
ENCS 238 Computer Organization & Assembly Language

Computer Systems Eng. Department
Birzeit University

Assembly Language

1

Example of Assembly Language Program

;NUMOFF.ASM: Turn NUM-LOCK indicator off.

.MODEL SMALL

.STACK

.CODE

.STARTUP

MOV AX,40H ;set AX to 0040H

D1: MOV DS,AX ;load data segment with 0040H

MOV SI,17H ;load SI with 0017H

AND BYTE PTR [SI],0DFH ;clear NUM-LOCK bit

.EXIT

END

Comments

Assembly directive

Instructions

Assembly directive

Label

2

8086 Programming

– Arithmetic

• Addition, subtraction etc. ADD, SUB

– Logic

• Logical operations. AND, OR, XOR

– Shift

• Shifting bits, rotate, logic and arithmetic. SAR, SHL

– Data Transfer

• Moving data, copying. MOV, OUT, POP

– Control Transfer

• Flow control, jumps, and subroutines. JMP, RET

– Processor Control

• Processor instructions. NOP, CLI

Instruction Format

� General Format of Instructions

Label: Opcode Operands ; Comment

� Label: It is optional. It provides a symbolic address that can be used in branch instructions

� Opcode: It specifies the type of instructions

� Operands: Instructions of 80x86 family can have one, two, or zero operand

� Comments: Only for programmers’ reference

� Machine Code Format

Opcode Operand1Mode Operand2

1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1MOV AL, BL

MOV Register
mode

4

8086 Programming (cont.)

• Instruction form
– Op-code Destination Operand, Source Operand

– MOV AX,100

• Variable declarations
– Variable_Name Memory_Directive Value

– Var1 DB 7

Multi-valued Variables

• The variables defined as db means each
value is defined as bytes.

• However, there is no restriction on how
many values we can define for each
variable names.

multivar db 12h, 34h, 56h, 78h, 00h, 11h,
22h, 00h

multi valued variables

• So multi valued variables are stored contiguously.

multivar2 dw1234h, 5678h, 0011h, 2200h

Using dup
• Another way to declare a multi-valued variables

are using dupcommand:

my_array db 5 dup (00h)

That example above is similar to:

my_array db 00h, 00h, 00h, 00h, 00h

dupis kind of shortcut to define variables with the
same values.

• Of course you can define something like this:

bar_array db 10 dup (?)

Assembler Directives

.MODEL SMALL

.DATA

ORG 7000H

POINTS DB 16 DUP(?)

SUM DB ?

.CODE

ORG 8000H

TOTAL: MOV AX,7000H

MOV DS,AX

MOV AL,0

•••••••••

RET

END TOTAL

� Simplified Segment Directives � Predefined .MODEL Types

DATA
SEGMENT

CODE
SEGMENT

TINY one one

SMALL one one

MEDIUM one multiple

COMPACT multiple one

LARGE multiple multiple

HUGE multiple multiple

FLAT* one one

* Flat is used for 32-bit addressing

9

DATA SEGMENT PARA 'DATA‘

ORG 7000H

POINTS DB 16 DUP(?)

SUM DB ?

DATA ENDS

CODE SEGMENT PARA 'CODE‘

ASSUME CS:CODE, DS:DATA

ORG 8000H

TOTAL: MOV AX,7000H

MOV DS,AX

MOV AL,0

•••••••••

CODE ENDS

END TOTAL

0000 DATA SEGMENT PARA 'DATA’

ORG 7000H

7000 0010 [00] POINTS DB 16 DUP(?)

7010 00 SUM DB ?

7011 DATA ENDS

0000 CODE SEGMENT PARA 'CODE'

ASSUME CS:CODE, DS:DATA

ORG 8000H

8000 B8 7000 TOTAL: MOV AX,7000H

8003 8E D8 MOV DS,AX

8005 B0 00 MOV AL,0

•••••••••

� Source File � List File

Assembler Directives

10

Assembler Directives

� SEGMENT directive

� ENDS directive

� END directive

� ORG directive

� DB: Define Byte; DW, ….

� ASSUME directive

— Specifies the segment register (segment Register) that will be used to calculate the effective
addresses for all labels and variables defined under a given segment or group name (segment Name).

If CS = 1230H and DS = 5678H, what are the physical memory addresses of
label TOTAL and variable SUM?

11

The 8086 Registers
• To write assembly code for an ISA (Instruction Set

Architecture) you must know the name of registers
– Because registers are places in which you put data to perform

computation and in which you find the result of the computation
(think of them as variables)

– The registers are really numbered, but assembly languages give
them “easy-to-remember” names

• The 8086 offered 16-bit registers
• Four general purpose 16-bit registers

– AX
– BX
– CX
– DX

12

General purpose registers
• AX, BX, CX, and DX: They can be

assigned to any value you want.
– AX (accumulator register). Most of

arithmetical operations are done with AX.

– BX (base register). Used to do array operations.
BX is usually worked with other registers like SP
to point to stacks.

– CX (counter register). Used for counter
purposes.

– DX (data register). Used for storing data value.

The 8086 Registers

• Each of the 16-bit registers consists of 8 “low bits” and 8
“high bits”
– Low: least significant
– High: most significant

AX BX CX DX

AH AL BH BL CH CL DH DL

• The ISA makes it possible to refer to the low or high
bits individually
– AH, AL

– BH, BL

– CH, CL

– DH, DL
14

The 8086 Registers

• The xHand xLregisters can be used as 1-byte
register to store 1-byte quantities

• Important: both are “tied” to the 16-bit register
– Changing the value of AX will change the values of

AH and AL

– Changing the value of AH or AL will change the value
of AX

AX BX CX DX

AH AL BH BL CH CL DH DL

15

The 80x86 Registers

16

Index registers

• SI and DI: Usually used to process arrays
or strings:

–SI (source index) is always pointed to
the source array

–DI (destination index) is always
pointed to the destination array.

Segment registers
• CS, DS, ES, and SS:

– CS (code segment register). Points to the segment
of the running program. We may NOT modify CS
directly.

– DS (data segment register). Points to the segment
of the data used by the running program. You can
point this to anywhere you want as long as it
contains the desired data.

– ES (extra segment register). Usually used with DI
and doing pointers things. The couple DS:SI and
ES:DI are commonly used to do string operations.

– SS(stack segment register). Points to stack
segment.

Pointer registers

• BP, SP, and IP:

– BP (base pointer) used for preserving space to
use local variables.

– SP(stack pointer) used to point the current
stack.

– IP (instruction pointer) denotes the current
pointer of the running program. It is always
coupled with CSand it is NOT modifiable. So,
the couple of CS:IP is a pointer pointing to the
current instruction of running program. You can
NOT access CS nor IP directly.

Addresses in Memory

• We mentioned several registers that are used
for holding addresses of memory locations

• Segments:
– CS, DS, SS, ES

• Pointers:
– SI, DI: indices (typically used for pointers)

– SP: Stack pointer

– BP: (Stack) Base pointer

• Let’s look at the structure of the address space

Address Space

• In the 8086 processor, a program is limited to referencing an address spaceof
size 1MB, that is 220 bytes

• Therefore, addresses are 20-bit long!
• A d-bit long address allows to reference 2d different “things”
• Example:

– 2-bit addresses
• 00, 01, 10, 11
• 4 “things”

– 3-bit addresses
• 000, 001, 010, 011, 100, 101, 110, 111
• 8 “things”

• In our case, these things are “bytes”
– One cannot address anything smaller than a byte

• Therefore, a 20-bit address makes it possible to address 220 individual bytes, or
1MB

Address Space

• One says that a running program has a 1MB
address space

• And the program needs to use 20-bit addresses to
reference memory content

– Instructions, data, etc.

• Problem: registers are at 16-bit long! How can
they hold a 20-bit address???

• The solution: split addresses in two pieces:

– The selector

– The offset

Simple Selector and Offset

• Let us assume that we have an address
space of size 24=16 bytes
– Yes, that would not be a useful computer

• Addresses are 4-bit long
• Let’s assume we have a 2-bit selector and a

2-bit offset
– As if our computer had only 2-bit registers

• We take such small numbers because it’s
difficult to draw pictures with 220 bytes!

Selector and Offset Example

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

16 bytes
of

memory

0 1 x xaddress

selector offset

For a fixed value of the
selector there are 22=4
addressable bytes of memory.
The set of these bytes is called
a memory segment.

Selector and Offset Example

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

16 bytes
of

memory

x x x xaddress

selector offset

We have 16 bytes of memory
We have 4-byte segments
We have 4 segments

Selector and Offset

• The way in which one addresses the memory content is
then pretty straightforward

• First, set the bits of the selector to “pick” a segment
• Second, set the bits of the offset to address a byte within

the segment
• This all makes sense because a program typically

addresses bytes that are next to each other, that is within
the same segment

• So, the selector bits stay the same for a long time, while
the offset bits change often
– Of course, this isn’t true for tiny 4-byte segments as in

our example…

For 20-bit Addresses

• On the 8086 the offset if 16-bit long
– And therefore the selector is 4-bit

• We have 24 = 16 different segments

• Each segment is 216 byte = 64KB

• For a total of 1MB of memory, which is what the
8086 used

offsetselector

4 bits 16 bits

For 20-bit Addresses

1MB
of

memory

4 bits 16 bitsaddress

selector offset

We have 1MB of memory
We have 64K segments
We have 16 segments

0000…

0001…

0010…

0011…

0100…

0101…

0110…

0111…

1000…

1001…

1010…

1011…

1100…

1101…

1110…

1111…

The 8086 Selector Scheme

• So far we’ve talked about the selector as a 4-bit quantity, for
simplicity

• This leads to 16 non-overlappingsegments

• The designers of the 8086 wanted more flexibility

• E.g., if you know that you need only an 8K segment, why use
64K for it? Just have the “next” segment start 8K after the
previous segment

– We’ll see why segments are needed in a little bit

• So, for the 8086, the selector is NOT a 4-bit field, but rather the
address of the beginning of the segment

• But now we’re back to our initial problem: Addresses are 20-bit,
how are we to store an address in a 16-bit register???

The 8086 Selector Scheme

• What the designers of the 8086 did is pretty simple
• Enforce that the beginning address of a segment can

only be a multiple of 16
• Therefore, its representation in binary always has its

four lowest bits set to 0
• Or, in hexadecimal, its last digit is always 0
• So the address of a beginning of a segment is a 20-bit

hex quantity that looks like: XXXX0
• Since we know the last digit is always 0, no need to

store it
• Therefore, we need to store only 4 hex digits
• Which, lo and behold, fits in a 16-bit register!

The 8086 Selector Scheme

• So now we have two 16-bit quantities
– The 16-bit selector
– The 16-bit offset

• The selector must be stored in one of the “segment” registers
– CS, DS, SS, ES

• The offset is typically stored in one of the “index” registers
– SI, DI
– But could be stored in a general purpose register

• Address computation is straightforward
• Given a 16-bit selector and a 16-bit offset, the 20-bit address is computed as

follows
– Multiply the selector by 16

• This simply transforms XXXX into XXXX0, thanks to the beauty of
hexadecimal

– Add the offset
– And voila

In-class Exercise

• Consider the byte at address 13DDE within
a 64K segment defined by selector value
10DE. What is its offset?

In-class Exercise

• Consider the byte at address 13DDE within
a 64K segment defined by selector value
10DE. What is its offset?

• 13DDE = 10DE * 1610 + offset

• offset = 13DDE - 10DE0

• offset = 2FFE (a 16-bit quantity)

Extended register
• 386processors introduce extended register.

• Most of the registers, except segment
registers are enhanced into 32-bit.

• So, we have extended registers EAX, EBX,
ECX, and so on.

• AX is only the low 16-bit (bit 0 to 15) of
EAX.

• There are NO special direct access to the
upper 16-bit (bit 16 to 31) in extended
register.

The 8086 Registers

• The 16-bit Instruction Pointer (IP) register:
– Points to the next instruction to execute

• The 16-bit FLAGS registers
– Information is stored in individual bits of the FLAGS

register

– Whenever an instruction is executed and produces a
result, it may modify some bit(s) of the FLAGS register

– Example: Z (or ZF) denotes one bit of the FLAGS
register, which is set to 1 if the previously executed
instruction produced 0, or 0 otherwise

35

Flag Register

 OF DF IF TF ZFSF  AF PF CF 

015

� Control Flags � Status Flags

IF: Interrupt enable flag
DF: Direction flag
TF: Trap flag

CF: Carry flag
PF: Parity flag
AF: Auxiliary carry flag
ZF: Zero flag
SF: Sign flag
OF: Overflow flag

� Flag register contains information reflecting the current status of a
microprocessor. It also contains information which controls the
operation of the microprocessor.

 

36

Flag register
• Flag is 16-bit register that contains processor

status.

• It holds the value of which the programmers may
need to access. This involves detecting whether
the last arithmetic holds zeroresult or may be
overflow.

• Intel doesn't provide a direct access to it; rather it
is accessed via stack. (via POPFand PUSHF)

• You can access each flag attribute by using
bitwise AND operation since each status is mostly
represented by just 1 bit.

Flag register cont.

• C carry flag is turned to 1whenever the last
arithmetical operation, such as adding and subtracting,
has carry or borrowotherwise 0.

• P parity flag It will set to 1if the last operation (any
operation) results evennumber of bit 1.

• A auxilarry flag It is set in Binary Coded Decimal
(BCD) operations.

• Z zero flag used to detect whether the last operation
(any operation) holds zeroresult.

• S sign flag used to detect whether the last operation
holds negativeresult. It is set to 1 if the highest bit (bit
7 in bytes or bit 15in words) of the last operation is 1.

Flag register cont.

• T trap flag used in debuggersto turn on the step-by-
step feature.

• I interrupt flag used to toggle the interrupt enable or
not. If the bit is set (= 1), then the interrupts are
enabled, otherwise disabled. The default is on.

• D direction flag used for directions of string
operations. If the bit is set, then all string operations
are done backward. Otherwise, forward. The default
is forward (= 0).

• O the overflow flag used to detect whether the last
arithmetic operation result has overflowedor not. If
the bit is set, then it has been an overflow.

Code, Data, Stack

• A program constantly references all three
regions

• Therefore, the program constantly
references bytes in three different segments
– For now let’s assume that each region is fully

contained in a single segment, which is in fact
not always the case

• CS: points to the beginning of the code
segment

• DS: points to the beginning of the data
segment

• SS: points to the beginning of the stack
segment

code

data

stack

address space

40

;NUMOFF.ASM: Turn NUM -LOCK indicator off.

;

.MODEL SMALL

.STACK

.CODE

.STARTUP
MOV AX,40H ;set AX to 0040H

MOV DS,AX ;load data segment with 0040H

MOV SI,17H ;load SI with 0017H
AND BYTE PTR [SI],0DFH ;clear NUM-LOCK bit

.EXIT

END

All characters following a “;” till the line end
are “comments”, ignored by the assembler

Assembler reserved words

Assembly language instructions

Developing software for the personal computer
.ASM file

41

Developing software for the personal computer
.ASM file

;NUMOFF.ASM: Turn NUM -LOCK indicator off.

;

.MODEL SMALL

.STACK

.CODE

.STARTUP
MOV AX,40H ;set AX to 0040H

MOV DS,AX ;load data segment with 0040H

MOV SI,17H ;load SI with 0017H
AND BYTE PTR [SI],0DFH ;clear NUM-LOCK bit

.EXIT

END

Register pair (16 bit) (destination of “MOV”)
Hexadecimal value to be loaded (source for “MOV”)

Data Segment register pair Prepare the Data Segment

Source Index

The complete address
of the byte containing
NumLock bit is
specified.

First operand and destination for
logical “AND” Memory address
specified by DSand SI together.

Second operand for logical “AND”
(immediate hexadecimal value)

ANDing with DFH=1101.1111B,
only b5 (bit 5) of specified memory
location is affected (reset to 0)

42

Example Using Shifts

• Say you want to count the number of bits that are
equal to 1 in register EAX

• One easy way to do this is to use shifts
– Shift 32 times

– Each time the carry flag contains the last shifted bit

– If the carry flag is 1, then increment a counter,
otherwise do not increment a counter

– When you’re done the counter contains the number of
1’s

• Let’s write this in x86 assembly

Example Using Shifts

; Counting 1 bits in EAX

mov bl, 0 ; bl is the number of 1 bits

mov cl, 32 ; cl is the loop counter

loop_start:

shl eax, 1 ; left shift

jnc not_one ; if carry != 1, jump to not_one

inc bl ; increment the number of 1 bits

not_one:

dec cl ; decrement the loop counter

jnz loop_start ; if more iterations goto loop_start

Find average of two numbers

.model small

.stack 100

.data
No1 DB 63H ; First number storage
No2 DB 2EH ; Second number storage
Avg DB ? ; Average of two numbers

.code
START:
MOV AX,@data ; [Initialises

MOV DS,AX ; data segment]
MOV AL,NO1 ; Get first number in AL
ADD AL,NO2 ; Add second to it
ADC AH,00H ; Put carry in AH
SAR AX,1 ; Divide sum by 2
MOV Avg,AL ; Copy result to memory

Find sum of numbers in the array

.model small

.data
ARRAY DB 12H,24H,26H,63H,25H,86H,2FH,33H,10H,35H
SUM DW 0

.code
START:
MOV AX,@data ; [Initialise

MOV DS,AX ; data segment]
MOV CL,10 ; Initialise counter
XOR DI,DI ; Initialise pointer
LEA BX,ARRAY ; Initialise array base pointer

BACK:
MOV AL,[BX+DI] ; Get the number
MOV AH,00H ; Make higher byte 00h
ADD SUM,AX ; SUM = SUM + number
INC DI ; Increment pointer
DEC CL ; Decrement counter
JNZ BACK ; if not 0 go to back
END STAR

