
Computer Organization

CPU Organization - Functions

and Interconnections

Chapters (3 + 12) + Lecture Notes

Program Concept

• Hardwired systems are inflexible

• General purpose hardware can do
different tasks, given correct control
signals

• Instead of re-wiring, supply a new set of
control signals

What is a program?

• A sequence of steps

• For each step, an arithmetic or logical
operation is done

• For each operation, a different set of
control signals is needed

CPU Basics

• A typical CPU has three major
components:

—Register Set,

– The register set is usually a combination of general-
purpose and special-purpose registers.

– General-purpose registers are used for any purpose.

– Special-purpose registers have specific functions
within the CPU.

—Arithmetic Logic Unit, and

—Control Unit (CU).

CPU Basics

• The Control Unit and the Arithmetic and
Logic Unit constitute the Central
Processing Unit

• Data and instructions need to get into the
system and results out

—Input/output

• Temporary storage of code and results is
needed

—Main memory

Function of Control Unit

• For each operation a unique code is
provided

—e.g. ADD, MOVE

• A hardware segment accepts the code and
issues the control signals

• We have a computer!

CPU Basics

Computer Components:

Top Level View

CPU Basics: Instruction Cycle

• A typical and simple execution cycle in a CPU is as follows:

— The next instruction to be executed, whose address is
obtained from the PC, is fetched from the memory and stored
in the IR.

— Instruction is decoded.

— Operands are fetched from the memory and stored in CPU
registers, if needed.

— Instruction is executed.

— Results are transferred from CPU registers to the memory, if
needed.

• The execution cycle is repeated as long as there are more
instructions to execute.

• A check for pending interrupts is usually included in the
cycle.

Instruction Cycle

• Two steps:

—Fetch

—Execute

Registers

• CPU must have some working space (temporary
storage) Called registers

• Number and function vary between processor
designs

• One of the major design decisions

• Top level of memory hierarchy

• User Visible Registers

—General Purpose

—Data

—Address

—Condition Codes

General Purpose Registers

• Make them general purpose

—Increase flexibility and programmer options

—Increase instruction size & complexity

• Make them specialized

—Smaller (faster) instructions

—Less flexibility

• How Many GP Registers?

• How big?

Register Set

Register Set

Register Set

Sign of last result, Zero, Carry, Equal, Overflow, Interrupt
enable/disable, Supervisor

Register Set

An Abstract (Simplified) View:An Abstract (Simplified) View:

Single Cycle CPU Datapath

Multi-Cycle CPU Structure

Multi-Cycle CPU Datapath

CPU Instruction Cycle

CPU Instruction Cycle

CPU Instruction Cycle

Example of Program Execution

Fetch Execute

Three
Instruction
Cycles

Instruction Cycle State Diagram

Execution cycle may reference memory more than once. The operation could be an I/O type. For some
instruction, some states may be null and others may be accessed more than once.

From memory or I/O Into memory or out to I/O

Control Unit

• The control unit is the main component that
directs the system operations by sending control
signals to the datapath.

• Datapath: The data section, which contains the
registers and the ALU.

• These signals control the flow of data within the
CPU and between the CPU and external units such
as memory and I/O.

• Control buses generally carry signals between the
control unit and other computer components in a
clock-driven manner.

• The system clock produces a continuous sequence
of pulses (timing signals) in a specified duration
and frequency.

Control Unit

• A sequence of steps t0 , t1 , t2 , . . . , (t0 < t1 <
t2 , . . .) are used to execute a certain
instruction.

• The op-code field of a fetched instruction is
decoded to provide the control signal generator
with information about the instruction to be
executed.

• Step information generated by a logic circuit
module is used with other inputs to generate
control signals.

• The signal generator can be specified simply by a
set of Boolean equations for its output in terms

of its inputs.

Control Signal Generator

Control Unit

Interrupts

• Mechanism by which other modules (e.g.
I/O) may interrupt normal sequence of
processing. Improves process efficiency.

Classes:

• Program (condition occurs as a result of instruction execution)

—e.g. Arithmetic overflow, division by zero

• Timer
—Generated by internal processor timer

—Used in pre-emptive multi-tasking

• I/O (from I/O controller)
—to signal normal completion or error

• Hardware failure
—e.g. memory parity error, power failure

Program Flow Control

Program Flow Control

1. User program executes codes 1, 2, and 3 that
do not involve the I/O.

2. It interleaves the codes with WRITE calls to
an I/O program.

3. The IO program has a sequence of
instructions, 4, to prep for the I/O operation. It
has the actual IO command, and a sequence
of instructions, 5, to complete the operation
(i.e. set flag for success or failure.

4. Since no interrupt, the IO command may take
long, and the program has to wait for the IO
device to perform what it was asked to do.

5. In this case, the IO program is hung up
waiting, and the user program is stopped at
WRITE call location.

Program Flow Control

1. With interrupts, Processor can execute other
inst. While an IO operation is in progress.

2. A WRITE call is made and the IO preparation
code,4, and the I/O command are executed.

3. User program resumes execution while the
external device is busy doing what it was told
to do via the I/O command (print data).

4. When external device is ready to be serviced
again, its I/O module sends an Interrupt
Request signal to the processor.

5. Processor suspends operations to handle the
Interrupt (point X) (interrupt handler). Normal
operation then resumes.

6. Interrupt handling code is not part of the user
code.

7. Interrupt handling is the responsibility of the
Processor and OS.

Interrupt Cycle

• Added to instruction cycle

• Processor checks for interrupt

—Indicated by an interrupt signal

• If no interrupt, fetch next instruction

• If interrupt pending:

—Suspend execution of current program

—Save context

—Set PC to start address of interrupt handler
routine

—Process interrupt

—Restore context and continue interrupted
program

Transfer of Control via Interrupts

When the interrupt
processing is completed,
normal execution resumes

Instruction Cycle with Interrupts

If Interrupt is pending:
-Suspend execution of current program and save address of next instruction.
- Set the PC to the starting address of an Interrupt Handler Routine and then
fetch the first instruction in the handler program

Instruction Cycle (with Interrupts) -

State Diagram

Multiple Interrupts

• Disable interrupts

—Processor will ignore further interrupts whilst
processing one interrupt

—Interrupts remain pending and are checked
after first interrupt has been processed

—Interrupts handled in sequence as they occur

• Define priorities

—Low priority interrupts can be interrupted by
higher priority interrupts

—When higher priority interrupt has been
processed, processor returns to previous
interrupt

Multiple Interrupts - Sequential

No priority
considerations btw
Interrupts.

Multiple Interrupts – Nested

Time Sequence of Multiple Interrupts

Increasing Priority:
Printer: 2
Disk: 4
Comm Line: 5

Disk Interrupt
occurs at t=20

Connecting

• All the units must be
connected

• Different type of
connection for different
type of unit

—Memory

—Input/Output

—CPU

CPU Connection

• Reads instruction and data

• Writes out data (after processing)

• Sends control signals to other units

• Receives (& acts on) interrupts

Memory Connection

• Receives and sends data

• Receives addresses (of locations)

• Receives control signals

—Read

—Write

—Timing

Input/Output Connection

• Similar to memory from computer’s viewpoint

—Output

– Receive data from computer

– Send data to peripheral

—Input

– Receive data from peripheral

– Send data to computer

• Receive control signals from computer

• Send control signals to peripherals

—e.g. spin disk

• Receive addresses from computer

—e.g. port number to identify peripheral

• Send interrupt signals (control)

Buses

• There are a number of possible
interconnection systems

• Single and multiple BUS structures are
most common

• e.g. Control/Address/Data bus (PC)

• e.g. Unibus (DEC-PDP)

What is a Bus?

• A communication pathway connecting two
or more devices

• Usually broadcast

• Often grouped

—A number of channels in one bus

—e.g. 32 bit data bus is 32 separate single bit
channels

• Power lines may not be shown

Computer System Buses

• What do buses look like?

—Parallel lines on circuit boards

—Ribbon cables

—Strip connectors on mother boards

– e.g. PCI

—Sets of wires

Bus Types

• Dedicated

—Separate data & address lines

• Multiplexed

—Shared lines

—Address valid or data valid control line

—Advantage - fewer lines

—Disadvantages

– More complex control

– Ultimate performance

Data Bus

• Carries data

—Remember that there is no difference between
“data” and “instruction” at this level

• Width is a key determinant of
performance

—8, 16, 32, 64 bit

Address bus

• Identify the source or destination of data

• e.g. CPU needs to read an instruction
(data) from a given location in memory

• Bus width determines maximum memory
capacity of system

—e.g. 8080 has 16 bit address bus giving 64k
address space

Control Bus

• Control and timing information

—Memory read/write signal

—Interrupt request

—Clock signals

Bus Interconnection Scheme

Big and Yellow? School Buses !

• What do buses look like?

—Parallel lines on circuit boards

—Ribbon cables

—Strip connectors on mother boards

– e.g. PCI

—Sets of wires

CPU local (internal) Bus Organization

• One-Bus Organization
—Using one bus, the CPU registers and the ALU

use a single bus to move outgoing and
incoming data.

—Since a bus can handle only a single data
movement within one clock cycle, two-
operand operations will need two cycles to
fetch the operands

—Additional registers may be needed to
buffer data for the ALU

—This bus organization is the simplest and
least expensive, but it limits the amount of
data transfer that can be done in the same
clock cycle, which will slow down the overall
performance.

Single Bus Problems

• Lots of devices on one bus leads to:

—Propagation delays

– Long data paths mean that co-ordination of bus
use can adversely affect performance

– If aggregate data transfer approaches bus capacity

• Most systems use multiple buses to
overcome these problems

CPU local Bus Organization

CPU local Bus Organization

• Two-Bus Organization
—Using two buses is a faster solution than the one-bus

organization.

— In this case, general-purpose registers are connected
to both buses.

—Data can be transferred from two different registers
to the ALU at the same time.

—Therefore, a two operand operation can fetch both
operands in the same clock cycle.

—An additional buffer register may be needed to hold
the output of the ALU when the two buses are busy
carrying the two operands.

—In some cases, one of the buses may be dedicated for
moving data into registers (in-bus), while the other is
dedicated for transferring data out of the registers
(out-bus).

CPU local Bus Organization

CPU local Bus Organization

• Three-Bus Organization
—In a three-bus organization, two buses may

be used as source buses while the third is
used as destination.

—The source buses move data out of registers
(out-bus), and the destination bus may
move data into a register (in-bus).

—Each of the two out-buses is connected to an
ALU input.

—The output of the ALU is connected directly to
the in-bus.

—The more buses we have, the more data we
can move within a single clock cycle.

— However, increasing the number of buses will
also increase the complexity of the hardware.

CPU local Bus Organization

Bus Arbitration

• More than one module controlling the bus

—e.g. CPU and DMA controller

• Only one module may control bus at one
time

• Arbitration may be centralised or
distributed

—Centralised :Only one module (bus controller
or arbiter) may control bus at one time

—Distributed :More than one module
controlling the bus

– e.g. CPU and DMA controller

Timing

• Co-ordination of events on bus

• Bus use either synchronous or
asynchronous timing.

• Synchronous

—Events determined by clock signals

—Control Bus includes clock line

—A single 1-0 transition is referred to as is a
bus cycle or clock cycle

—All devices on the bus can read clock line

—Usually sync on leading edge

—Usually a single cycle for an event

Traditional (ISA)

(with cache)

High Performance Bus

Hardwired Implementation

• In hardwired control, a direct
implementation is accomplished using
logic circuits.

• For each control line, one must find the
Boolean expression in terms of the input
to the control signal generator

• Let us explain the implementation using
simple example.

Hardwired Implementation example

• Assume that the instruction set of a
machine has the three instructions: Inst-
x, Inst-y, and Inst-z;

• and A, B, C, D, E, F, G, and H are control
lines.

• The following table shows the control lines
that should be activated for the three
instructions at the three steps t0 , t1 ,
and t2 .

Hardwired Implementation example

Boolean expressions for the rest of the control lines can be
obtained in a similar way.

Hardwired Implementation example

Logic Circuit for
control lines A, B
and C

The Boolean
expression for
control lines A, B
and C

Microprogrammed Control Unit

• Microprogramming was motivated by the desire to
reduce the complexities involved with hardwired
control.

• An instruction is implemented using a set of micro-
operations.

• Associated with each micro-operation is a set of
control lines that must be activated to carry out the
corresponding microoperation.

• The idea of microprogrammed control is to store the
control signals associated with the implementation of
a certain instruction as a microprogram in a special
memory called a control memory (CM).

Microprogrammed Control Unit

• A microprogram consists of a sequence of
microinstructions.
— A microinstruction is a vector of bits, where each bit

is a control signal, condition code, or the address of
the next microinstruction.

—Microinstructions are fetched from CM the same way
program instructions are fetched from main memory

• When an instruction is fetched from memory, the op-
code field of the instruction will determine which
microprogram is to be executed.

