float total

double average_value

specifies
» Amount storage required (1 byte, 2 bytes, …)

» Label to identify the storage allocated (response, value, …)

» Interpretation of the bits stored (signed, floating point, …)

– Bit pattern 1000 1101 1011 1001 is interpreted as

 -29,255 as a signed number

 36,281 as an unsigned number

Data Allocation (cont’d)

• In assembly language, we use the define directive

 Define directive can be used

» To reserve storage space

» To label the storage space

» To initialize

» But no interpretation is attached to the bits stored

– Interpretation is up to the program code

 Define directive goes into the .DATA part of the assembly

language program

• Define directive format

[var-name] D? init-value [,init-value],...

Data Allocation (cont’d)

• Five define directives
DB Define Byte ;allocates 1 byte

DW Define Word ;allocates 2 bytes

DD Define Doubleword ;allocates 4 bytes

DQ Define Quadword ;allocates 8 bytes

DT Define Ten bytes ;allocates 10 bytes

Examples

sorted DB ’y’

response DB ? ;no initialization

value DW 25159

Data Allocation (cont’d)

• Multiple definitions can be abbreviated

Example

message DB ’B’

DB ’y’

DB ’e’

DB 0DH

DB 0AH

can be written as

message DB ’B’,’y’,’e’,0DH,0AH

• More compactly as

message DB ’Bye’,0DH,0AH

Data Allocation (cont’d)

• Multiple definitions can be cumbersome to initialize data
structures such as arrays

Example

To declare and initialize an integer array of 8 elements

marks DW 0,0,0,0,0,0,0,0

• What if we want to declare and initialize to zero an array
of 200 elements?

 There is a better way of doing this than repeating zero 200 times in
the above statement

» Assembler provides a directive to do this (DUP directive)

Data Allocation (cont’d)

• Multiple initializations

 The DUP assembler directive allows multiple initializations to the
same value

 Previous marks array can be compactly declared as

marks DW 8 DUP (0)

Examples
table1 DW 10 DUP (?) ;10 words, uninitialized

message DB 3 DUP (’Bye!’) ;12 bytes, initialized

; as Bye!Bye!Bye!

Name1 DB 30 DUP (’?’) ;30 bytes, each

; initialized to ?

Data Allocation (cont’d)

• The DUP directive may also be nested

Example
stars DB 4 DUP(3 DUP (’*’),2 DUP (’?’),5 DUP (’!’))

Reserves 40-bytes space and initializes it as

??!!!!!??!!!!!***??!!!!!***??!!!!!

Example

matrix DW 10 DUP (5 DUP (0))

defines a 10X5 matrix and initializes its elements to 0

This declaration can also be done by

matrix DW 50 DUP (0)

Data Allocation (cont’d)

Correspondence to C Data Types

Directive C data type

DB char

DW int, unsigned

DD float, long

DQ double

DT internal intermediate
float value

Defining BYTE

value1 DB 'A'; character constant

value2 DB 0; smallest unsigned byte

value3 DB 255; largest unsigned byte

value4 DB -128; smallest signed byte

value5 DB +127; largest signed byte

value6 DB ?; uninitialized byte

Each of the following defines a single byte of storage:

A variable name is a data label that implies an offset (an address).

41H

0

FF H

80 H

7F H

?

value1

value2

value3

value4

value5

value6

Physical Address

80000

80001

80002

80003

80004

80005

80006

80007

80008

80009

Defining Bytes

list1 DB 10,20,30,40

list2 DB 10,20,30,40

DB 50,60,70,80

DB 81,82,83,84

list3 DB ?,32,41h,00100010b

list4 DB 0Ah,20h,‘A’,22h

Examples that use multiple initializers:
10

20

30

40

list1

list2

list3

list4

Physical Address

80000

80001

80002

80003

80004

80005

80006

80007

80008

80009

10

20

30

40
50

60

70

80

81

82

83

84

?

32

41H

22H
0A

20H

22H

8000A

8000B

8000C

8000D

8000E

8000F

80010

80011

80012

80013

80014

80015

80016

80017

80018

Defining Strings (1 of 3)

• A string is implemented as an array of characters
 For convenience, it is usually enclosed in quotation marks

 It usually has a null byte at the end

• Examples:

str1 DB "Enter your name", ’$’

str2 DB 'Error: halting program', ’$’

str3 DB 'A','E','I','O','U'

greeting DB "Welcome to the Encryption Demo program "

DB "created by someone.", ’$’

E

N

T

E

str1

str2

Physical Address

80000

80001

80002

80003

80004

80005

80006

80007

80008

80009

R

Y

O
U

R

N

A

M

E

$

E

R

R

O
R

:

8000A

8000B

8000C

8000D

8000E

8000F

80010

80011

80012

80013

80014

80015

80016

80017

80018

Defining Strings (2 of 3)

• To continue a single string across multiple lines,

end each line with a comma:

menu DB "Checking Account",0dh,0ah,0dh,0ah,

"1. Create a new account",0dh,0ah,

"2. Open an existing account",0dh,0ah,

"3. Credit the account",0dh,0ah,

"4. Debit the account",0dh,0ah,

"5. Exit",0ah,0ah,

"Choice> ", ’$’

Defining Strings (3 of 3)

• End-of-line character sequence:

 0Dh = carriage return

 0Ah = line feed

str1 DB "Enter your name: ",0Dh,0Ah

DB "Enter your address: ",’$’

newLine DB 0Dh,0Ah, ’$’

Idea: Define all strings used by your program in the same

area of the data segment.

Using the DUP Operator

• Use DUP to allocate (create space for) an array or string.

• Counter and argument must be constants or constant
expressions

var1 DB 5 DUP(0) ; 20 bytes, all equal to zero

var2 DB 4 DUP(?) ; 20 bytes, uninitialized

var3 DB 4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTACK"

var4 DB 10,3 DUP(0),20

0

0

0

0

var1

var3

Physical Address

80000

80001

80002

80003

80004

80005

80006

80007

80008

80009

0

?

?

?
?

S

T

A

C

K

S

T

A

C

K

10
0

0

8000A

8000B

8000C

8000D

8000E

8000F

80010

80011

80012

80013

80014

80015

80016

80017

800180

20

var2

var4

var1 DB 5 DUP(0)

var2 DB 4 DUP(?)

var3 DB 2 DUP("STACK")

var4 DB 10,3 DUP(0),20

Defining DW

• Define storage for 16-bit integers

 or double characters

 single value or multiple values

word1 DW 1234H ; largest unsigned value

word2 DW -1 ; smallest signed value

word3 DW ? ; uninitialized, unsigned

word4 DW "AB" ; double characters

myList DW 1,2,3,4,5 ; array of words

array DW 5 DUP(?) ; uninitialized array

34

12

FF

FF

word1

word3

Physical Address

80000

80001

80002

80003

80004

80005

80006

80007

80008

80009

?

?

B

A
01

00

02

00

03

00

04

00

05

00

?

?
?

?

8000A

8000B

8000C

8000D

8000E

8000F

80010

80011

80012

80013

80014

80015

80016

80017

80018?

?

word2

word4

myList

array

word1 DW 1234H

word2 DW -1

word3 DW ?

word4 DW "AB"

myList DW 1,2,3,4,5

array DW 5 DUP(?)

Defining DD

val1 DD 12345678h ; unsigned

val2 DD –1 ; signed

val3 DD 20 DUP(?) ; unsigned array

val4 DD –3,–2,–1,0,1 ; signed array

Storage definitions for signed and unsigned 32-bit

integers:

78

56

34

12

val2

Physical Address

80000

80001

80002

80003

80004

80005

80006

80007

80008

80009

FF

FF

FF

FF
?

?

?

?

?

?

?

?

?

?

?

?
?

?

8000A

8000B

8000C

8000D

8000E

8000F

80010

80011

80012

80013

80014

80015

80016

80017

80018?

?

val1

val3Val3[0]

Val3[1]

Val3[2]

Val3[3]

Val3+4

Val3+8

Val3+12

val1 DD 12345678h

val2 DD –1

val3 DD 20 DUP(?)

val4 DD –3,–2,–1,0,1

Defining QB, TB

quad1 DQ 1234567812345678h

val1 DT 1000000000123456789Ah

Storage definitions for quadwords, tenbyte values,

and real numbers:

Little Endian Order

• All data types larger than a byte store their individual bytes in
reverse order. The least significant byte occurs at the first
(lowest) memory address.

• Example:

val1 DD 12345678h

EQU Directive

• Define a symbol as either an integer or text
expression.

• Cannot be redefined

PI EQU <3.1416>

pressKey EQU <"Press any key to continue...",0>

.data

prompt DB pressKey

Addressing Modes

Where Are the Operands?

• Operands required by an operation can be specified in a
variety of ways

• A few basic ways are:

 operand in a register

– register addressing mode

 operand in the instruction itself

– immediate addressing mode

 operand in memory

– variety of addressing modes

direct and indirect addressing modes

 operand at an I/O port

– Simple IN and OUT commands

 Operand is in an internal register

Examples

mov EAX,EBX ; 32-bit copy

mov BX,CX ; 16-bit copy

mov AL,CL ; 8-bit copy

 The mov instruction

mov destination,source

copies data from source to destination

Register Addressing

Register Addressing

 Operands of the instruction are the names of internal register

 The processor gets data from the register locations specified by

instruction operands

For Example: move the value of register BL to register AL

MOV AL, BL AH

BH

AL

BL

 If AX = 1000H and BX=A080H, after the execution of MOV AL, BL

what are the new values of AX and BX?

In immediate and register addressing modes, the processor does not access memory.

Thus, the execution of such instructions are fast.

Immediate Addressing Mode

Data is part of the instruction
» Operand is located in the code segment along with the

instruction

» Typically used to specify a constant

Example

mov AL,75

 This instruction uses register addressing mode for
destination and immediate addressing mode for the
source

Data is in the data segment

» Need a logical address to access data

– Two components: segment:offset

» Various addressing modes to specify the offset component

– offset part is called effective address

 The offset is specified directly as part of instruction

 We write assembly language programs using memory labels (e.g.,

declared using DB, DW, LABEL,...)

» Assembler computes the offset value for the label

– Uses symbol table to compute the offset of a label

Direct Addressing Mode

 Assembler builds a symbol table so we can refer to the allocated
storage space by the associated label

Example
.DATA name offset

value DW 0 value 0

sum DD 0 sum 2

marks DW 10 DUP (?) marks 6

message DB ‘The grade is:’,0 message 26

char1 DB ? char1 40

Direct Addressing Mode

Examples
mov AL,char1

» Assembler replaces char1 by its effective address (i.e., its offset
value from the symbol table)

mov marks,56

» marks is declared as

marks DW 10 DUP (0)

» Since the assembler replaces marks by its effective address, this

instruction refers to the first element of marks

– In C, it is equivalent to

table1[0] = 56

Direct Addressing Mode

Direct Addressing Example

DS 10H + Displacement = Memory location

— Example: assume DS = 1000H, AX = 1234H

MOV [7000H], AX

AH AL

3412 17001H

17000H34

12

DS: 1 0 0 0 _

+ Disp: 7 0 0 0

1 7 0 0 0

• Problem with direct addressing

 Useful only to specify simple variables

 Causes serious problems in addressing data types such as arrays

» As an example, consider adding elements of an array

– Direct addressing does not facilitate using a loop structure to

iterate through the array

– We have to write an instruction to add each element of the array

• Indirect addressing mode remedies this problem

Direct Addressing Mode

Register Indirect Addressing

 One of the registers BX, BP, SI, DI appears in the instruction operand

field. Its value is used as the memory displacement value.

For Example: MOV DL, [SI]

 Memory address is calculated as following:

DS

SS

 10H +

BX

SI

DI

BP

= Memory address

 If BX, SI, or DI appears in the instruction operand field, segment register DS

is used in address calculation

 If BP appears in the instruction operand field, segment register SS is used in

address calculation

Register Indirect Addressing

 Example 1: assume DS = 0800H, SI=2000H

MOV DL, [SI]

120A000H

DH DL

12

DS: 0 8 0 0 _

+ SI: 2 0 0 0

0 A 0 0 0

 Example 2: assume SS = 0800H, BP=2000H, DL = 7

MOV [BP], DL

memory

• Using indirect addressing mode, we can process

arrays using loops

Example: Summing array elements

 Load the starting address (i.e., offset) of the array into

BX

 Loop for each element in the array

» Get the value using the offset in BX

– Use indirect addressing

» Add the value to the running total

» Update the offset in BX to point to the next element of the

array

Register Indirect Addressing

• Suppose we want to load BX with the offset value of

table1

• We cannot write

mov BX,table1

• Two ways of loading offset value

» Using OFFSET assembler directive

– Executed only at the assembly time

» Using lea instruction

– This is a processor instruction

– Executed at run time

Register Indirect Addressing

Loading offset value into a register

• Using OFFSET assembler directive

 The previous example can be written as

mov BX,OFFSET table1

• Using lea (load effective address) instruction

 The format of lea instruction is

lea register,source

 The previous example can be written as

lea BX,table1

Register Indirect Addressing

Loading offset value into a register (cont’d)

Which one to use -- OFFSET or lea?
 Use OFFSET if possible

» OFFSET incurs only one-time overhead (at assembly time)

» lea incurs run time overhead (every time you run the program)

 May have to use lea in some instances

» When the needed data is available at run time only

– An index passed as a parameter to a procedure

» We can write

lea BX,table1[SI]

to load BX with the address of an element of table1 whose index is
in SI register

» We cannot use the OFFSET directive in this case

Register Indirect Addressing

Loading offset value into a register (cont’d)

Based Addressing

 The operand field of the instruction contains a base register (BX or BP)

and an 8-bit (or 16-bit) constant (displacement)

For Example: MOV AX, [BX+4]

 Calculate memory address

DS

SS

 10H + + Displacement = Memory address

 If BX appears in the instruction operand field, segment register DS

is used in address calculation

 If BP appears in the instruction operand field, segment register SS

is used in address calculation

BX

BP

What’s difference between register indirect addressing and based addressing?

Based Addressing

 Example 1: assume DS = 0100H, BX=0600H

MOV AX, [BX+4]

B001604H

AH AL

B0

DS: 0 1 0 0 _

+ BX: 0 6 0 0

+ Disp.: 0 0 0 4

0 1 6 0 4

 Example 2: assume SS = 0A00H, BP=0012H, CH = ABH

MOV [BP-7], CH

01605H C0

C0

memory

Indexed Addressing

 The operand field of the instruction contains an index register (SI or DI)

and an 8-bit (or 16-bit) constant (displacement)

For Example: MOV [DI-8], BL

 Calculate memory address

DS 10H + + Displacement = Memory address

SI

DI

 Example: assume DS = 0200H, DI=0030H BL = 17H

MOV [DI-8], BL

DS: 0 2 0 0 _

+ DI: 0 0 3 0

- Disp.: 0 0 0 8

0 2 0 2 8

BH BL

17
17 02028H

memory

Based Indexed Addressing

 The operand field of the instruction contains a base register (BX or BP)

and an index register

For Example: MOV [BP] [SI], AH

MOV [BP+SI], AH

 Calculate memory address

DS

SS

 10H + + {SI or DI} = Memory address

 If BX appears in the instruction operand field, segment register DS

is used in address calculation

 If BP appears in the instruction operand field, segment register SS

is used in address calculation

BX

BP

or

Based Indexed Addressing

 Example 1: assume SS = 2000H, BP=4000H, SI=0800H, AH=07H

MOV [BP] [SI], AH
AH AL

SS: 2 0 0 0 _

+ BP: 4 0 0 0

+ SI.: 0 8 0 0

2 4 8 0 0

 Example 2: assume DS = 0B00H, BX=0112H, DI = 0003H, CH=ABH

MOV [BX+DI], CH

24800H 07

07

memory

Based Indexed with Displacement Addressing

 The operand field of the instruction contains a base register (BX or BP),

an index register, and a displacement

For Example: MOV CL, [BX+DI+2080H]

 Calculate memory address

DS

SS

 10H + + {SI or DI} + Disp. = Memory address

 If BX appears in the instruction operand field, segment register DS

is used in address calculation

 If BP appears in the instruction operand field, segment register SS

is used in address calculation

BX

BP

Based Indexed with Displacement Addressing

 Example 1: assume DS = 0300H, BX=1000H, DI=0010H

MOV CL, [BX+DI+2080H]
CH CL

DS: 0 3 0 0 _

+ BX: 1 0 0 0

+ DI.: 0 0 1 0

+ Disp. 2 0 8 0

0 6 0 9 0

 Example 2: assume SS = 1100H, BP=0110H, SI = 000AH, CH=ABH

MOV [BP+SI+0010H], CH

06090H 20

memory

20

Addressing Modes: Summary

Default Segments

• In register indirect addressing mode

 16-bit addresses

» Effective addresses in BX, SI, or DI is taken as the offset into
the data segment (relative to DS)

» For BP and SP registers, the offset is taken to refer to the stack
segment (relative to SS)

 32-bit addresses

» Effective address in EAX, EBX, ECX, EDX, ESI, and EDI is
relative to DS

» Effective address in EBP and ESP is relative to SS

 push and pop are always relative to SS

Default Segments (cont’d)

• Default segment override

 Possible to override the defaults by using override prefixes

» CS, DS, SS, ES

 Example 1

» We can use

add AX,SS:[BX]

to refer to a data item on the stack

 Example 2

» We can use

add AX,DS:[BP]

to refer to a data item in the data segment

Data Transfer Instructions

The mov instruction

 The format is

mov destination,source

» Copies the value from source to destination

» source is not altered as a result of copying

» Both operands should be of same size

» source and destination cannot both be in memory

– Most Pentium instructions do not allow both operands to be

located in memory

– Pentium provides special instructions to facilitate memory-to-

memory block copying of data

Data Transfer Instructions (cont’d)

The mov instruction

 Five types of operand combinations are allowed:

Instruction type Example

mov register,register mov DX,CX

mov register,immediate mov BL,100

mov register,memory mov BX,count

mov memory,register mov count,SI

mov memory,immediate mov count,23

 The operand combinations are valid for all instructions
that require two operands

Data Transfer Instructions (cont’d)

Source Operand Destination Operand

General

Register

Segment

Register

Memory

Location

Constant

General Register Yes Yes Yes No

Segment Register Yes No Yes No

Memory Location Yes Yes No No

Constant Yes No Yes No

Data Transfer Instructions (cont’d)

Ambiguous moves: PTR directive

• For the following data definitions
.DATA

table1 DW 20 DUP (0)

status DB 7 DUP (1)

the last two mov instructions are ambiguous

mov BX,OFFSET table1

mov SI,OFFSET status

mov [BX],100

mov [SI],100

 Not clear whether the assembler should use byte or word
equivalent of 100

Data Transfer Instructions (cont’d)

Ambiguous moves: PTR directive

• The PTR assembler directive can be used to clarify

• The last two mov instructions can be written as
mov WORD PTR [BX],100

mov BYTE PTR [SI],100

 WORD and BYTE are called type specifiers

• We can also use the following type specifiers:
DWORD for doubleword values

QWORD for quadword values

TWORD for ten byte values

Data Transfer Instructions (cont’d)

The xchg instruction

• The syntax is
xchg operand1,operand2

Exchanges the values of operand1 and operand2

Examples
xchg EAX,EDX

xchg response,CL

xchg total,DX

• Without the xchg instruction, we need a temporary
register to exchange values using only the mov instruction

Data Transfer Instructions (cont’d)

The xchg instruction

• The xchg instruction is useful for conversion of 16-bit
data between little endian and big endian forms

 Example:

mov AL,AH

converts the data in AX into the other endian form

• Pentium provides bswap instruction to do similar
conversion on 32-bit data

bswap 32-bit register

 bswap works only on data located in a 32-bit register

Printing to Screen

• INT 21H, Function 02H (AH = 02H).
 This function writes a single character to the screen.

 It is a DOS routine

 Example:
MOV AH, 02H

MOV DL, ‘A’ ; THE PRINTED CHARCTED SHOULD BE
PLACED HERE

INT 21H

• INT 21H, Function 09H (AH = 09H); DX contains the
offset of string ending with $
 This function displays a string.

 Example:
MOV AH, 02H

LEA DX, msg ;

INT 21H

Reading from keybaord

• INT 21H, Function 01H (AH = 01H).
 This function waits for keyboard Example:

MOV AH, 01H

INT 21H ; AL will contain the key pressed.

• INT 10H, Function 02H (AH = 02H), will set the cursor
position
 DL contains the column number (0 to 79)

 DH contains row number (0 to 24)

 BH contains page number (default is 0)
MOV AH, 02H

MOV DL, 1

MOV DH, 1

MOV BH, 0

INT 10H

Example: Case Conversion

.data
MSG1 DB ‘Enter a lower case letter:$’

MSG2 DB 0DH, 0AH, ‘In Upper Case it is:’

CharDB ?,’$’

.code
LEA DX, MSG1

MOV AH, 9

INT 21H

MOV AH, 1

INT 21H

SUB AL, 20H

MOV Char, AL

LEA DX, MSG2

MOV AH, 09H

INT 21H

