2t ‘**ﬂ—f %

BIRZEIT UNIVERSITY

ENCS238: Computer Organization

Mano - Chapter 4

Register Transfer and
Microoperations

Contents

« Register Transfer Language (RTL)
* Register Transfer

« Bus and Memory Transfers
 Arithmetic Microoperations

« Logic Microoperations

 Shift Microoperations

 Arithmetic Logic Shift Unit

What is Register?

m A special, high-speed storage area within the CPU.

= Registers are normally measured by the number of bits they can
hold,

o for example, an "8-bit register" or a "32-bit register".

= All data must be represented in a register before it can be
processed.

e For example, if two numbers are to be multiplied, both numbers
must be in registers, and the result is also placed in a register.

= The register can contain the address of a memory location where
data is stored rather than the actual data itself

R1

4-1 Register Transfer Language (RTL)

m Digital System: An interconnection of
hardware modules that do a certain task
on the information

mRegisters + Operations performed on the
data stored in them = Digital Module

= Modules are interconnected with common
data and control paths to form a digital
computer system

4-1 Register Transfer Language ¢

I
= Microoperations: operations executed on data stored in one

or more registers.
m For any function of the computer, a sequence of
microoperations is used to describe it

= The result of the operation may be:

e Replace the previous binary information of a
register or

e Transferred to another register

R1 R1
Shift Right Operation
101101110011 > 010110111001

4-1 Register Transfer Language ¢

= The internal hardware organization of a digital
computer is defined by specifying:

*The set of registers it contains and their
function

*The sequence of microoperations performed
on the binary information stored in the registers

*The control that initiates the sequence of
microoperations

= Registers + Microoperations Hardware + Control Functions

= Digital Computer

4-1 Register Transfer Language c°:

= RTL: a symbolic notation to describe the
microoperation transfers among registers

Next steps:

o Define symbols (Codes) for various
types of microoperations

e Describe the hardware that
implements these microoperations

4-2 Register Transfer

= Computer registers are designated by Capital
Letters (sometimes followed by Numerals) to
denote the function of the register

R1: processor register

MAR: Memory Address Register (holds an address
for a memory unit)

PC: Program Counter
IR: Instruction Register
SR: Status Register

Digital Review: Register

A, A, A, A,
I I |

', l‘T‘T P ScT: F[Se

Clock | I

ly ,

4-2 Register Transfer cont:

= The individual flip-flops in an n-bit
register are numbered in sequence from
0 to n-1 (from the right position toward
the left position)

R1 76543210

Register R1 Showing individual bits

A block diagram of a register

4-2 Register Transfer cont:

Other ways of drawing the block diagram of a register:

15 0
PC

Numbering of bits

15 87 0
Upper byte PC(H) | PC(L) Lower byte

Partitioned into two parts

4-2 Register Transfer cont

= Information transfer from one register to another is
described by a replacement operator: R2 <— R1

This statement denotes a transfer of the content of register
R1 into register R2

= The transfer happens in one clock cycle
= The content of the R1 (source) does not change

= The content of the R2 (destination) will be lost and
replaced by the new data transferred from R1

= We are assuming that the circuits are available from the
outputs of the source register to the inputs of the destination
register, and that the destination register has a parallel load
capability

4-2 Register Transfer cont:

= Conditional Transfer occurs only under a control
condition

= Representation of a (conditional) transfer

= R2 «— R1

= A binary condition (P equals to 0 or 1) determines
when the transfer occurs

= The content of R1 is transferred into R2 only if P
IS 1

4-2 Register Transfer cont

Hardware implementation of a controlled

transfer:

Block diagram:

Control
Circuit

P

P: R2 — R1

Load:

R2

R1

Clock

4-2 Register Transfer cont

Basic Symbols for Register Transfers

Comma y

microoperations

Symbol Description Examples
Letters & Denotes a register MAR
numerals
R2
Parenthesis () Denotes a part of a register | R2(0-7)
R2(L)
prow | (R
Separates two

R2—R1, R1 —R2

4-3 Bus and Memory Transfers

m Paths must be provided to transfer information from
one register to another

m A Common Bus System is a scheme for
transferring information between registers in a multiple-
register configuration

= A bus: set of common lines, one for each bit of a
register, through which binary information is transferred
one at a time

= Control signals determine which register is selected
by the bus during each particular register transfer

Digital Review: MULTIPLEXER

4-to-1 Multiplexer Select | Output

S, S, Y 01 1213
00§ ey
0 1 I,
1 0 1, L .
1 1 l5 MUX | s
l, D |
I, ~ Y
— Y
l, ~
|
| ~~
3 |
A
So_ o

4-3 Bus and Memory Transfers

Register A Register B Register C Register D
KN 30 XN C I K 2 EX 3 I I 3 EX O [2 EX N
l VYVY VYVVY VYVVY

By CqDq 1320202 1330303 1340404

0*** 0*** 0+++ o+++

4 x1 4 x1 4 x1 4 x1
MUX MUX MUX MUX

select J J l

AR

4-line bus

4-3 Bus and Memory Transfers

= The transfer of information from a bus into one of many
destination registers is done:

e By connecting the bus lines to the inputs of all destination
registers and then:

o Activating the load control of the particular destination
register selected

= We write: R2 < C to symbolize that the content of register
C is loaded into the register R2 using the common system
bus

= ltis equivalentto: BUS —C, (select C)
R2 —BUS (Load R2)

Three-State Bus Buffers

m A bus system can be constructed with three-state
buffer gates instead of multiplexers

= A three-state buffer is a digital circuit that exhibits
three states:

0gic-0,

ogic-1, and
Control input C

nigh-impedance (Hi-Z)
Normal input A } Output B

Three-State Buffer

Three-State Bus Buffers cont

C=1

Buffer
A o——— B — Ao B

C=0

Open Circuit
Aoe B A e o o e B

Digital Review DECODER

2-to-4 Decoder

< < W
Sh-rror
Sl-—or-
Sl-or—r
Slorrrr
<lo— o~ x
< |loo—+—X
Wiocococo+

Three-State Bus Buffers cont

Select{

Enable

s

So

0

2%x4 [

Decoder 2
3

Bus line for bit 0
Ao ® <@ ®

Bus line with three-state
buffer (replaces MUXO in the
previous diagram)

Digital Review: MEMORY COMPONENTS

. . . 0
Logical Organization
words
(byte, or n bytes)
Random Access Memory "
- Each word has a unique address
« Access to a word requires the same
time independent of the location of
the word N data irlput lines
K address lines — ok Words
Read — (n bits/word)
Write 1

N data output lines

Memory Transfer

= Memory read : Transfer from memory

= Memory write : Transfer to memory

m Data being read or wrote is called a Memory Word
(called M)

m |t is necessary to specify the address of M when
writing / reading memory

= This is done by enclosing the address in square
brackets following the letter M

= Example: M[0016] : the memory contents at address
0X0016

Memory Transfer cont

m Assume that the address of a memory unit is
stored in a register called the Address
Register AR

m Lets represent a Data Register with DR,
then:

m Read: DR «— M[AR]
= Write: M[AR] — DR

Memory Transfer cont.

AR

x12

R1

x0100

R1<—M[AR] : E i

Ner/

xO 0

R1

x0C
x0E
x10
x12
x14
x16
x18

/\

x00C6

0019

0034

0045

00C6

O00F

0013

2200

Memory

4-4 Arithmetic Microoperations

= The microoperations most often encountered in
digital computers are classified into four
categories:

e Register transfer microoperations

e Arithmetic microoperations (on numeric data
stored in the registers)

e Logic microoperations (bit manipulations on non-
numeric data)

e Shift microoperations

4-4 Arithmetic Microoperations cont.

= The basic arithmetic microoperations are: addition,
subtraction, increment, decrement, and shift

= Addition Microoperation:

R3 <« R1+ R2
= Subtraction Microoperation:
R3 < R1-R2
1’s Complement
or:

R3 < R1+R2 + 1

4-4 Arithmetic Microoperations cont.

= One’s Complement Microoperation:
R2 — R2
= Two’s Complement Microoperation:
R2 « R2+1
= Increment Microoperation:
R2 — R2+1
= Decrement Microoperation:
R2 — R2-1

Digital Review Half Adder/Full Adder

Half Adder o y
C =Xy S =Xy + XY C
i S T
1111 0 1 >-s
Full Adder
_X ¥ 9n-1 C_n S_ y y
SEAER o
01010 1 0flllc | K
011 (|10 x (CIE] x |0
100 |0 f o[l4] 0
1011 0 c S
110 |10 "
L L. Ch = XY + XCp_+ YCp 4
=Xy + (X ® y)Cp;
X A — S = X’y’cn-1+X’yC’n-1+Xy’C’n-1+Xnd-1
y S =X®y®cn-1=(X@y)@Cn-1
cn-1 ™\
>-| ./ _Cn

Binary Adder

B;

l

— >

5

C, S,

B, A, B, A, B, A
[N N O
A 12| ra (S Fa
l l l
S, S, So

4-bit binary adder
(connection of FAS)

Binary Adder-Subtractor

B, A, B, A, B, A, B, A,
| | i | |
Ll ' Lo
A 2 ma 12 R & R S
T l l l l
C4 S3 Sz S1 SO

4-bit adder-subtractor

Binary Incrementer

A, A, A, A, 1
L L L |
X Y X Y X Y y
HA HA HA HA
5yl eyl s
C, S, S, S, S,

4-bit Binary Incrementer

= Binary Incrementer can also be implemented using a Counter

= Abinary decrementer can be implemented by adding 1’s to the
desired register each time!

Arithmetic Circuit

= This circuit performs seven distinct arithmetic
operations and the basic component of it is the
parallel adder

= The output of the binary adder is calculated from
the following arithmetic sum:

D=A+Y+C,

Arithmetic Circuit cont.

Figure A
A, A, A, A,
10B;B; S S, 10B,B, S; S, 10B;B, S; S, 10B,B, S; S
I N I T N N A T R
3210 S,S, 3210 S,S, 3210 S,S, 3210 S,;S,
4x1 MUX 4x1 MUX 4x1 MUX 4x1 MUX
Y, G|~ Yo, K- Y, Xl [Ye X
C C C
Iﬁ FA = FA =& FA 4 FA —C
Cout D, D, D, D,

4-bit Arithmetic Circuit

Arithmetic Circuit cont.

Select — Input | Output . .
\1‘5 0S |(1:I y S T P Microoperations

1/0(0]0 B D=A+B Add

2100 1 D=A+B+1 |Add with carry
3(0(1]0 B~ D=A+B" Sub. With borrow
4 (0|1 1 B~ D=A+B +1 |Sub
5/1(0|0 0 D=A Transfer A

6 (1|0 1 0 D=A+ 1 Increment
711(110 1 D=A-1 Decrement

8 |1 1| 1 1 D=A Transfer A

The 4 basic Logic microoperations

OR Microoperation

= Symbol: U , +

m Gate: 3:

= Example: 0100110, U 1010110, = 1110110,

P+Q:R1—R2+R3,R4—R5URS6

The 4 basic logic microoperations cont

AND Microoperation

= Symbol: N , .

= Gate: ._}

= Example: 100110, N 1010110, = 0000110,

The 4 basic logic microoperations cont

Complement (NOT) Microoperation

= Symbol:

= Gate: '—>Q*

= Example: 1010110, = 0101001,

The 4 basic logic microoperations cont

XOR (Exclusive-OR) Microoperation

= Symbol: @

= Gate:

= Example: 100110, © 1010110, = 1110000,

Other Logic Microoperations

Selective-set Operation

m Used to force selected bits of a register into logic-1 by using
the OR operation

Example: 0100, U 1000, = 1100,

Selective-complement (toggling) Operation

m Used to force selected bits of a register to be complemented
by using the XOR operation

Example: 0001, @ 1000, = 1001,

Other Logic Microoperations cont

Insert Operation

m Step1: mask the desired bits (AND)
m Step2: OR them with the desired value

= Example: suppose R1=0110 1010, and we desire to replace
the leftmost 4 bits (0110) with 1001 then:

e Step1: 0110 1010 M 0000 1111

o Step2: 0000 1010 U 1001 0000
- R1=1001 1010

4-5 Logic Microoperations

Other Logic Microoperations cont:
I

NAND Microoperation

= Symbols: N and

m Gate: - >Q—

= Example: 100110, N 1010110, = 1111001,

4-5 Logic Microoperations

Other Logic Microoperations cont:
I

NOR Microoperation

= Symbols: U and

= Gate: ::D@—

= Example: 100110, U 1010110, = 0001001,

4-5 Logic Microoperations

Other Logic Microoperations cont:
I

Set (Preset) Microoperation

= Force all bits into 1’s by ORing them with a value in which all its bits
are being assigned to logic-1

= Example: 100110, U 111111, = 111111,

Clear (Reset) Microoperation

m Force all bits into 0’s by ANDing them with a value in which all its bits
are being assigned to logic-0

= Example: 100110, N 000000, = 000000,

4-5 Logic Microoperations

Hardware Implementation
I

= The hardware implementation of logic
microoperations requires that logic gates
be inserted for each bit or pair of bits in
the registers to perform the required
logic function

= Most computers use only four (AND, OR,
XOR, and NOT) from which all others can
be derived.

4-5 Logic Microoperations

Hardware Implementation cont.

Figure B 0
perat
S1 SO Ou’[pu’[ion
0 0 E-A®B XOR
S 0 1 E-AUB OR
So
A 1 0 E-ANB AND
B.— -
| 0 1| 1 E=A | Comple
IS 4x1

MUX

>—|>Q 3 This is for one bit |

4-6 Shift Microoperations

= Used for serial transfer of data

= Also used in conjunction with arithmetic, logic,
and other data-processing operations

= The contents of the register can be shifted to the
left or to the right

= As being shifted, the first flip-flop receives its
binary information from the serial input

= Three types of shift: Logical, Circular, and
Arithmetic

4-6 Shift Microoperations cont

Serial Input

F3

r2

Serial Output

Shift Right

Serial OutEut

F3

P

Serial Input

i —

Shift Left

Logical Shifts

= Transfers 0 through the serial input

= Logical Shift Right: R1 — Shr R1

= Logical Shift Left: R2 — shl R2

e Tpq | < s P ry

0/1
Logical Shift Left

Circular Shifts (Rotate Operation)

= Circulates the bits of the register around the two
ends without loss of information

s Circular Shift Right: R1 < CII' R1

= Circular Shift Left: R2 — CI| R2

I‘n_1 < r3 I'2 I'1 I'O —

Circular Shift Left

Arithmetic Shifts

= Shifts a signed binary number to the left or right

= An arithmetic shift-left Multiplies a signed binary
number by 2

ashl (00100): 01000
= An arithmetic shift-right Divides the number by 2

ashr (00100) : 00010

= An Overflow may occur in arithmetic shift-left,
and occurs when the sign bit is changed (sign
reversal)

Arithmetic Shifts cont

?+—

Fn-1 I P Fy Fo
S9" Arithmetic Shift Right
Fn-1 I P Fy Fo
Sign

Bit

Arithmetic Shift Left

Arithmetic Shifts cont

= An overflow flip-flop V. can be used to detect
an arithmetic shift-left overflow

Vs - Rn-1 D Rn-z

R, 1 - overflow
o) V=
n-2" 0 = no overflow

Hardware Implementation cont

= A possible choice for a shift unit would be a
bidirectional shift register with parallel load

= Needs two pulses (the clock and the shift
signal pulse)

e Not efficient in a processor unit where
multiple number of registers share a
common bus

= It is more efficient to implement the shift
operation with a combinational circuit

Hardware Implementation cont

Serial Input I Serial Input I
AsA A A,
T T T Select
S 1 0 S 1 0 S 1 0 S 1 0 0 for shift right
1 for shift left
MUX MUX MUX MUX
‘ H, H, H, ‘Ho

4-bit Combinational Circuit Shifter

4-7 Arithmetic Logic Shift Unit

= Instead of having individual registers
performing the microoperations
directly, computer systems employ a
number of storage registers
connected to a common operational
unit called an Arithmetic Logic Unit

(ALU)

4-7 Arithmetic Logic Shift Unit cont.

Sy
S1 Ci
So l
« One stage of D
o arithmetic i
circuit (Fig.A)
One stage Select
of ALU | F,
Ci.1 0 41 [
. 1 MUX
— ne stage
of logic Ei 2
B, ° circuit 3
A, ® (Fig.B)
shr
Ai shi

4-7 Arithmetic Logic Shift Unit cont.

Operation Selection Operation Function
S; | S |S4 [S |G
0 0 0 0 | 0 |[F=A+B Addition
0 0 0 0 | 1 |[F=A+B+1 Addition with carry
0 0 0 1 0 [F=A+B Sub. With borrow
0 0 0 1 1 |[F=A+B +1 Sub
0 0 1 0 0 [F=A Transfer A
0 0 1 0 1 |[F=A+1 Increment
0 0 1 1 0 [F=A-1 Decrement
0 0 1 1 1 |F=A Transfer A
0 1 0 0 | X |[F=A®B XOR
0 1 0 1 X |[F=AUB OR
0 1 1 0 | X [F=ANB AND
0 1 1 1 X |F=A" Complement
1 0 X | X | X |F=shrA Shift right A into F
1 1 X | X | X |F=shlA Shift left into F

