ENCS 238 Computer Organization & Assembly Language

Assembly Language

Computer Systems Eng. Department
Birzeit University

Example of Assembly Language Program

‘NUMOFF.ASM: Turn NUM-LOCK indicator off.
.MODEL SMALL

STACK
.CODE
STARTUP
MOV AX,40H ;set AX to 0040H
D1. MOV DS,AX ;load data segment wittiOH
MOV Sl 17H ;load S| with 0017H
AND BYTE PTR [SI],0DFH ;clear NUM-LOCK bit
EXIT
END

y

Label

Comments

Assembly directive

Instructions

Assembly directive

8086 Programming

— Arithmetic

e Addition, subtraction etc. ADD, SUB
— Logic

» Logical operations. AND, OR, XOR
— Shift

 Shifting bits, rotate, logic and arithmetic. SAR;IL
— Data Transfer

* Moving data, copying. MOV, OUT, POP
— Control Transfer

* Flow control, jJumps, and subroutines. JMP, RET
— Processor Control

* Processor instructions. NOP, CLI

Instruction Format

1 General Format of Instructions

Label: Opcode Operands ; Comment

» Label: It is optional. It provides a symbolic addresattban be uskin branch instruct
» Opcode:It specifies the type of instructions
» Operands Instructions of 80x86 family can have one, twozero operand

» Comments Only for programmers’ reference
O Machine Code Format

Opcode | Mode | OperandlOperand2

MOV AL, BL ——> 1000100011000011
H_J _Y_)

Register

MOV
mode

8086 Programming (cont.)

 |nstruction form
— Op-code Destination Operand, Source Operand
— MOV AX,100

 Variable declarations

— Variable_Name Memory Directive Value
—Varl DB 7

e The variables defined as db means eack

Multi-valued Variables

value is defined as bytes.

However, there I1s no restriction on how
many values we can define for each
variable names.

multivar db 12h, 34h, 56h, 78h, 00h, 11
22h, 00h

Address

Value

100h

012h

101h

034h

102h

56h

103h

78h

104h

00h

105h

11h

106h

22h

107h

00h

multl valued variables

« So multi valued variables are stored contiguously.
multivar2 dwl1234h, 5678h, 0011h, 2200h

Address Value
100h 034h
101h 012h
102h 78h
103h 56h
104h 11h
105h 00h
106h 00h
107h 22h

Usingdup

* Another way to declare a multi-valued variables
are usingdupcommand:

my_array db 5 dup (00h)
That example above Is similar to:
my_array db 00h, 00h, O0h, 0O0h, O0Oh

dupis kind of shortcut to define variables with the
same values.

e Of course you can define something like this:
bar_array db 10 dup (?)

Assembler Directives

O Simplified Segment Directives U Predefined .MODEL Types
.MODEL SMALL
DATA CODE
DATA
SEGMENT | SEGMENT
ORG 7000H
TINY one one
POINTS DB 16 DUP(?)
SMALL one one
SUM DB ?
MEDIUM one multiple
CODE COMPACT multiple one
ORG 8000H LARGE multiple multiple
TOTAL: MOV AX,7000H HUGE multiple multiple
MOV DS,AX FLAT* one one

MOV AL,0 _ _ _
* Flat is used for 32-bit addressing

RET
END TOTAL

Assembler Directives

O Source File

DATA SEGMENT PARA 'DATA'

ORG 7000H
POINTS DB 16 DUP(?)
SUuM DB ?

DATA ENDS

CODE SEGMENT PARA 'CODE'
ASSUME CS:CODE, DS:DATA
ORG 8000H

TOTAL: MOV AX,7000H
MOV DS,AX
MOV AL,0

CODE ENDS
END TOTAL

y

O List File

0000 DATA SEGMENT PARA 'DATA’
ORG 7000H

7000 0010 [00] POINTS DB 16 DUP(?

7010 00 SuM DB ?

7011 DATA ENDS

0000 CODE SEGMENT PARA 'CODE'
ASSUME CS:CODE, DS:DATA
ORG 8000H

8000 B8 7000 TOTAL: MOV AX,7000H
8003 8E D8 MOV DS,AX
8005 BOOO MOV ALO

10

Assembler Directives

0 SEGMENT directive

O ENDS directive

O END directive

0 ORG directive

U DB: Define Byte; DW,
0 ASSUME directive

— Specifies the segment register (segment Register) that will be used to calculate the effective
addresses for all labels and variables defined under a given segment or group name (segment Name).

If CS = 1230H and DS = 5678H, what are the physi&inory addresses of
label TOTAL and variable SUM?

11

The 8086 Registers

e To write assembly code for an ISA (Instruction Set
Architecture) you must know the name of registers

— Because registers are places in which you put dagarform

computation and in which you find the result of doenputation
(think of them as variables)

— The reqisters are really numbered, but assembly éysgugive
them “easy-to-remember’ names

 The 8086 offered 16-bit registers

 Four general purpose 16-bit registers
— AX
— BX
- CX
— DX

12

General purpose registers

o AX, BX, CX, andDX: They can be
assigned to any value you want.

— AX (accumulator register). Most of
arithmetical operations are done with AX.

— BX (base registe). Used to darray operations.
BX is usually worked with other registers liké
to point to stacks

— CX (counter register). Used forcounter
purposes.

— DX (data register). Used for storinglata value.

The 8086 Registers

AX BX CX DX
AH | AL BH [BL CH [CL DH [DL

e Each of the 16-bit registers consists of 8 “lows’band 8
“high bits”

— Low: least significant
— High: most significant

 The ISA makes it possible to refer to the low mhh
bits individually

— AH, AL
— BH, BL
— CH, CL
14
— DH, DL

The 8086 Registers

AX BX CX DX

AH | AL BH | BL CH | CL DH | DL

 The xHand xLregisters can be used as 1-byte
register to store 1-byte quantities

* Important: both are “tied” to the 16-bit register

— Changing the value of AX will change the values of
AH and AL

— Changing the value of AH or AL will change theual
of AX

15

The 80x86 Registers

8 8
AH AL 8 bits + 8 bits
X " 16 bits
R
EAX 32 bits
32-hit 16-hbit B-bit (high) 8-bit (low)
EAX AX AH AL
EBX Bx BEH BL
EC X X _H L
Flix 13 I"H (3,

16

Index registers

« SlandDlI: Usually used to process arrays
or strings

— Sl (source indey Is always pointed to
thesource array

—DI (destination indeX Is always
pointed to thalestination array.

Segment registers

e CS DS ES andSS

— CS(code segment registgr Points to the segment
of the running program. We m&OT modify CS
directly.

— DS (data segment registex. Points to the segment
of the data used by the running program. You can
point this to anywhere you want as long as it
contains the desired data.

— ES (extra segment registe). Usually used wittbl
and doing pointers things. The coupl&:Sl and
ES.DI are commonly used to do string operations.

— SS(stack segment registel Points to stack
segment.

Pointer registers

e BP, SP andIP:

— BP (base pointel) used for preserving space to
use local variables

— SP (stack pointer) used to point the current
stack

— IP (instruction pointer) denotes the current
pointer of the running program. It is always
coupled withCS and it isSNOT modifiable. So,
the couple ofCS:IP is a pointer pointing to the
current instruction of running program. You can
NOT acces<Snor|P directly.

Addresses iIn Memory

We mentioned several registers that are used
for holdingaddresses of memory locations

Segments:
— CS, DS, SS, ES
Pointers:

— Sl, DI: indices (typically used for pointers)
— SP: Stack pointer
— BP: (Stack) Base pointer

Let’s look at the structure of the address space

Address Space

In the 8086 processor, a program is limited tem&ficing araddress spaasf
size 1MB, that is 2 bytes

Therefore, addresses are 20-bit long!
A d-bit long address allows to referencaliferent “things”
Example:
— 2-bit addresses
00,01, 10,11
* 4 *things”
— 3-bit addresses
« 000, 001, 010, 011, 100, 101, 110, 111
e 8 “things”
In our case, these things are “bytes”
— One cannot address anything smaller than a byte

Therefore, a 20-bit address makes it possibl@étivess 2 individual bytes, or
1MB

Address Space

One says that a running program has a 1MB
address space

And the program needs to use 20-bit addresses to
reference memory content

— Instructions, data, etc.

Problem: registers are at 16-bit long! How can
they hold a 20-bit address???

The solution: split addresses in two pieces:
— Theselector
— Theoffset

Simple Selector and Offset

e Let us assume that we have an address
space of size“216 bytes
— Yes, that would not be a useful computer
 Addresses are 4-bit long

e |Let’'s assume we have a 2-bit selector and a

2-bit offset
— As If our computer had only 2-bit registers

e \We take such small numbers because It's
difficult to draw pictures with 2 bytes!

Selector and Offset Example

selector offset

A

\

address -X X

For a fixed value of the
selector there are 2%=4
addressable bytes of memory.
The set of these bytes is called
a memory segment.

0000
0001
0010
0011

1000
1001
1010
1011
1100
1101
1110
1111

\

.

16 bytes
of
memory

Selector and Offset Example

selector offset

A

\

address - X

X

We have 16 bytes of memory
We have 4-byte segments
We have 4 segments

16 bytes
of
memory

Selector and Offset

The way in which one addresses the memory corgent
then pretty straightforward

First, set the bits of the selector to “pick” a it

Second, set the bits of the offset to addresg@wihin
the segment

This all makes sense because a program typically
addresses bytes that are next to each other sthathin
the same segment

So, the selector bits stay the same for a long,tiwhile
the offset bits change often

— Of course, this isn'’t true for tiny 4-byte segnseas in
our example...

For 20bit Addresses

selector offset

\ J\ J
Y

Y
4 bits 16 bits

On the 8086 the offset If 16-bit long
— And therefore the selector is 4-bit

We have 2= 16 different segments
Each segment is'®byte =64KB

For a total of 1MB of memory, which is what the
8086 used

For 20bit Addresses

0000...

0001...

selector offset 0010...

D 0011...

address - 16 bits 0100...

0101...

0110...

1MB
> of

memory

We have 1MB of memory OLLL..

We have 64K segments
We have 16 segments

1000...
1001...
1010...
1011...
1100...
1101...
1110...

1111...

The 8086 Selector Scheme

So far we've talked about the selector as a 4pmintity, for
simplicity

This leads to 16on-overlappingegments

The designers of the 8086 wanted more flexibility

E.g., if you know that you need only an 8K segmeiiity use
64K for it? Just have the “next” segment start St€athe
previous segment

— We'll see why segments are needed in a little bit

So, for the 8086, the selector is NOT a 4-bitfjddut rather the
address of the beginning of the segment

But now we’re back to our initial problem: Addressare 20-bit,
how are we to store an address in a 16-bit re@ieter

The 8086 Selector Scheme

What the designers of the 8086 did is pretty sempl

Enforce that the beginning address of a segmeant ca
only be a multiple of 16

Therefore, its representation in binary alwaysitses
four lowest bits setto O

Or, in hexadecimal, its last digit is always O

So the address of a beginning of a segment iskat20
hex quantity that looks like: XXXXO0

Since we know the last digit is always O, no need
store it

Therefore, we need to store only 4 hex digits
Which, lo and behold, fits in a 16-bit register!

The 8086 Selector Scheme

So now we have two 16-bit quantities
— The 16-bit selector
— The 16-bit offset
The selector must be stored in one of the “seghregisters
— CS, DS, SS, ES
The offset is typically stored in one of the “ixdeegisters
— SlI, DI
— But could be stored in a general purpose register
Address computation is straightforward

Given a 16-bit selector and a 16-bit offset, tbebit address is computed as
follows

— Multiply the selector by 16

» This simply transforms XXXX into XXXXO0, thanks tihe beauty of
hexadecimal

— Add the offset
— And voila

In-class Exercise

e Consider the byte at address 13DDE within

a 64K segment defined by selector value
10DE. What Is its offset?

In-class Exercise

Consider the byte at address 13DDE within
a 64K segment defined by selector value
10DE. What Is its offset?

13DDE = 10DE * 16, + offset
offset = 13DDE - 10DEO
offset = 2FFE (a 16-bit quantity)

Extended register

386 processors introduce extended register.

Most of the registers, except segment
registers are enhanced ird@-Dbit.

So, we have extended reqgistersX, EBX,
ECX, and so on.

AXIs only the low 16-bit (bit O to 15) of
EAX.

There are NO special direct access to the
upper 16-bit (bit 16 to 31) in extended
register.

The 8086 Registers

 The 16-bit Instruction Pointer (IP) reqister:
— Points to the next instruction to execute

 The 16-bit FLAGS registers

— Information is stored in individual bits of the AGS
register

— Whenever an instruction is executed and produces a
result, it may modify some bit(s) of the FLAGS 1=gr

— Example: Z (or ZF) denotes one bit of the FLAGS
register, which is set to 1 if the previously execu
Instruction produced 0, or O otherwise

35

Flag Reqister

4 Flag register contains information reflecting therent status of a
microprocessor. It also contains information whiohtcols the
operation of the microprocessor.

15

U

OF

DF

1=

TF

SFH ZR

AF U |PR O | CF

» Control Flags

IF:
DF:
TF:

Interrupt enable flag
Direction flag
Trap flag

CF:
PF:
AF:
ZF:
SF:
OF:

» Status Flags

Carry flag

Parity flag
Auxiliary carry flag
Zero flag

Sign flag
Overflow flag

36

Flag register

Flag is 16-bit register that contains processor
status

It holds the value of which the programmers may
need to access. This involves detecting whether
the last arithmetic holds zeresult or may be
overflow.

Intel doesn't provide a direct access to it; mthe
IS accessed via stack. (\W&OPFandPUSHRH

You can access each flag attribute by using
bitwise AND operation since each status is mostly
represented by justbit.

Flag registetont

C carry flag is turned to Wwhenever the last
arithmetical operation, such as adding and sulnigact
hascarry or borrowotherwise 0

P parity flag It will set to 1if the last operation (any
operation) resultsvennumber of bit 1

A auxilarry flag It is set in Binary Coded Decimal
(BCD) operations.

Z zero flag used to detect whether the last operation
(any operation) holdseroresult.

Ssign flag used to detect whether the last operation
holdsnegativeresult. It is set td if the highest bit (bit
7 in bytes or bit 1%n words) of the last operation is 1

Flag registetont

T trap flag used indebuggerso turn on the step-by-
step feature.

| interrupt flag used to toggle the interrupt enable or
not. If the bit is set (2), then the interrupts are
enabled, otherwise disabled. The default is on.

D direction flag used for directions of string
operations. If the bit is set, then all string @iens

are done backward. Otherwise, forward. The default
Is forward (= 0.

O the overflow flag used to detect whether the last
arithmetic operation result haserflowedor not. If
the bit is set, then it has been an overflow.

Code, Data, Stack

A program constantly references all three
regions

Therefore, the program constantly (
references bytes in three different segmen code

— For now let's assume that each region is fully
contained in a single segment, which is in fact
not always the case

CS. points to the beginning of the code
segment \j

SS points to the beginning of the stack
segment

Y

[\

DS: points to the beginning of the data\j
segment ‘a\j

data

stack

40

aords ssalppe

Developing software for the personal computer
ASM file

‘NUMOFF.ASM: Turn NUM -LOCK indicator off.

> All characters following a “;” till the line end
are “comments”, ignored by the assembler

Assembler reserved words

{ —» Assembly language instructions

MOV AX,40H set AX to 0040H

MOV DS,AX pad data segment with 0040H
MOV SI,17H pad S| with 0017H

AND BYTE PTR [SI],0ODFH

41

Developing software for the personal computer
ASM file

‘NUMOFF.ASM: Turn NUM -LOCK indicator off.

-MODEL SMALL Register pair (16 bit) (destination of “MOV”)

STACK Hexadecimal value to be loadedsource for “MOV”)
CODE (’ Data Segment register pair Prepare the Data Segment
STARTUP / -
MOV (40H) -set AX to 0040H
OV (DS,AX _, source Index;load data segm
@ (SLLI7H load Sl with 0017H ~ — —
ND CBYTE PTR [SIFODFH ;clear NUM-LOCK bit The complete address

of the byte containing
NumLock bit is
specified.

First operand and destination for ANDing with DFH=1101.1111B,

logical “AND” Memory address only b5 (bit 5) of specified mgmory
specified byDS and Sl together. location is affected (reset t®)

x .
Second operand for logical “AND”
(immediate hexadecimal value)

ully
Z
\Ux

Example Using Shifts

e Say you want to count the number of bits that are
equal to 1 in register EAX

 One easy way to do this Is to use shifts
— Shift 32 times
— Each time the carry flag contains the last shifi¢d

— If the carry flag is 1, then increment a counter,
otherwise do not increment a counter

— When you're done the counter contains the number o
1's
e Let’'s write this In Xx86 assembly

Example Using Shifts

, Counting 1 bits in EAX

mov Dbl, O , bl is the number of 1 bits
mov cl, 32 , cl Is the loop counter
loop_start:
shl eax, 1 ; left shift
jnc not_one , If carry I= 1, jump to not_one
Inc bl , Increment the number of 1 bits
not_one:
dec cl , decrement the loop counter

jnz loop_start , If more iterations goto loop_start

Find average of two numbers

.model small
.stack 100
.data
Nol DB 63H ; First number storage
No2 DB 2EH , Second number storage
Avg DB ? ; Average of two numbers
.code
START:
MOV AX,@data ; [Initialises
MOV DS,AX , data segment |
MOV AL,NO1 ; Get first number in AL
ADD AL,NO2 ; Add second to it
ADC AH,00H , Put carry in AH
SAR AX,1 ; Divide sum by 2

MOV Avg,AL , Copy result to memory

Find sum of numbers In the array

.model small
.data
ARRAY DB 12H,24H,26H,63H,25H,86H,2FH,33H,10H,35H
SUM DWO
.code
START:
MOV AX,@data ;[Initialise
MOV DS,AX ; data segment]
MOV CL,10 ; Initialise counter
XOR DI,DI ; Initialise pointer
LEA BX,ARRAY ; Initialise array base pointer
BACK:

MOV AL,[BX+DI] ; Get the number
MOV AH,00H ; Make higher byte 00h
ADD SUM,AX ; SUM = SUM + number

INC DI ; Increment pointer
DEC CL ; Decrement counter
JNZ BACK ; if not 0 go to back

END STAR

