Computer Organization

CPU Organization - Functions
and Interconnections

Chapters (3 + 12) + Lecture Notes

Program Concept

e Hardwired systems are inflexible

e General purpose hardware can do
different tasks, given correct control
signals

e Instead of re-wiring, supply a new set of
control signals

What is a program?

e A sequence of steps

e For each step, an arithmetic or logical
operation is done

e For each operation, a different set of
control signals is needed

CPU Basics

e A typical CPU has three major
components:

—Register Set,

— The register set is usually a combination of general-
purpose and special-purpose registers.

— General-purpose registers are used for any purpose.

— Special-purpose registers have specific functions
within the CPU.

—Arithmetic Logic Unit, and

—Control Unit (CU).

CPU Basics

e The Control Unit and the Arithmetic and
Logic Unit constitute the Central
Processing Unit

e Data and instructions need to get into the
system and results out
—Input/output

e Temporary storage of code and results is
needed
—Main memory

Function of Control Unit

e For each operation a unique code is
provided
—e.g. ADD, MOVE

e A hardware segment accepts the code and
issues the control signals

e We have a computer!

CPU Basics

Memory System

Instructions l] ﬁ Cata

CPU
I
Fi

N ~_ :
\I\n ALL -
\, / g
.

Control Unit |

Registers

|

Input / Output

Computer Components:
Top Level View

CPU
PC MAR
IR MBR
/O AR
.V 7
xecution
uni /O BR

I/0 Module

Buffers

System
Bus

=

P

A
nowonouon

Main Memory

Instruction
Instruction
Instruction

Data
Data
Data
Data

=2 3

Program counter

Instruction register

Memory address register
Memory buffer register
Input/output address register
Input/output buffer register

i]
= J

CPU Basics: Instruction Cycle

e A typical and simple execution cycle in a CPU is as follows:

— The next instruction to be executed, whose address is

obtained from the PC, is fetched from the memory and stored
in the IR.

— Instruction is decoded.

— Operands are fetched from the memory and stored in CPU
registers, if needed.

— Instruction is executed.

— Results are transferred from CPU registers to the memory, if
needed.

e The execution cycle is repeated as long as there are more
instructions to execute.

e A check for pending interrupts is usually included in the
cycle.

Instruction Cycle

e Two steps:
—Fetch
—EXxecute

Fetch Cycle Execute Cycle

Execute
Instruction

Fetch MNext
Instruction

START

Registers

e CPU must have some working space (temporary
storage) Called registers

e Number and function vary between processor
designs

e One of the major design decisions

e Top level of memory hierarchy

e User Visible Registers
— General Purpose
— Data
— Address
— Condition Codes

General Purpose Registers

e Make them general purpose
—Increase flexibility and programmer options
—Increase instruction size & complexity

e Make them specialized
—Smaller (faster) instructions
—Less flexibility

e How Many GP Registers?
e How big?

Register Set

+ Memory Access Registers

— Two reqisters are essential in memory write and read
operations:

« memory data register (MDR) and
« memory address register (MAR).

— The MDR and MAR are used exclusively by the CPU and are
not directly accessible to programmers.

— In order to perform a write operation into a specified memory
location, the MDR and MAR are used as follows:

« The word to be stored into the memory location is first loaded by
the CPU into MDR

« The address of the location into which the word is to be stored is
loaded by the CPU into a MAR.

Register Set

« Memory Access Registers
— Similarly, to perform a memory read operation, the MDR and
MAR are used as follows:

+ The address of the location from which the word Is to be read is
loaded into the MAR.

+ The required word will be loaded by the memory into the MDR
ready for use by the CPU.

+ Instruction Fetching Registers
— Two main registers are involved in fetching an instruction for
execution:
» the program counter (PC) and
+ the instruction register (IR).

Register Set

+ Condition Registers

— Condition reqisters, or flags, are used to maintain status
iInformation.

— Some architectures contain a special Program Status Word
(PSW) register.

— The PSW contains bits that are set by the CPU to indicate the
current status of an executing program.

— These indicators are typically for arithmetic operations,
Interrupts, memory protection information, or processor status.

Sign of last result, Zero, Carry, Equal, Overfldaterrupt
enable/disable, Supervisor

Register Set

+ Speclal Purpose Address Registers

— Index register
+ The index register holds an address displacement.

+ Index addressing is indicated in the instruction by including the
name of the index register in parentheses and using the symbol X
to indicate the constant to be added.

— Segment pointers

+ The address issued by the processor should consist of a
Segment Number (Base) and a Displacement (or an offset) within
the segment.

+ A segment register holds the address of the base of the segment.

An Abstract (Simplified) View:

use the program counter (PC) to

supply instruction address

store the result in a register

l

Instruction
Memory

get the instruction

from memo 'y

Data

Register #
E — Address Instruction —E
Register #

¢—| Register #

Register

>&LU

|

Address

Data

Memory

+ Data

read regi

* Two types of functional units:

sters

carry out the
operation

— elements that operate on data values (combinational)

— elements that contain states (sequential)

Some instructions
transfer register to
memory

Single Cycle CPU Datapath

Branch

A
>

Address Instruction

Instruction
memory

Data

Register #
Registers
Reaqister #

Register # RegWrite

e Data

—1 Control |

——

MemWrite

Address

Data
memory

MemBRead

L]

Multi-Cycle CPU Structure

Y

PC

Address

Instruction
Memory or data

Data

Instruction

register | |
.-
L
Memory
data |[9¢»
reglster

Data

Reqister #
Reglsters

Reqgister #

Reqgister #

ALUOut

L

Multi-Cycle CPU Datapath

. | Instruction Decode | Execute | W
Instruction Fetch : Register Fetch : sddrace Calc: . Memory Access : Write Back
; ID : EX | MEM : WB

- | :

Fferat -
= = =
- _E 'E * -;E
o imm ae B M =
L L sign = =
extend
-
L i
: = X
115.401 7 E Hemnr:’l —
! -l
[15..11]
=
: zn.18 |5 - : T T —|

control unit

CPU Instruction Cycle

. Fetch Instructions
— The sequence of events in fetching an instruction can be
summarized as follows:
. The contents of the PC are loaded into the MAR.

« The value in the PC is incremented. (This operation can be done
in parallel with a memory access).

« As aresult of a memory read operation, the instruction is loaded
into the MDR.

. The contents of the MDR are loaded into the IR.

Step Micro-operation

ty MAR & (PC); PC & (PC) + 4

’ MDR ¢ Mem[MAR]

t, IR €« (MDR)

CPU

Instruction Cycle

¢« EX

ecute Simple Arithmetic Operation

Add R1, R2, RO

This instruction adds the contents of source registers R1 and R2,
and stores the results in destination register R0. This addition can
be executed as follows:

— The registers RO, R1, R2, are extracted from the IR.

— The contents of R1 and R2 are passed to the ALU for addition.

— The output of the ALU is transferred to RO.

Step Micro-operation

f Ry € (Ry) + (Ry)

CPU Instruction Cycle

Execute Simple Arithmetic Operation

Add X, RO

This instruction adds the contents of memory location X to
register RO and stores the result in RO. This addition can be
executed as follows:

— The memory location X is extracted from IR and loaded into MAR.

— As a result of memory read operation, the contents of X are loaded
into MDR.
— The contents of MDR are added to the contents of RO.

Step Micro-operation
t, MAR € X
t, MDR < Mem[MAR]
t, Ry <« (R, + (MDR)

Example of Program Execution

Fetch

Three

Instruction
Cycles

Execute

CPU Registers|] Memory CPU Registers
300 30 0|PC |300[19 4 3 0 1]PC
AC| 3015 9 4 1 0 00 3|]AC
3022 1 1940]|IR 3022941f’194[}|ﬁ
F
00T 03 040[0 0 0 3
9410 0 0 2
Step 2
CPU Registers| Memory CP
300 30 1|PC |300[1 9 4
000 3[AC|3015 9 4 1
302 1 Lﬁ5941IR 30212 9 4 1
F]
¥
940{0 0 0 3] 94000 0 0 3 +
941[0]0 0 2—/"2
Step 4
CPU Registers| Memory CPU Registers
300 302|PC |30001]/9 4 0 3 0 3]PC
0 00 5/AC|3015[9 4 1 0 00 5/AC
3022 1—»2 94 1/IR|3022(9 4 1 294 1|IR
, %
]
940 4000 0 0 3
9410 00 5

Instruction Cycle State Diagram

From memory or I/O Into memory or out to 1/0O

Instructio Operand Operand
fetch fetch store
ry 'y A
Multiple Multiple
operands results
v v
nstructio nstructio Opera Data Operand
address operation address Operation address
calculatio decodi Iculati pe lculatio
Instruction complete, Return for string
fetch next instruction or vector data

Execution cycle may reference memory mor e than once. The operation could be an 1/0 type. For some
instruction, some states may be null and others may be accessed mor e than once.

Control Unit

The control unit is the main component that
directs the system operations by sending control
signals to the datapath.

Datapath: The data section, which contains the
registers and the ALU.

These signals control the flow of data within the
CPU and between the CPU and external units such
as memory and I/0.

Control buses generally carry signals between the
control unit and other computer components in a
clock-driven manner.

The system clock produces a continuous sequence
of pulses (timing signals) in a specified duration
and frequency.

Control Unit

e Asequence of stepstO ,tl1,t2,..., (0 <tl <
t2 ,...) are used to execute a certain
instruction.

e The op-code field of a fetched instruction is
decoded to provide the control signal generator
with information about the instruction to be
executed.

e Step information generated by a logic circuit
module is used with other inputs to generate
control signals.

e The signal generator can be specified simply by a
set of Boolean equations for its output in terms

of its inputs.

Control Signal Generator

Clocking Other input Op-code
—m Iy Inst-1 [
—» | Inst-2 4
; —® b Inst-3 [
{;;ﬂg"ft & ® Decoder
ol » Control Signal Generator 8
L &
> <+

0 A 7 A 9

Control .‘-Z'Lg nals

Control Unit

+ There are mainly two different types of control units:

— Microprogrammed

+ The control signals associated with operations are stored in
special memory units inaccessible by the programmer as control
words.

— Hardwired

+ Fixed logic circuits that correspond directly to the Boolean
expressions are used to generate the control signals.

Interrupts

e Mechanism by which other modules (e.g.
I/O) may interrupt normal sequence of
processing. Improves process efficiency.

Classes:

® Prog IFAaIM (condition occurs as a result of instruction execution)
—e.g. Arithmetic overflow, division by zero

e Timer
—Generated by internal processor timer
—Used in pre-emptive multi-tasking

e I/O (from I/O controller)
—to signal normal completion or error

e Hardware failure
—e.g. memory parity error, power failure

Program Flow Control

e B e o e 7

L]
.fI.f H L] L
" %] H
" ...r " #
l-ql_-_ru.l II_._I_-..r_#. _._#.-_..__-_.-_I_._Il.._l‘_.‘.l-.t
- L] - -
ﬁil.fl. . e, L] ti.-._l L T
' ey # L " - L™
. .-_.-.ﬁ- L™ . ™ e
. Rl T e, . : e, *a,
LY L L) L bl
L] L] ol - W ¥ "y *,
L " LI gy & [*u *a
(Y] ag g - s LY
L] g - L] T -
- LY LY] - -
L " Thag Tea, = [.-.‘.-..-. Ty
L] - L - -
[ey U] ey T
L L] ey [l P —————- . T
LT -
L.

— 5

WRITE

® | wre £

..
L

110
Program
e
Command

e e P

L]
* .ﬂ i "
L]
.f.f 1 " iﬁ
- - li. l.-.
L} L]
:.-I‘H.Illlldi L] it .fllllli.ﬂl_-lf
L -y, - . .
‘.l.t_l - Ty [.ﬂ .
°T .-..f.-_.f.-_' .-.I.r.-__-_ -t -~ .-_-.r .
- ., - * - L] "
. e Tag - - . .
- Tag e & - " *
Y .. .y - - .
- bt *ag y & . -
- L g - = .
- [] ®
-.i I.-_l..-._l.-“.-.l._-. * . d-f
L] - -_F
. & Tag o Tag . L]
- - - L]
L} * e Ry Mg .
. > GF b T Yra, *ag

e i »

| S |
A |

@

WRITE

Lommand

L
lg.-_lr.ll B _lllr‘lll_.-_

g
t.-.l e - u

Teg u
.-.l.# l..f.-.d.-_ -.l .-.li.
Tag L3 L]
*s _-..l_-ﬁi l.l.i.
L) § ey -
(Y L -
. s ey *»
[Ty -
-l ii. l..f.-_i .f-_.a_
-
L) ¥ L -
L] » g u
LT

-
e T e o e At

sesssssssssssssssassansanse

WRITE

(c) Interrupts; long I/O wait

(b) Interrupts; short I/O wait

(a) No interrupts

Program Flow Control

User

P@Em‘

WRITE

1o

Program

(a) No interrupts

1.

User program executes codes 1, 2, and 3 that
do not involve the 1/O.

It interleaves the codes with WRITE calls to
an 1/O program.

The 10 program has a sequence of
Instructions, 4, to prep for the 1/0 operation. It
has the actual IO command, and a sequence
of instructions, 5, to complete the operation
(i.e. set flag for success or failure.

Since no interrupt, the IO command may take
long, and the program has to wait for the 1O
device to perform what it was asked to do.

In this case, the IO program is hung up
waiting, and the user program is stopped at
WRITE call location.

Program Flow Control

Program Program

—_— '! ‘.,¢=

@ 41 @

— : o ‘ 11O

WRITE Voweeees™F Command
I S Interrupt

@ HF 7 N Handler
AN B

—— ¥ xio

WRITE ; b, | ®
: ~ ™ END

(39 ;

X =

:

.

WRITE

(b) Interrupts; short I/O wait

1.

2.

With interrupts, Processor can execute other
iInst. While an IO operation is in progress.

A WRITE call is made and the IO preparation
code,4, and the I1/O command are executed.
User program resumes execution while the
external device is busy doing what it was told
to do via the I/O command (print data).

When external device is ready to be serviced
again, its I/O module sends an Interrupt
Request signal to the processor.

Processor suspends operations to handle the
Interrupt (point X) (interrupt handler). Normal
operation then resumes.

Interrupt handling code is not part of the user
code.

Interrupt handling is the responsibility of the
Processor and OS.

Interrupt Cycle

e Added to instruction cycle

e Processor checks for interrupt
—Indicated by an interrupt signal

e If no interrupt, fetch next instruction
o If interrupt pending:
—Suspend execution of current program

—Save context

—Set PC to start address of interrupt handler
routine

—Process interrupt

—Restore context and continue interrupted
program

Transfer of Control via Interrupts

User Program Interrupt Handler

:

-

L 3]
i
Intertupt —» |
occurs here i+ 1 <
. When the interrupt
. processing is completed,

normal execution resumes

Instruction Cycle with Interrupts

Fetch Cycle Execute Cycle Interrupt Cycle

« Interrupts
Disabled

Check for

(HALT '
If Interrupt is pending:

-Suspend execution of current program and saveeagldif next instruction.
- Set the PC to the starting address of an InteHaptdler Routine and then
fetch the first instruction in the handler program

Instruction Cycle (with Interrupts) -
State Diagram

Instruction Operand Operand
fetch fetch store
Multiple Multiple
operands results
Instruction Instruction Operand Data Operand
address operation ~——p address Oporation — | ddress Interrupt 4 1 nterrupt
calculation decoding calculation P calculation check

No
Instruction complete, Return for string interrup/ /

fetch next instruction or vector data

Multiple Interrupts

e Disable interrupts

—Processor will ignore further interrupts whilst
processing one interrupt

—Interrupts remain pending and are checked
after first interrupt has been processed

—Interrupts handled in sequence as they occur
e Define priorities
—Low priority interrupts can be interrupted by
higher priority interrupts

—When higher priority interrupt has been
processed, processor returns to previous
interrupt

Multiple Interrupts - Sequential

User Program

-

|
I
I
I
I
I
I
l‘.r

s
I ™
I
I
I
I
I
I
I
I
I
I
I
I
v

——an,

Interrupt
Handler X

b

-~ |
-

-
I
I
I
I
I
I
I
I
I

—

No priority
considerations btw
Interrupts.

Interrupt
. Handler Y

-

!
I
)

'y
i)
’

!
b

Multiple Interrupts - Nested

User Program

4+

— ———— — — —

h

h

Interrupt
Handler X

]

/
I

L
L

1)

h———r — — — — —
r’ ‘Il
-
4
£

-1

Interrupt
~- Handler Y
-

.

™

1
I
I
I
™ I
I
I
I
I
I

Time Sequence of Multiple Interrupts

User Program Printer ISR Communication ISR

Disk Interrupt
occurs at t=20

Disk ISR

Increasing Priority:

Printer: 2
Disk: 4

Comm Line: 5

Connecting

e All the units must be
connected

o Different type of
connection for different
type of unit
—Memory
—Input/Output
—CPU

Read

Signals

— = 3| Memory
Write
—_—
N Words
Address > |.| EEEEEEE Data >
Data N-1 (I
L I/0 Module Internal
Write :D‘“ﬂ
—
External
Address > M Ports Data >
Internal
External Signals
Data
Control
wy cv S
Interrupt > Data

CPU Connection

e Reads instruction and data

o Writes out data (after processing)
e Sends control signhals to other units
e Receives (& acts on) interrupts

Memory Connection

e Receives and sends data
o Receives addresses (of locations)

e Receives control signals
—Read
—Write
—Timing

Input/Output Connection

e Similar to memory from computer’s viewpoint
—Qutput
— Receive data from computer
- Send data to peripheral
—Input
— Receive data from peripheral
- Send data to computer
e Receive control signals from computer
e Send control signals to peripherals
—e.g. spin disk
e Receive addresses from computer
—e.g. port number to identify peripheral
e Send interrupt signals (control)

Buses

e There are a number of possible
Interconnection systems

e Single and multiple BUS structures are
most common

e e.g. Control/Address/Data bus (PC)
e e.g. Unibus (DEC-PDP)

What is a Bus?

e A communication pathway connecting two
or more devices

e Usually broadcast

e Often grouped
—A number of channels in one bus

—e.g. 32 bit data bus is 32 separate single bit
channels

e Power lines may not be shown

Computer System Buses

e What do buses look like?

—Parallel lines on circuit boards
—Ribbon cables

—Strip connectors on mother boards
- e.qg. PCI

—Sets of wires

Bus Types

e Dedicated
—Separate data & address lines

e Multiplexed
—Shared lines
—Address valid or data valid control line
—Advantage - fewer lines

—Disadvantages
— More complex control
— Ultimate performance

Data Bus

e Carries data
—Remember that there is no difference between
“data” and “instruction” at this level
o Width is a key determinant of
performance

—8, 16, 32, 64 bit

Address bus

o Identify the source or destination of data

e e.g. CPU needs to read an instruction
(data) from a given location in memory

e Bus width determines maximum memory
capacity of system

—e.g. 8080 has 16 bit address bus giving 64k
address space

Control Bus

e Control and timing information
—Memory read/write signal
—Interrupt request
—Clock signals

Bus Interconnection Scheme

{ CPU Memory H XX [Memory 1/0 see /O H

Control Lines

Address Lines Bus

Data Lines

Big and Yellow? School Buses !

e What do buses look like?

—Parallel lines on circuit boards
—Ribbon cables

—Strip connectors on mother boards
- e.qg. PCI

—Sets of wires

CPU local (internal) Bus Organization

e One-Bus Organization

—Using one bus, the CPU registers and the ALU
use a single bus to move outgoing and
incoming data.

—Since a bus can handle only a single data
movement within one clock cycle, two-
operand operations will need two cycles to
fetch the operands

—Additional registers may be needed to
buffer data for the ALU

—This bus organization is the simplest and
least expensive, but it limits the amount of
data transfer that can be done in the same
clock cycle, which will slow down the overall
performance.

Single Bus Problems

e Lots of devices on one bus leads to:

—Propagation delays

- Long data paths mean that co-ordination of bus
use can adversely affect performance

— If aggregate data transfer approaches bus capacity

e Most systems use multiple buses to
overcome these problems

CPU local Bus Organization

* One-Bus Organization

General
Purpose
Registers

MCR

Memary
Bus

|

L r
IR
L
|
LY !
MAR ' .

CPU local Bus Organization

e Two-Bus Organization

— Using two buses is a faster solution than the one-bus
organization.

— In this case, general-purpose registers are connected
to both buses.

— Data can be transferred from two different registers
to the ALU at the same time.

— Therefore, a two operand operation can fetch both
operands in the same clock cycle.

— An additional buffer register may be needed to hold
the output of the ALU when the two buses are busy
carrying the two operands.

—In some cases, one of the buses may be dedicated for
moving data into registers (in-bus), while the other is
dedicated for transferring data out of the registers
(out-bus).

CPU local Bus Organization

* Two-Bus Organization

R i
Bus 1]
[
I I 14
| | R
I I I /
: | General MAR 4 ALU ;
Purpose I | f
Registers MDR
- |—
| |
oo
Bus 2 Memaory Bus
—Y y

Two-Bus Datapath

CPU local Bus Organization

e Three-Bus Organization

—In a three-bus organization, two buses may
be used as source buses while the third is
used as destination.

—The source buses move data out of registers
(out-bus), and the destination bus may
move data into a register (in-bus).

—Each of the two out-buses is connected to an
ALU input.

—The output of the ALU is connected directly to
the in-bus.

—The more buses we have, the more data we
can move within a single clock cycle.

— However, increasing the number of buses will
also increase the complexity of the hardware.

CPU local Bus Organization

« Three-Bus Organization

In-ous

Out-bus 1

B

IR
> / ALU
General
F'u-'.:c-::»e MAR A AN
Registers > 1 i
DR
l Mamory Bus v
Out-bus 2
" ¥

Three-Bus Datapath

Bus Arbitration

e More than one module controlling the bus
—e.g. CPU and DMA controller

e Only one module may control bus at one
time
o Arbitration may be centralised or

distributed

—Centralised :0Only one module (bus controller
or arbiter) may control bus at one time

—Distributed :More than one module
controlling the bus
- e.g. CPU and DMA controller

Timing

e Co-ordination of events on bus

e Bus use either synchronous or
asynchronous timing.

e Synchronous
—Events determined by clock signals
—Control Bus includes clock line

—A single 1-0 transition is referred to as is a
bus cycle or clock cycle

—All devices on the bus can read clock line
—Usually sync on leading edge
—Usually a single cycle for an event

Traditional (ISA)
(with cache)

b |

bus interface

Processor Luocal Bus Cache
Local 140
AMain controller
Memory
syvstem Bus
Metwork Expansion

Maodem

Serial

Expansion Bus

High Performance Bus

Main
Memory
Mroces Local Bus Cache I System Bus
Processo IBridee Ak :
SCsl1 P1394 Graphic Viden LAN

High-5peed Bus

FAX

FExpansion

Serial

bus interface

Muodem

Expansion Bus

Hardwired Implementation

e In hardwired control, a direct
implementation is accomplished using
logic circuits.

e For each control line, one must find the
Boolean expression in terms of the input
to the control signal generator

e Let us explain the implementation using
simple example.

Hardwired Implementation example

e Assume that the instruction set of a
machine has the three instructions: Inst-
X, Inst-y, and Inst-z;

e and A, B, C, D, E, F, G, and H are control
lines.

e The following table shows the control lines
that should be activated for the three
instructions at the three steps tO , t1,
and t2 .

Step Inst-x Inst-v Inst-z

fo D, B, E F.H, G E.H
f C,A H G D, A, C
5 G, C B, C

Hardwired Implementation example

Step Inst-x Inst-y Inst-z
o D, B,E F. H, G E.H

Iy C,A H G DA, C
[G, C B, C

The Boolean expressions for control ines A, B, and C can be obtained as follows:

A =1Inst-x -t + Inst-z - 11 = (Inst-x 4+ Inst-z) - 1

B = Inst-x - fg + Inst-y - 1

C = Inst-x -t + Inst-x - 12 + Inst-y - & + Inst-z - 1
= (Inst-x + Inst-z) - 1 + (Inst-x + Inst-y) - &

Boolean expressions for the rest of the contredioan be
obtained in a similar way.

Hardwired Implementation example

The Boolean A =1Inst-x - 11 + Inst-z - 1y = (Inst-x + Inst-z) - 1y
expression for B =Instx-fo+ Insty -1
control Iines A B C = Inst-x - 11 + Inst-x - £2 + Inst-y - 12 + Inst-z - 4

and C = (Inst-x + Inst-z) - t; + (Inst-x + Inst-y) - &
Inst-x X A
Logic Ci_rcuit for Itz)
control lines A, B &
and C Inst-x | c
Inst-v k! -
/ =
L2
B

%U

Microprogrammed Control Unit

« Microprogramming was motivated by the desire to
reduce the complexities involved with hardwired
control.

 Aninstruction is implemented using set of micro-
oper ations.

e Associated with eacmicro-operation Is asel of
control linesthat must bexctivated to carry out the
corresponding microoperation.

* The idea of microprogrammed control isstor e the
control signals associated with the implementation of
a certain Instruction as a microprogram kspeci al
memory called a control memory (CM).

Microprogrammed Control Unit

* A microprogram consists of a sequence of
microinstructions.
— A microinstruction is avector of bits, where each bit

IS a control signal, condition code, or the addodss
the next microinstruction.

—Microinstructions are fetched from CM the same way
program instructions are fetched from main memory

 When an instruction is fetched from memory, dbe
code field of the instruction willdeter mine which
microprogram IS to be executed.

