
ENCS238: Computer Organization

Mano - Chapter 4

Register Transfer and
Microoperations

Contents
• Register Transfer Language (RTL)

• Register Transfer

• Bus and Memory Transfers

• Arithmetic Microoperations

• Logic Microoperations

• Shift Microoperations

• Arithmetic Logic Shift Unit

What is Register?

� A special, high-speed storage area within the CPU.

� Registers are normally measured by the number of bits they can
hold,

� for example, an "8-bit register" or a "32-bit register".

� All data must be represented in a register before it can be
processed.processed.

� For example, if two numbers are to be multiplied, both numbers
must be in registers, and the result is also placed in a register.

� The register can contain the address of a memory location where
data is stored rather than the actual data itself

R1

4-1 Register Transfer Language (RTL)

�Digital System: An interconnection of
hardware modules that do a certain task
on the information

�Registers + Operations performed on the �Registers + Operations performed on the
data stored in them = Digital Module

�Modules are interconnected with common
data and control paths to form a digital
computer system

4-1 Register Transfer Language cont.

� Microoperations: operations executed on data stored in one
or more registers.

� For any function of the computer, a sequence of

microoperations is used to describe it

� The result of the operation may be:

� Replace the previous binary information of a
register or

� Transferred to another register

101101110011 010110111001
Shift Right Operation

R1 R1

4-1 Register Transfer Language cont.

� The internal hardware organization of a digital
computer is defined by specifying:

•The set of registers it contains and their

function

•The sequence of microoperations performed •The sequence of microoperations performed

on the binary information stored in the registers

•The control that initiates the sequence of
microoperations

� Registers + Microoperations Hardware + Control Functions

= Digital Computer

4-1 Register Transfer Language cont.

�RTL: a symbolic notation to describe the
microoperation transfers among registers

Next steps:

� Define symbols (Codes) for various � Define symbols (Codes) for various
types of microoperations

� Describe the hardware that
implements these microoperations

4-2 Register Transfer
� Computer registers are designated by Capital
Letters (sometimes followed by Numerals) to
denote the function of the register

R1: processor register

MAR: Memory Address Register (holds an address MAR: Memory Address Register (holds an address
for a memory unit)

PC: Program Counter

IR: Instruction Register

SR: Status Register

Digital Review: Register

D

Q
C D

Q
C D

Q
C D

Q
C

A0 A1 A2 A3

D C D C D C D C

Clock

I0 I1 I2 I3

4-2 Register Transfer cont.

� The individual flip-flops in an n-bit
register are numbered in sequence from
0 to n-1 (from the right position toward
the left position)

R1 7 6 5 4 3 2 1 0

A block diagram of a register

Register R1 Showing individual bits

4-2 Register Transfer cont.

PC

Numbering of bits

15 0

Other ways of drawing the block diagram of a register:

Partitioned into two parts

PC(H) PC(L)

07815

Lower byteUpper byte

4-2 Register Transfer cont.

� Information transfer from one register to another is

described by a replacement operator: R2 ← R1

This statement denotes a transfer of the content of register
R1 into register R2

� The transfer happens in one clock cycle

� The content of the R1 (source) does not change

� The content of the R2 (destination) will be lost and
replaced by the new data transferred from R1

� We are assuming that the circuits are available from the
outputs of the source register to the inputs of the destination
register, and that the destination register has a parallel load
capability

4-2 Register Transfer cont.

�Conditional Transfer occurs only under a control
condition

�Representation of a (conditional) transfer

P: R2 ← R1P: R2 ← R1

�A binary condition (P equals to 0 or 1) determines
when the transfer occurs

� The content of R1 is transferred into R2 only if P
is 1

4-2 Register Transfer cont.

Hardware implementation of a controlled

transfer:
P: R2 ← R1

Block diagram:

n

Clock

R1

R2
Control
Circuit

LoadP

4-2 Register Transfer cont.

Basic Symbols for Register Transfers

Symbol Description Examples

Letters &
numerals

Denotes a register MAR

R2

Parenthesis () Denotes a part of a register R2(0-7)

R2(L)

Arrow ← Denotes transfer of
information

R2 ← R1

Comma , Separates two
microoperations R2 ← R1 , R1 ← R2

4-3 Bus and Memory Transfers

�Paths must be provided to transfer information from
one register to another

�A Common Bus System is a scheme for
transferring information between registers in a multiple-
register configurationregister configuration

�A bus: set of common lines, one for each bit of a
register, through which binary information is transferred
one at a time

�Control signals determine which register is selected
by the bus during each particular register transfer

Digital Review: MULTIPLEXER

4-to-1 Multiplexer

0 0 I0
0 1 I1
1 0 I2
1 1 I3

Select Output
S1 S0 Y I0 I1 I2 I3

MUX
S0

S1

I0

I1

I2

I3

S0

S1

Y

Y

4-3 Bus and Memory Transfers

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Register A Register B Register C Register D

B C D1 1 1 B C D2 2 2 B C D3 3 3 B C D4 4 4

0 0 0 0
4 x1

MUX

4 x1

MUX

4 x1

MUX

4 x1

MUX

4-line bus

x

y
select

0 0 0 0

4-3 Bus and Memory Transfers
� The transfer of information from a bus into one of many

destination registers is done:

� By connecting the bus lines to the inputs of all destination
registers and then:

� Activating the load control of the particular destination
register selectedregister selected

� We write: R2 ← C to symbolize that the content of register
C is loaded into the register R2 using the common system
bus

� It is equivalent to: BUS ←C, (select C)

R2 ←BUS (Load R2)

Three-State Bus Buffers
� A bus system can be constructed with three-state
buffer gates instead of multiplexers

� A three-state buffer is a digital circuit that exhibits
three states:

� logic-0,

� logic-1, and

� high-impedance (Hi-Z)

Normal input A

Control input C

Three-State Buffer

Output B

Three-State Bus Buffers cont.

A

C=1

B A B

Buffer

A

C=0

B A B

Open Circuit

Digital Review DECODER

A0

D0

D1

0 0 0 0 1 1 1

E A1 A0 D0 D1 D2 D3

2-to-4 Decoder

A1

E

D2

D3

0 0 0 0 1 1 1
0 0 1 1 0 1 1
0 1 0 1 1 0 1
0 1 1 1 1 1 0
1 X x 1 1 1 1

Three-State Bus Buffers cont.

2××××4

Decoder

Select

Enable

0

1

2

3

S1

S0

E

Bus line for bit 0
A0

B0

C0

D0

Bus line with three-state

buffer (replaces MUX0 in the

previous diagram)

Digital Review: MEMORY COMPONENTS

Logical Organization

Random Access Memory
• Each word has a unique address

words

(byte, or n bytes)

0

M - 1
• Each word has a unique address
• Access to a word requires the same
time independent of the location of
the word

2k Words
(n bits/word)

n data input lines

n data output lines

k address lines

Read

Write

M - 1

Memory Transfer
� Memory read : Transfer from memory

� Memory write : Transfer to memory

� Data being read or wrote is called a Memory Word
(called M)

� It is necessary to specify the address of M when
writing / reading memory

� This is done by enclosing the address in square
brackets following the letter M

� Example: M[0016] : the memory contents at address
0X0016

Memory Transfer cont.

�Assume that the address of a memory unit is
stored in a register called the Address
Register AR

� Lets represent a Data Register with DR, � Lets represent a Data Register with DR,
then:

�Read: DR ← M[AR]

�Write: M[AR] ← DR

Memory Transfer cont.

AR

x12 x0C

x0E

x10

x12

x14

0019

0034

0045

00C6

000F

R1
x0100

x14

x16

x18

000F

0013

2200R1←M[AR]

R1

x00C6

Memory

R1

x0100

4-4 Arithmetic Microoperations
� The microoperations most often encountered in
digital computers are classified into four
categories:

� Register transfer microoperations

� Arithmetic microoperations (on numeric data � Arithmetic microoperations (on numeric data
stored in the registers)

� Logic microoperations (bit manipulations on non-
numeric data)

� Shift microoperations

� The basic arithmetic microoperations are: addition,
subtraction, increment, decrement, and shift

� Addition Microoperation:

R3 ← R1+ R2

� Subtraction Microoperation:

4-4 Arithmetic Microoperations cont.

� Subtraction Microoperation:

R3 ← R1 - R2

or :

R3 ← R1+ R2 + 1

1’s Complement

� One’s Complement Microoperation:

R2 ← R2

� Two’s Complement Microoperation:

R2 ← R2+1

4-4 Arithmetic Microoperations cont.

� Increment Microoperation:

R2 ← R2+1

� Decrement Microoperation:

R2 ← R2-1

Digital Review Half Adder/Full Adder
Half Adder

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1

y

cn-1

y

cn-1

c = xy s = xy’ + x’y
= x ⊕ y

x
y c

s

Full Adder

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

x y c s

x y cn-1 cn s

0

0

0

1

0

1

1

00 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1 cn = xy + xcn-1+ ycn-1

= xy + (x ⊕ y)cn-1

s = x’y’cn-1+x’yc’n-1+xy’c’n-1+xycn-1

= x ⊕ y ⊕ cn-1 = (x ⊕ y) ⊕ cn-1

x

cn-1

x

cn s

x
y

cn-1

S

cn

1

0

1

1

0

1

1

0

Binary Adder

FAFAFAFA C0

A0B0A1B1A2B2A3B3

C1C2C3
C0

S0S1S2S3
C4

4-bit binary adder
(connection of FAs)

Binary Adder-Subtractor

A0B0A1B1A2B2A3B3

M

FAFAFAFA
C0

S0S1S2S3

C1C2C3

C4

4-bit adder-subtractor

Binary Incrementer

C S

x y

HA

C S

x y

HA

C S

x y

HA

C S

x y

HA

1A0A1A2A3

C SC SC SC S

S0S1S2S3C4

4-bit Binary Incrementer

� Binary Incrementer can also be implemented using a Counter

� A binary decrementer can be implemented by adding 1’s to the
desired register each time!

Arithmetic Circuit

� This circuit performs seven distinct arithmetic
operations and the basic component of it is the
parallel adder

� The output of the binary adder is calculated from
the following arithmetic sum:the following arithmetic sum:

D = A + Y + Cin

B0

Arithmetic Circuit cont.

3 2 1 0 S1 S0

4××××1 MUX

B01 0 S1 S0B1

3 2 1 0 S1 S0

4××××1 MUX

B11 0 S1 S0B2

3 2 1 0 S1 S0

4××××1 MUX

B21 0 S1 S0B3

3 2 1 0 S1 S0

4××××1 MUX

B31 0 S1 S0

A0A1A2A3

Figure A

FAFAFAFA Cin

D0D1D2D3

C1C2C3

Cout

4-bit Arithmetic Circuit

X0Y0X1Y1X2Y2X3Y3

Arithmetic Circuit cont.

Select
Input

Y

Output

D = A + Y + Cin
MicrooperationsS

1
S
0

Ci
n

1 0 0 0 B D = A + B Add

2 0 0 1 B D = A + B + 1 Add with carry

3 0 1 0 B D = A + B Sub. With borrow

4 0 1 1 B D = A + B + 1 Sub

5 1 0 0 0 D = A Transfer A

6 1 0 1 0 D = A + 1 Increment

7 1 1 0 1 D = A - 1 Decrement

8 1 1 1 1 D = A Transfer A

The 4 basic Logic microoperations

OR Microoperation

� Symbol: U , +

� Gate:

� Example: 01001102 U 10101102 = 11101102

P + Q : R1← R2 + R3, R4 ← R5 U R6

OR OR

ADD

The 4 basic logic microoperations cont.

AND Microoperation

� Symbol: ∩ , .

� Gate: � Gate:

� Example: 1001102∩ 10101102 = 00001102

The 4 basic logic microoperations cont.

Complement (NOT) Microoperation

� Symbol:
−−−−

� Gate: � Gate:

� Example: 10101102 = 01010012

The 4 basic logic microoperations cont.

XOR (Exclusive-OR) Microoperation

� Symbol: ⊕⊕⊕⊕

� Gate: � Gate:

� Example: 1001102 ⊕⊕⊕⊕ 10101102 = 11100002

Other Logic Microoperations

Selective-set Operation

� Used to force selected bits of a register into logic-1 by using
the OR operation

Example: 01002 U 10002 = 11002

Selective-complement (toggling) Operation

� Used to force selected bits of a register to be complemented
by using the XOR operation

Example: 00012 ⊕ 10002 = 10012

Other Logic Microoperations cont.

Insert Operation

� Step1: mask the desired bits (AND)

� Step2: OR them with the desired value

� Example: suppose R1 = 0110 1010, and we desire to replace � Example: suppose R1 = 0110 1010, and we desire to replace
the leftmost 4 bits (0110) with 1001 then:

� Step1: 0110 1010 ∩ 0000 1111

� Step2: 0000 1010 U 1001 0000

���� R1 = 1001 1010

4-5 Logic Microoperations
Other Logic Microoperations cont.

NAND Microoperation

� Symbols: ∩ and
−−−−

� Gate:

� Example: 1001102∩ 10101102 = 11110012

4-5 Logic Microoperations
Other Logic Microoperations cont.

NOR Microoperation

� Symbols: U and
−−−−

� Gate:

� Example: 1001102 U 10101102 = 00010012

4-5 Logic Microoperations
Other Logic Microoperations cont.

Set (Preset) Microoperation

� Force all bits into 1’s by ORing them with a value in which all its bits
are being assigned to logic-1

� Example: 1001102 U 1111112 = 1111112

Clear (Reset) Microoperation
� Force all bits into 0’s by ANDing them with a value in which all its bits

are being assigned to logic-0

� Example: 1001102 ∩ 0000002 = 0000002

4-5 Logic Microoperations
Hardware Implementation

� The hardware implementation of logic
microoperations requires that logic gates
be inserted for each bit or pair of bits in
the registers to perform the required
logic functionlogic function

�Most computers use only four (AND, OR,
XOR, and NOT) from which all others can
be derived.

4-5 Logic Microoperations
Hardware Implementation cont.

S1

S0

Ai

S1 S0 Output
Operat

ion

0 0 E = A ⊕⊕⊕⊕ B XOR

0 1 E = A U B OR

1 0 E = A ∩ B AND

Figure B

0

1

2

3

4××××1

MUX
Ei

Bi

1 0 E = A ∩ B AND

1 1 E = A
Comple

ment

This is for one bit i

4-6 Shift Microoperations
� Used for serial transfer of data

� Also used in conjunction with arithmetic, logic,
and other data-processing operations

� The contents of the register can be shifted to the
left or to the rightleft or to the right

� As being shifted, the first flip-flop receives its
binary information from the serial input

� Three types of shift: Logical, Circular, and
Arithmetic

4-6 Shift Microoperations cont.

r0r1r3rn-1

Shift Right

Serial Input Serial Outputr2

r0r1r2r3rn-1

Shift Right

Shift Left

Serial Output Serial Input

Logical Shifts

� Transfers 0 through the serial input

� Logical Shift Right: R1 ← shr R1

� Logical Shift Left: R2 ← shl R2� Logical Shift Left: R2 ← shl R2

Logical Shift Left

?

0/1

0r0r1r2r3rn-1

Circular Shifts (Rotate Operation)

� Circulates the bits of the register around the two

ends without loss of information

� Circular Shift Right: R1 ← cir R1

cil� Circular Shift Left: R2 ← cil R2

Circular Shift Left

r0r1r2r3rn-1

Arithmetic Shifts
� Shifts a signed binary number to the left or right

� An arithmetic shift-left Multiplies a signed binary
number by 2

ashl (00100): 01000

An arithmetic shift-right Divides the number by 2� An arithmetic shift-right Divides the number by 2

ashr (00100) : 00010

� An Overflow may occur in arithmetic shift-left,
and occurs when the sign bit is changed (sign
reversal)

Arithmetic Shifts cont.

Arithmetic Shift Right
Sign
Bit

?
r0r1r2r3rn-1

Bit

Arithmetic Shift Left
Sign
Bit

0? r0r1r2r3rn-1

Arithmetic Shifts cont.

� An overflow flip-flop Vs can be used to detect
an arithmetic shift-left overflow

Vs = Rn-1 ⊕ Rn-2Vs = Rn-1 ⊕ Rn-2

Rn-2

Vs=
Rn-1 1 ���� overflow

0 ���� no overflow

Hardware Implementation cont.

�A possible choice for a shift unit would be a
bidirectional shift register with parallel load

�Needs two pulses (the clock and the shift
signal pulse)

� Not efficient in a processor unit where
multiple number of registers share a
common bus

� It is more efficient to implement the shift
operation with a combinational circuit

Hardware Implementation cont.

A3A2A1A0

Serial Input IR
Serial Input IL

Select

S 1 0 S 1 0 S 1 0 S 1 0

Select

0 for shift right

1 for shift left

H3 H2 H1 H0

MUX MUX MUX MUX

4-bit Combinational Circuit Shifter

4-7 Arithmetic Logic Shift Unit

� Instead of having individual registers
performing the microoperations
directly, computer systems employ a
number of storage registers number of storage registers
connected to a common operational
unit called an Arithmetic Logic Unit

(ALU)

4-7 Arithmetic Logic Shift Unit cont.

S3

S2

S1

S0

Select

Ci

One stage of
arithmetic

circuit (Fig.A)

Di

One stage

0
1

2

3Bi

Ai

Ai+1

Ai-1

Select

4××××1

MUX

Ci+1

One stage
of logic
circuit
(Fig.B)

Ei

Fi

shr

shl

One stage
of ALU

Operation Selection Operation Function
S3 S2 S1 S0 Cin

0 0 0 0 0 F = A + B Addition

0 0 0 0 1 F = A + B + 1 Addition with carry

0 0 0 1 0 F = A + B Sub. With borrow

0 0 0 1 1 F = A + B + 1 Sub

0 0 1 0 0 F = A Transfer A

0 0 1 0 1 F = A + 1 Increment

4-7 Arithmetic Logic Shift Unit cont.

0 0 1 0 1 F = A + 1 Increment

0 0 1 1 0 F = A – 1 Decrement

0 0 1 1 1 F = A Transfer A

0 1 0 0 X F = A ⊕⊕⊕⊕ B XOR

0 1 0 1 X F = A U B OR

0 1 1 0 X F = A ∩ B AND

0 1 1 1 X F = A Complement

1 0 X X X F= shr A Shift right A into F

1 1 X X X F = shl A Shift left into F

