
 1

Faculty of Information Technology

Computer Systems Engineering Department

Assembly Lab ENCS 311 EXP. No. 7

I/O Files

1. Objectives:

 The purpose of this experiment is

1. To provide an overview of Files.

2. Introduce File creation , writing and reading

3. Introduce creating libraries

2 Introduction

The data are stored on the disk in the form of files. In Dos and windows files can be accessed using

INT 21H. There are two types of files structured and unstructured files. An unstructured file

 typically refers to a file that is simply a collection of bytes with no meanings to particular byte

 offsets within the file. A text file is an example of an unstructured file (contains ASCII data). In a

structured file, individual bytes or groups of bytes are meant to contain defined data items such as

characters, integers, strings, floating point numbers etc, with the ordering of the fields always the

same for files of that particular type. The PC world contains many examples of structured files;

.BMP (bitmap files) and .WAV (sound files) are two examples of structured files.

3. Access Files

3.1 File creation

A file can be created using INT 21h and function 3CH. A file names is stored in ASCII-Z string

and may contain the drive and directory path if needed. The cx must contain the attributes of the

file (hidden , read-only,…) for example if bit #0 is „1‟ then the file is read-only , if bit #2 is „1‟ then

the files is hidden. When cx is zero then it is a normal file. After returning form int 21h if the carry

 2

is cleared then there is no error occurred and the AX contains a file handler. The file handler is

number that is used to refer to the file if it created or opened.

3.2 Writing to a file

Before writing to a file it must have been created or opened. Then the file handler is used to refer to

the file whenever data are written. Function 40H is used to write to a file in which BX must contain

the file handler , cx contains the number of bytes to be written and DS:DX contains the address of

the data to be written.

3.3 Opening, Reading, and Closing a file.

To read a file it must first be opened. Function 3DH is used to open the file , AL must contain the

operation allowed for the opened file (AL=00 read 01 write , 02 read or write)

Function 3FH causes a file to be read. As with write function BX contains the file handler, CX

contains the number of bytes to be read and DS:DX contains the memory location where the data

will be stored. As with all disk operations, the carry flag indicates an error with a logic 1. If logic 0

is indicated the AX indicates the number of bytes read from the file.

Closing a file is very important. If a file is left open some serious problems can occur. Function 3E

is used to close files.

3.4 File pointer:

When a file is opened, written or read a file pointer addresses the current location in the sequential

file. File pointer is 32 bit number that addresses any byte in a file. Once the file is opened, the file

pointer can be changed with move file pointer function number 42h. a file pointer can be moved

from start of the file (AL=0), from the current location (AL=01) or from the end of the file

(AL=02). The distance moved by the file pointer is spicifed by CX (most significant) and DX (least

significant part). BX must contain the file handler

4. Creating and Using Libraries

The following steps show how to create library named “mylib”:

 Store the code in mylib.asm:

 Assemble the library:

tasm mylib.asm

 Create the library form the object file using “TLIB” utility:

TLIP libname +libobjectfile

TLIP mylib +mylib.obj

Now you can use the library. For example the file uselib.asm (Program 3) will use the function

writestring from the library mylib (Program 2)

 3

Assemble:

tasm uselib.asm

Linking:

tlink uselib.obj mylib.lib

uselib.exe

5. Pre Lab Work:

1. Study program 1, and explain how it works?

2. Write, assemble and link program 1. You will run it in the lab using TASM

3. Modify the program such that it reads from the file you created and write the data it has

been read on the screen

4. Assemble mylib.asm and create a library then use it (uselib.asm)

5. Bring your work to the lab

6. Lab Work:

1. Write, assemble and link program 4. Study how it does work!

2. Write a library for files operations, it should contain the functions, createfile, openfile,

readfile , writefile, closefile. Then use this library to write a program the reads data from a file

(FILENAME.IN) provided by the user then store the data REVERSED on a file has the same

name with extension OUT.

3. Repeat step 2 but append the reversed data to the same file.

 4

Program 1

;THIS PROGRAM CREATE AND WRITE THEN CLOSE A FILE

Title “PROGRAM71”

.MODEL SMALL

.STACK 100

.DATA

FILENAME DB "DATA.TXT",0

TEXT DB "WELCOME 311",0

FHAND DW ?

.CODE

MOV AX,@DATA

MOV DS,AX

MOV AH,3CH ; CREATE A FILE

MOV CX,0 ; NORMAL ATTRIBUTES

LEA DX,FILENAME ; THE ADDRESS OF FILE NAME SHOULD BE IN DX

INT 21H

MOV FHAND,AX ;FILE HANDLE IS RETURNED IN AX , STORE IT WE NEED IT LATER

MOV AH,40H ; WRITE TO FILE

MOV BX,FHAND ; THE FILE HANDLE

MOV CX,12 ; NUMBER OF BYTES TO BE WRITTEN

LEA DX,TEXT ; THE ADDRESS OF DATA TO BE WRITTEN SHOULD BE IN DX

INT 21H

MOV AH,3EH

INT 21H

MOV AH,4CH

INT 21H

END

 5

Program 2

;PROGRAM MYLIB.ASM

PUBLIC WRITESTRING

.MODEL SMALL

.STACK 100H

.CODE

WRITESTRING PROC

MOV AH,9

INT 21H

RET

WRITESTRING ENDP

END

Program 3

;PROGRAM USELIB.ASM

.MODEL SMALL

.STACK 100H

.DATA

RSTRING DB "THE RESULT IS: ","$"

.CODE

; WRITESTRING PROCEDURE FOUND IN 'MYLIB.LIB'

 EXTRN WRITESTRING:PROC

 MOV AX,@DATA

 MOV DS,AX

 LEA DX,RSTRING

 CALL WRITESTRING

MOV AH,4CH

INT 21H

END

 6

Program 4

;THIS PROGRAM READ FROM A FILE UNTIL THE END

TITLE “PROGRAM72”

.MODEL SMALL

.STACK 100

.DATA

FILENAME DB "DATA.TXT",0

TEXT DB 250 DUP(?)

FHAND DW ?

.CODE

MOV AX,@DATA

MOV DS,AX

MOV AH,3DH ; READ A FILE

MOV AL,02

LEA DX,FILENAME ; THE ADDRESS OF FILE NAME SHOULD BE IN DX

INT 21H

MOV FHAND,AX ;FILE HANDLE IS RETURNED IN AX

 MOV SI,0

L:

MOV AH,3FH ; THE FILE HANDLE

MOV CX,1 ; NUMBER OF BYTES TO BE READ

LEA DX,TEXT+SI ; THE ADDRESS OF DATA TO BE READ

INT 21H

CMP AX,0

JE EXIT

INC SI

JMP L

EXIT:

MOV BYTE PTR TEXT+SI,"$"

MOV AH,3EH

INT 21H

MOV AH,9

MOV DX, OFFSET TEXT

INT 21H

MOV AH,4CH

INT 21H

END

