
William Stallings 

Computer Organization 

and Architecture

8th Edition

Chapter 4

Cache Memory



Unit of Transfer

ÅInternal

ðUsually governed by data bus width

ÅExternal

ðUsually a block which is much larger than a 
word

ÅAddressable unit

ðSmallest location which can be uniquely 
addressed

ðWord internally

ðCluster on M$ disks



Access Methods (1)

ÅSequential

ðStart at the beginning and read through in 
order

ðAccess time depends on location of data and 
previous location

ðe.g. tape

ÅDirect

ðIndividual blocks have unique address

ðAccess is by jumping to vicinity plus 
sequential search

ðAccess time depends on location and previous 
location

ðe.g. disk



Access Methods (2)

ÅRandom

ðIndividual addresses identify locations exactly

ðAccess time is independent of location or 
previous access

ðe.g. RAM

ÅAssociative

ðData is located by a comparison with contents 
of a portion of the store

ðAccess time is independent of location or 
previous access

ðe.g. cache



Memory Hierarchy

ÅRegisters

ðIn CPU

ÅInternal or Main memory

ðMay include one or more levels of cache

ðñRAMò

ÅExternal memory

ðBacking store



Memory Hierarchy - Diagram



Performance

ÅAccess time

ðTime between presenting the address and 
getting the valid data

ÅMemory Cycle time

ðTime may be required for the memory to 
ñrecoverò before next access

ðCycle time is access + recovery

ÅTransfer Rate

ðRate at which data can be moved



Physical Types

ÅSemiconductor

ðRAM

ÅMagnetic

ðDisk & Tape

ÅOptical

ðCD & DVD



Hierarchy List

ÅRegisters

ÅL1 Cache

ÅL2 Cache

ÅMain memory

ÅDisk cache

ÅDisk

ÅOptical

ÅTape

ÅCloud



So you want fast?

ÅIt is possible to build a computer which 
uses only static RAM (see later)

ÅThis would be very fast

ÅThis would need no cache

ðHow can you cache cache?

ÅThis would cost a very large amount



Locality of Reference

ÅDuring the course of the execution of a 
program, memory references tend to 
cluster

Åe.g. loops



Cache

ÅSmall amount of fast memory

ÅSits between normal main memory and 
CPU

ÅMay be located on CPU chip or module



Cache and Main Memory



Cache/Main Memory Structure



Cache operation ðoverview

ÅCPU requests contents of memory location

ÅCheck cache for this data

ÅIf present, get from cache (fast)

ÅIf not present, read required block from 
main memory to cache

ÅThen deliver from cache to CPU

ÅCache includes tags to identify which 
block of main memory is in each cache 
slot



Cache Read Operation - Flowchart



Cache Addressing

ÅWhere does cache sit?

ðBetween processor and virtual memory management 
unit

ðBetween MMU and main memory

ÅLogical cache (virtual cache) stores data using 
virtual addresses

ðProcessor accesses cache directly, not thorough physical 
cache

ðCache access faster, before MMU address translation

ðVirtual addresses use same address space for different 
applications

ïMust flush cache on each context switch

ÅPhysical cache stores data using main memory 
physical addresses



Size does matter

ÅCost

ðMore cache is expensive

ÅSpeed

ðMore cache is faster (up to a point)

ðChecking cache for data takes time



Typical Cache Organization



Comparison of Cache Sizes

Processor Type
Year of 

Introduction
L1 cache L2 cache L3 cache

IBM 360/85 Mainframe 1968 16 to 32 KB ð ð

PDP-11/70 Minicomputer 1975 1 KB ð ð

VAX 11/780 Minicomputer 1978 16 KB ð ð

IBM 3033 Mainframe 1978 64 KB ð ð

IBM 3090 Mainframe 1985 128 to 256 KB ð ð

Intel 80486 PC 1989 8 KB ð ð

Pentium PC 1993 8 KB/8 KB 256 to 512 KB ð

PowerPC 601 PC 1993 32 KB ð ð

PowerPC 620 PC 1996 32 KB/32 KB ð ð

PowerPC G4 PC/server 1999 32 KB/32 KB 256 KB to 1 MB 2 MB

IBM S/390 G4 Mainframe 1997 32 KB 256 KB 2 MB

IBM S/390 G6 Mainframe 1999 256 KB 8 MB ð

Pentium 4 PC/server 2000 8 KB/8 KB 256 KB ð

IBM SP
High-end server/ 

supercomputer
2000 64 KB/32 KB 8 MB ð

CRAY MTAb Supercomputer 2000 8 KB 2 MB ð

Itanium PC/server 2001 16 KB/16 KB 96 KB 4 MB

SGI Origin 2001 High-end server 2001 32 KB/32 KB 4 MB ð

Itanium 2 PC/server 2002 32 KB 256 KB 6 MB

IBM POWER5 High-end server 2003 64 KB 1.9 MB 36 MB

CRAY XD-1 Supercomputer 2004 64 KB/64 KB 1MB ð



Mapping Function

ÅCache of 64kByte

ÅCache block of 4 bytes

ði.e. cache is 16k (2 14 ) lines of 4 bytes

Å16MBytes main memory

Å24 bit address 

ð(2 24=16M)



Direct Mapping

ÅEach block of main memory maps to only 
one cache line

ði.e. if a block is in cache, it must be in one 
specific place

ÅAddress is in two parts

ÅLeast Significant w bits identify unique 
word

ÅMost Significant s bits specify one 
memory block

ÅThe MSBs are split into a cache line field r 
and a tag of s - r (most significant)



Direct Mapping

Address Structure

Tag  s-r Line or Slot  r Word  w

8 14 2

Å 24 bit address

Å 2 bit word identifier (4 byte block)

Å 22 bit block identifier

ð 8 bit tag (=22 -14)

ð 14 bit slot or line

Å No two blocks in the same line have the same Tag field

Å Check contents of cache by finding line and checking Tag



Direct Mapping from Cache to Main Memory



Direct Mapping 

Cache Line Table

Cache line Main Memory blocks held

0 0, m, 2m, 3mé2s-m

1 1,m+1, 2m+1é2s-m+1

é

m -1 m -1, 2m -1,3m -1é2s-1



Direct Mapping Cache Organization



Direct 

Mapping

Example



Direct Mapping Summary

ÅAddress length = (s + w) bits

ÅNumber of addressable units = 2 s+w words 
or bytes

ÅBlock size = line size = 2 w words or bytes

ÅNumber of blocks in main memory 

= 2 s+w /2 w = 2 s

ÅNumber of lines in cache = m = 2 r

ÅSize of tag = (s ïr) bits



Direct Mapping pros & cons

ÅSimple

ÅInexpensive

ÅFixed location for given block

ðIf a program accesses 2 blocks that map to 
the same line repeatedly, cache misses are 
very high



Victim Cache

ÅLower miss penalty

ÅRemember what was discarded

ðAlready fetched

ðUse again with little penalty

ÅFully associative

Å4 to 16 cache lines

ÅBetween direct mapped L1 cache and next 
memory level



Associative Mapping

ÅA main memory block can load into any 
line of cache

ÅMemory address is interpreted as tag and 
word

ÅTag uniquely identifies block of memory

ÅEvery lineôs tag is examined for a match

ÅCache searching gets expensive



Associative Mapping from 

Cache to Main Memory



Fully Associative Cache Organization



Associative 

Mapping 

Example



Tag   22 bit
Word

2 bit

Associative Mapping

Address Structure

Å22 bit tag stored with each 32 bit block of data

ÅCompare tag field with tag entry in cache to 
check for hit

ÅLeast significant 2 bits of address identify which 
16 bit word is required from 32 bit data block

Åe.g.

ðAddress Tag Data Cache line

ðFFFFFC FFFFFC24682468 3FFF



Associative Mapping Summary

ÅAddress length = (s + w) bits

ÅNumber of addressable units = 2 s+w words 
or bytes

ÅBlock size = line size = 2 w words or bytes

ÅNumber of blocks in main memory 

= 2s+ w /2 w = 2 s

ÅNumber of lines in cache = undetermined

ÅSize of tag = s bits



Set Associative Mapping

ÅCache is divided into a number of sets

ÅEach set contains a number of lines

ÅA given block maps to any line in a given 
set

ðe.g. Block B can be in any line of set i

Åe.g. 2 lines per set

ð2 way associative mapping

ðA given block can be in one of 2 lines in only 
one set



Set Associative Mapping

Example

Å13 bit set number

ÅBlock number in main memory is modulo 
213

Å000000, 00A000, 00B000, 00C000 é map 
to same set



Mapping From Main Memory to Cache:

v Associative



Mapping From Main Memory to Cache:

k -way Associative



K -Way Set Associative Cache 

Organization



Set Associative Mapping

Address Structure

ÅUse set field to determine cache set to 
look in

ÅCompare tag field to see if we have a hit

Åe.g

ðAddress Tag Data Set 
number

ð1FF 7FFC 1FF 12345678 1FFF

ð001 7FFC 001 11223344 1FFF

Tag  9 bit Set  13 bit
Word

2 bit



Two Way Set Associative Mapping 

Example



Set Associative Mapping Summary

ÅAddress length = (s + w) bits

ÅNumber of addressable units = 2 s+w words 
or bytes

ÅBlock size = line size = 2 w words or bytes

ÅNumber of blocks in main memory = 2 d

ÅNumber of lines in set = k

ÅNumber of sets = v = 2 d

ÅNumber of lines in cache = kv = k * 2 d

ÅSize of tag = (s ïd) bits



Direct and Set Associative Cache 

Performance Differences

ÅSignificant up to at least 64kB for 2 -way

ÅDifference between 2 -way and 4 -way at 
4kB much less than 4kB to 8kB

ÅCache complexity increases with 
associativity

ÅNot justified against increasing cache to 
8kB or 16kB

ÅAbove 32kB gives no improvement

Å(simulation results)



Figure 4.16 

Varying Associativity over Cache Size
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Replacement Algorithms (1)

Direct mapping

ÅNo choice

ÅEach block only maps to one line

ÅReplace that line



Replacement Algorithms (2)

Associative & Set Associative

ÅHardware implemented algorithm (speed)

ÅLeast Recently used (LRU)

Åe.g. in 2 way set associative

ðWhich of the 2 block is lru?

ÅFirst in first out (FIFO)

ðreplace block that has been in cache longest

ÅLeast frequently used

ðreplace block which has had fewest hits

ÅRandom



Write Policy

ÅMust not overwrite a cache block unless 
main memory is up to date

ÅMultiple CPUs may have individual caches

ÅI/O may address main memory directly



Write through

ÅAll writes go to main memory as well as 
cache

ÅMultiple CPUs can monitor main memory 
traffic to keep local (to CPU) cache up to 
date

ÅLots of traffic

ÅSlows down writes

ÅRemember bogus write through caches!



Write back

ÅUpdates initially made in cache only

ÅUpdate bit for cache slot is set when 
update occurs

ÅIf block is to be replaced, write to main 
memory only if update bit is set

ÅOther caches get out of sync

ÅI/O must access main memory through 
cache

ÅN.B. 15% of memory references are 
writes



Line Size

ÅRetrieve not only desired word but a number of 
adjacent words as well

ÅIncreased block size will increase hit ratio at first
ðthe principle of locality

ÅHit ratio will decreases as block becomes even 
bigger
ðProbability of using newly fetched information becomes 

less than probability of reusing replaced

ÅLarger blocks 
ðReduce number of blocks that fit in cache
ðData overwritten shortly after being fetched
ðEach additional word is less local so less likely to be 

needed

ÅNo definitive optimum value has been found
Å8 to 64 bytes seems reasonable
ÅFor HPC systems, 64 - and 128 -byte most 

common



Multilevel Caches

ÅHigh logic density enables caches on chip

ðFaster than bus access

ðFrees bus for other transfers

ÅCommon to use both on and off chip 
cache

ðL1 on chip, L2 off chip in static RAM

ðL2 access much faster than DRAM or ROM

ðL2 often uses separate data path

ðL2 may now be on chip

ðResulting in L3 cache

ïBus access or now on chipé



Hit Ratio (L1 & L2)

For 8 kbytes and 16 kbyte L1



Unified v Split Caches

ÅOne cache for data and instructions or 
two, one for data and one for instructions

ÅAdvantages of unified cache

ðHigher hit rate

ïBalances load of instruction and data fetch

ïOnly one cache to design & implement

ÅAdvantages of split cache

ðEliminates cache contention between 
instruction fetch/decode unit and execution 
unit

ïImportant in pipelining



Pentium 4 Cache

Å80386 ïno on chip cache

Å80486 ï8k using 16 byte lines and four way set 
associative organization

ÅPentium (all versions) ïtwo on chip L1 caches
ðData & instructions

ÅPentium III ïL3 cache added off chip

ÅPentium 4
ðL1 caches
ï8k bytes

ï64 byte lines

ïfour way set associative

ðL2 cache 
ïFeeding both L1 caches

ï256k

ï128 byte lines

ï8 way set associative

ðL3 cache on chip



Intel Cache Evolution

Problem Solution

Processor on which feature 

first appears

External memory slower than the system bus.
Add external cache using faster 

memory technology.

386

Increased processor speed results in external bus becoming a 

bottleneck for cache access.

Move external cache on-chip, 

operating at the same speed as the 

processor.

486

Internal cache is rather small, due to limited space on chip
Add external L2 cache using faster 

technology than main memory

486

Contention occurs when both the Instruction Prefetcher and 

the Execution Unit simultaneously require access to the 

cache. In that case, the Prefetcher is stalled while the 

Execution Unitôs data access takes place.

Create separate data and instruction 

caches.

Pentium

Increased processor speed results in external bus becoming a 

bottleneck for L2 cache access.

Create separate back-side bus that 

runs at higher speed than the main 

(front-side) external bus. The BSB is 

dedicated to the L2 cache.

Pentium Pro

Move L2 cache on to the processor 

chip.

Pentium II

Some applications deal with massive databases and must 

have rapid access to large amounts of data. The on-chip 

caches are too small.

Add external L3 cache. Pentium III

Move L3 cache on-chip. Pentium 4



Pentium 4 Block Diagram



Pentium 4 Core Processor

ÅFetch/Decode Unit

ðFetches instructions from L2 cache

ðDecode into micro -ops

ðStore micro -ops in L1 cache

ÅOut of order execution logic

ðSchedules micro -ops

ðBased on data dependence and resources

ðMay speculatively execute

ÅExecution units

ðExecute micro -ops

ðData from L1 cache

ðResults in registers

ÅMemory subsystem

ðL2 cache and systems bus



Pentium 4 Design Reasoning

Å Decodes instructions into RISC like micro -ops before L1 
cache

Å Micro -ops fixed length
ð Superscalar pipelining and scheduling

Å Pentium instructions long & complex

Å Performance improved by separating decoding from 
scheduling & pipelining
ð (More later ïch14)

Å Data cache is write back
ðCan be configured to write through

Å L1 cache controlled by 2 bits in register
ðCD = cache disable

ðNW = not write through

ð 2 instructions to invalidate (flush) cache and write back then 
invalidate

Å L2 and L3 8 -way set -associative 
ð Line size 128 bytes


