
William Stallings

Computer Organization

and Architecture

8th Edition

Chapter 4

Cache Memory

Unit of Transfer

ÅInternal

ðUsually governed by data bus width

ÅExternal

ðUsually a block which is much larger than a
word

ÅAddressable unit

ðSmallest location which can be uniquely
addressed

ðWord internally

ðCluster on M$ disks

Access Methods (1)

ÅSequential

ðStart at the beginning and read through in
order

ðAccess time depends on location of data and
previous location

ðe.g. tape

ÅDirect

ðIndividual blocks have unique address

ðAccess is by jumping to vicinity plus
sequential search

ðAccess time depends on location and previous
location

ðe.g. disk

Access Methods (2)

ÅRandom

ðIndividual addresses identify locations exactly

ðAccess time is independent of location or
previous access

ðe.g. RAM

ÅAssociative

ðData is located by a comparison with contents
of a portion of the store

ðAccess time is independent of location or
previous access

ðe.g. cache

Memory Hierarchy

ÅRegisters

ðIn CPU

ÅInternal or Main memory

ðMay include one or more levels of cache

ðñRAMò

ÅExternal memory

ðBacking store

Memory Hierarchy - Diagram

Performance

ÅAccess time

ðTime between presenting the address and
getting the valid data

ÅMemory Cycle time

ðTime may be required for the memory to
ñrecoverò before next access

ðCycle time is access + recovery

ÅTransfer Rate

ðRate at which data can be moved

Physical Types

ÅSemiconductor

ðRAM

ÅMagnetic

ðDisk & Tape

ÅOptical

ðCD & DVD

Hierarchy List

ÅRegisters

ÅL1 Cache

ÅL2 Cache

ÅMain memory

ÅDisk cache

ÅDisk

ÅOptical

ÅTape

ÅCloud

So you want fast?

ÅIt is possible to build a computer which
uses only static RAM (see later)

ÅThis would be very fast

ÅThis would need no cache

ðHow can you cache cache?

ÅThis would cost a very large amount

Locality of Reference

ÅDuring the course of the execution of a
program, memory references tend to
cluster

Åe.g. loops

Cache

ÅSmall amount of fast memory

ÅSits between normal main memory and
CPU

ÅMay be located on CPU chip or module

Cache and Main Memory

Cache/Main Memory Structure

Cache operation ðoverview

ÅCPU requests contents of memory location

ÅCheck cache for this data

ÅIf present, get from cache (fast)

ÅIf not present, read required block from
main memory to cache

ÅThen deliver from cache to CPU

ÅCache includes tags to identify which
block of main memory is in each cache
slot

Cache Read Operation - Flowchart

Cache Addressing

ÅWhere does cache sit?

ðBetween processor and virtual memory management
unit

ðBetween MMU and main memory

ÅLogical cache (virtual cache) stores data using
virtual addresses

ðProcessor accesses cache directly, not thorough physical
cache

ðCache access faster, before MMU address translation

ðVirtual addresses use same address space for different
applications

ïMust flush cache on each context switch

ÅPhysical cache stores data using main memory
physical addresses

Size does matter

ÅCost

ðMore cache is expensive

ÅSpeed

ðMore cache is faster (up to a point)

ðChecking cache for data takes time

Typical Cache Organization

Comparison of Cache Sizes

Processor Type
Year of

Introduction
L1 cache L2 cache L3 cache

IBM 360/85 Mainframe 1968 16 to 32 KB ð ð

PDP-11/70 Minicomputer 1975 1 KB ð ð

VAX 11/780 Minicomputer 1978 16 KB ð ð

IBM 3033 Mainframe 1978 64 KB ð ð

IBM 3090 Mainframe 1985 128 to 256 KB ð ð

Intel 80486 PC 1989 8 KB ð ð

Pentium PC 1993 8 KB/8 KB 256 to 512 KB ð

PowerPC 601 PC 1993 32 KB ð ð

PowerPC 620 PC 1996 32 KB/32 KB ð ð

PowerPC G4 PC/server 1999 32 KB/32 KB 256 KB to 1 MB 2 MB

IBM S/390 G4 Mainframe 1997 32 KB 256 KB 2 MB

IBM S/390 G6 Mainframe 1999 256 KB 8 MB ð

Pentium 4 PC/server 2000 8 KB/8 KB 256 KB ð

IBM SP
High-end server/

supercomputer
2000 64 KB/32 KB 8 MB ð

CRAY MTAb Supercomputer 2000 8 KB 2 MB ð

Itanium PC/server 2001 16 KB/16 KB 96 KB 4 MB

SGI Origin 2001 High-end server 2001 32 KB/32 KB 4 MB ð

Itanium 2 PC/server 2002 32 KB 256 KB 6 MB

IBM POWER5 High-end server 2003 64 KB 1.9 MB 36 MB

CRAY XD-1 Supercomputer 2004 64 KB/64 KB 1MB ð

Mapping Function

ÅCache of 64kByte

ÅCache block of 4 bytes

ði.e. cache is 16k (2 14) lines of 4 bytes

Å16MBytes main memory

Å24 bit address

ð(2 24=16M)

Direct Mapping

ÅEach block of main memory maps to only
one cache line

ði.e. if a block is in cache, it must be in one
specific place

ÅAddress is in two parts

ÅLeast Significant w bits identify unique
word

ÅMost Significant s bits specify one
memory block

ÅThe MSBs are split into a cache line field r
and a tag of s - r (most significant)

Direct Mapping

Address Structure

Tag s-r Line or Slot r Word w

8 14 2

Å 24 bit address

Å 2 bit word identifier (4 byte block)

Å 22 bit block identifier

ð 8 bit tag (=22 -14)

ð 14 bit slot or line

Å No two blocks in the same line have the same Tag field

Å Check contents of cache by finding line and checking Tag

Direct Mapping from Cache to Main Memory

Direct Mapping

Cache Line Table

Cache line Main Memory blocks held

0 0, m, 2m, 3mé2s-m

1 1,m+1, 2m+1é2s-m+1

é

m -1 m -1, 2m -1,3m -1é2s-1

Direct Mapping Cache Organization

Direct

Mapping

Example

Direct Mapping Summary

ÅAddress length = (s + w) bits

ÅNumber of addressable units = 2 s+w words
or bytes

ÅBlock size = line size = 2 w words or bytes

ÅNumber of blocks in main memory

= 2 s+w /2 w = 2 s

ÅNumber of lines in cache = m = 2 r

ÅSize of tag = (s ïr) bits

Direct Mapping pros & cons

ÅSimple

ÅInexpensive

ÅFixed location for given block

ðIf a program accesses 2 blocks that map to
the same line repeatedly, cache misses are
very high

Victim Cache

ÅLower miss penalty

ÅRemember what was discarded

ðAlready fetched

ðUse again with little penalty

ÅFully associative

Å4 to 16 cache lines

ÅBetween direct mapped L1 cache and next
memory level

Associative Mapping

ÅA main memory block can load into any
line of cache

ÅMemory address is interpreted as tag and
word

ÅTag uniquely identifies block of memory

ÅEvery lineôs tag is examined for a match

ÅCache searching gets expensive

Associative Mapping from

Cache to Main Memory

Fully Associative Cache Organization

Associative

Mapping

Example

Tag 22 bit
Word

2 bit

Associative Mapping

Address Structure

Å22 bit tag stored with each 32 bit block of data

ÅCompare tag field with tag entry in cache to
check for hit

ÅLeast significant 2 bits of address identify which
16 bit word is required from 32 bit data block

Åe.g.

ðAddress Tag Data Cache line

ðFFFFFC FFFFFC24682468 3FFF

Associative Mapping Summary

ÅAddress length = (s + w) bits

ÅNumber of addressable units = 2 s+w words
or bytes

ÅBlock size = line size = 2 w words or bytes

ÅNumber of blocks in main memory

= 2s+ w /2 w = 2 s

ÅNumber of lines in cache = undetermined

ÅSize of tag = s bits

Set Associative Mapping

ÅCache is divided into a number of sets

ÅEach set contains a number of lines

ÅA given block maps to any line in a given
set

ðe.g. Block B can be in any line of set i

Åe.g. 2 lines per set

ð2 way associative mapping

ðA given block can be in one of 2 lines in only
one set

Set Associative Mapping

Example

Å13 bit set number

ÅBlock number in main memory is modulo
213

Å000000, 00A000, 00B000, 00C000 é map
to same set

Mapping From Main Memory to Cache:

v Associative

Mapping From Main Memory to Cache:

k -way Associative

K -Way Set Associative Cache

Organization

Set Associative Mapping

Address Structure

ÅUse set field to determine cache set to
look in

ÅCompare tag field to see if we have a hit

Åe.g

ðAddress Tag Data Set
number

ð1FF 7FFC 1FF 12345678 1FFF

ð001 7FFC 001 11223344 1FFF

Tag 9 bit Set 13 bit
Word

2 bit

Two Way Set Associative Mapping

Example

Set Associative Mapping Summary

ÅAddress length = (s + w) bits

ÅNumber of addressable units = 2 s+w words
or bytes

ÅBlock size = line size = 2 w words or bytes

ÅNumber of blocks in main memory = 2 d

ÅNumber of lines in set = k

ÅNumber of sets = v = 2 d

ÅNumber of lines in cache = kv = k * 2 d

ÅSize of tag = (s ïd) bits

Direct and Set Associative Cache

Performance Differences

ÅSignificant up to at least 64kB for 2 -way

ÅDifference between 2 -way and 4 -way at
4kB much less than 4kB to 8kB

ÅCache complexity increases with
associativity

ÅNot justified against increasing cache to
8kB or 16kB

ÅAbove 32kB gives no improvement

Å(simulation results)

Figure 4.16

Varying Associativity over Cache Size

0.0
1k

H
it

ra
ti

o

2k 4k 8k 16k

Cache size (bytes)

direct

2-way

4-way

8-way

16-way

32k 64k 128k 256k 512k 1M

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Replacement Algorithms (1)

Direct mapping

ÅNo choice

ÅEach block only maps to one line

ÅReplace that line

Replacement Algorithms (2)

Associative & Set Associative

ÅHardware implemented algorithm (speed)

ÅLeast Recently used (LRU)

Åe.g. in 2 way set associative

ðWhich of the 2 block is lru?

ÅFirst in first out (FIFO)

ðreplace block that has been in cache longest

ÅLeast frequently used

ðreplace block which has had fewest hits

ÅRandom

Write Policy

ÅMust not overwrite a cache block unless
main memory is up to date

ÅMultiple CPUs may have individual caches

ÅI/O may address main memory directly

Write through

ÅAll writes go to main memory as well as
cache

ÅMultiple CPUs can monitor main memory
traffic to keep local (to CPU) cache up to
date

ÅLots of traffic

ÅSlows down writes

ÅRemember bogus write through caches!

Write back

ÅUpdates initially made in cache only

ÅUpdate bit for cache slot is set when
update occurs

ÅIf block is to be replaced, write to main
memory only if update bit is set

ÅOther caches get out of sync

ÅI/O must access main memory through
cache

ÅN.B. 15% of memory references are
writes

Line Size

ÅRetrieve not only desired word but a number of
adjacent words as well

ÅIncreased block size will increase hit ratio at first
ðthe principle of locality

ÅHit ratio will decreases as block becomes even
bigger
ðProbability of using newly fetched information becomes

less than probability of reusing replaced

ÅLarger blocks
ðReduce number of blocks that fit in cache
ðData overwritten shortly after being fetched
ðEach additional word is less local so less likely to be

needed

ÅNo definitive optimum value has been found
Å8 to 64 bytes seems reasonable
ÅFor HPC systems, 64 - and 128 -byte most

common

Multilevel Caches

ÅHigh logic density enables caches on chip

ðFaster than bus access

ðFrees bus for other transfers

ÅCommon to use both on and off chip
cache

ðL1 on chip, L2 off chip in static RAM

ðL2 access much faster than DRAM or ROM

ðL2 often uses separate data path

ðL2 may now be on chip

ðResulting in L3 cache

ïBus access or now on chipé

Hit Ratio (L1 & L2)

For 8 kbytes and 16 kbyte L1

Unified v Split Caches

ÅOne cache for data and instructions or
two, one for data and one for instructions

ÅAdvantages of unified cache

ðHigher hit rate

ïBalances load of instruction and data fetch

ïOnly one cache to design & implement

ÅAdvantages of split cache

ðEliminates cache contention between
instruction fetch/decode unit and execution
unit

ïImportant in pipelining

Pentium 4 Cache

Å80386 ïno on chip cache

Å80486 ï8k using 16 byte lines and four way set
associative organization

ÅPentium (all versions) ïtwo on chip L1 caches
ðData & instructions

ÅPentium III ïL3 cache added off chip

ÅPentium 4
ðL1 caches
ï8k bytes

ï64 byte lines

ïfour way set associative

ðL2 cache
ïFeeding both L1 caches

ï256k

ï128 byte lines

ï8 way set associative

ðL3 cache on chip

Intel Cache Evolution

Problem Solution

Processor on which feature

first appears

External memory slower than the system bus.
Add external cache using faster

memory technology.

386

Increased processor speed results in external bus becoming a

bottleneck for cache access.

Move external cache on-chip,

operating at the same speed as the

processor.

486

Internal cache is rather small, due to limited space on chip
Add external L2 cache using faster

technology than main memory

486

Contention occurs when both the Instruction Prefetcher and

the Execution Unit simultaneously require access to the

cache. In that case, the Prefetcher is stalled while the

Execution Unitôs data access takes place.

Create separate data and instruction

caches.

Pentium

Increased processor speed results in external bus becoming a

bottleneck for L2 cache access.

Create separate back-side bus that

runs at higher speed than the main

(front-side) external bus. The BSB is

dedicated to the L2 cache.

Pentium Pro

Move L2 cache on to the processor

chip.

Pentium II

Some applications deal with massive databases and must

have rapid access to large amounts of data. The on-chip

caches are too small.

Add external L3 cache. Pentium III

Move L3 cache on-chip. Pentium 4

Pentium 4 Block Diagram

Pentium 4 Core Processor

ÅFetch/Decode Unit

ðFetches instructions from L2 cache

ðDecode into micro -ops

ðStore micro -ops in L1 cache

ÅOut of order execution logic

ðSchedules micro -ops

ðBased on data dependence and resources

ðMay speculatively execute

ÅExecution units

ðExecute micro -ops

ðData from L1 cache

ðResults in registers

ÅMemory subsystem

ðL2 cache and systems bus

Pentium 4 Design Reasoning

Å Decodes instructions into RISC like micro -ops before L1
cache

Å Micro -ops fixed length
ð Superscalar pipelining and scheduling

Å Pentium instructions long & complex

Å Performance improved by separating decoding from
scheduling & pipelining
ð (More later ïch14)

Å Data cache is write back
ðCan be configured to write through

Å L1 cache controlled by 2 bits in register
ðCD = cache disable

ðNW = not write through

ð 2 instructions to invalidate (flush) cache and write back then
invalidate

Å L2 and L3 8 -way set -associative
ð Line size 128 bytes

