Computer Organization and Architecture

Introduction

Chapters (1 + 2)

Course Information I

Textbook		
Title	Computer Organization & Architecture	
Author	W. Stallings	
Publisher	Prentice Hall	
Edition	7 th or 8 th	
ISBN	0-13-185644-8	
References	• Fundamentals of Computer Organization and Architecture,	
	 Mostafa Abd-El-Barr & Hesham El-Rewini, 2005 by John Wiley & Sons, Inc. Computer Systems Architecture, M. M. Mano, Prentice Hall 1992, 2nd edition IBM PC Assembly Language & Programming, Peter Abel, Prentice Hall 5th edition Computer Organization & Design, Patterson & Hennessy, Morgan Kaufman 1998 2nd edition 	
Course Materials	Textbook + Lecture Notes	

Course Information II

Course Contents			
Weeks	Topics	Chapters	
1	Introduction & Computer Evolution	1, 2 + Handout	
2-4	Instruction Sets, Instruction Formats, Addressing Modes, RTL & Micro-operations, RISC, CISC	10, 11, 13 + Mano Ch.4	
5	Computer Arithmetic	9	
6	Processing Unit Design: Computer Function & Interconnection	3 + Handout	
First Exam			
7-10	Introduction to 8086 Assembly Language	Handout	
11, 12	Cache Memory	4	
13	Internal Memory	5	
14	External Memory	6	
15	Input/Output	7 + Handout	
Second Exam			
16	Performance Measure	Handout	
16	Instruction Pipelining	12 + Handout	
Final Exam			

Course Information III

Assessment Policy				
Assessment Type	Expected Due Date	Weight		
First Exam	Week 8	20%		
Second Exam	Week 13	20%		
Final Exam	End of Semester	40%		
Assembly Project	Week 10, Week 15	10%		
Quizzes + Assignments	Random	10%		

Additional Notes		
Late Submission	No late submission for WHs, Projects.	
Exams	Comprehensive exams	
Makeup Exams	No makeup exam	
Drop Date	TBA	
Attendance	Your attendances is very important	
Key to a good grade	Reading the TEXTBOOK and HANDOUT + DOING the PROJECTS	
Participation	Come prepared to ask questions, and ask them. Come	
	prepared to answer questions, and answer them.	

This course is about:

- What computers consist of
- How computers work
- How they are organized internally
- What are the design tradeoffs
- How design affects programming and applications

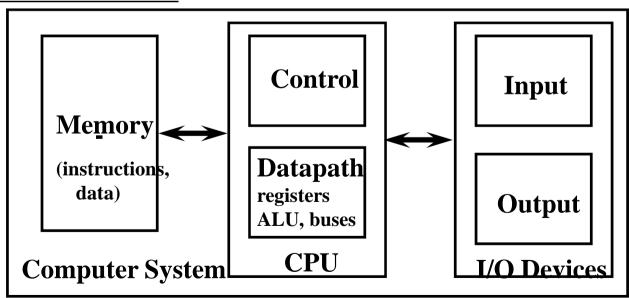
- How to fix computers
- How to build myself one real cheap
- Which one to buy
- Knowing all about the Pentium IV or PowerPC

Architecture & Organization 1

- Architecture is those attributes visible to the programmer
 - Instruction set, number of bits used for data representation, I/O mechanisms, addressing techniques.
 - —e.g. Is there a multiply instruction?
- Organization is how features are implemented
 - Control signals, interfaces, memory technology.
 - —e.g. Is there a hardware multiply unit or is it done by repeated addition?

Architecture & Organization 2

- All Intel x86 family share the same basic architecture
- The IBM System/370 family share the same basic architecture
- This gives code compatibility
 - —At least backwards
- Organization differs between different versions

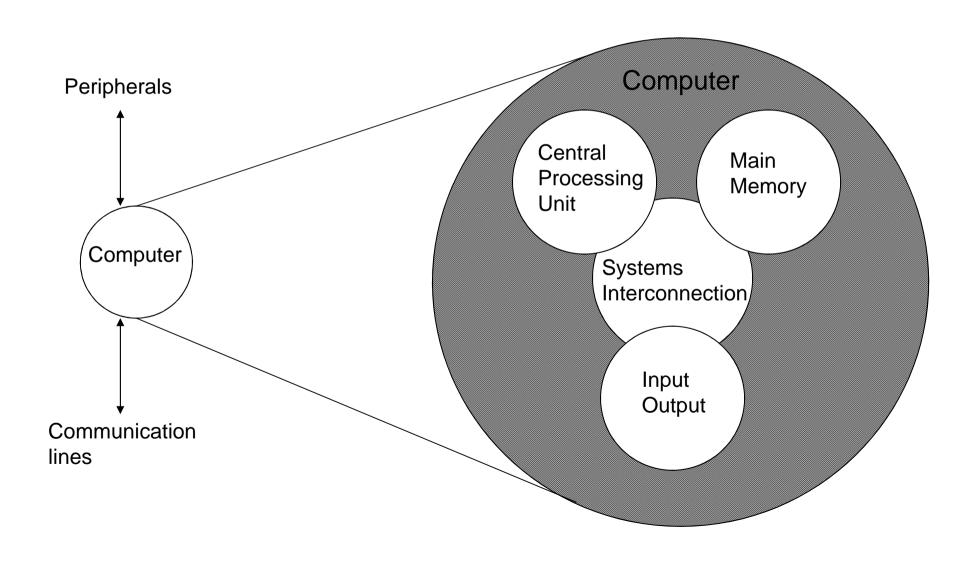

General Purpose Processor/Computer System Generations

Classified according to implementation technology:

- The First Generation, 1946-59: Vacuum Tubes, Relays, Mercury Delay Lines:
 - ENIAC (Electronic Numerical Integrator and Computer): First electronic computer, 18000 vacuum tubes, 1500 relays, 5000 additions/sec (1944).
 - First stored program computer: EDSAC (Electronic Delay Storage Automatic Calculator), 1949.
- The Second Generation, 1959-64: Discrete Transistors.
 - e.g. IBM Main frames
- The Third Generation, 1964-75: Small and Medium-Scale Integrated (MSI) Circuits.
 - e.g Main frames (IBM 360), mini computers (DEC PDP-8, PDP-11).
- The Fourth Generation, 1975-Present: The Microcomputer. VLSI-based Microprocessors (single-chip processor)
 - First microprocessor: Intel's 4-bit 4004 (2300 transistors), 1970.
 - Personal Computer (PCs), laptops, PDAs, servers, clusters ...
 - Reduced Instruction Set Computer (RISC) 1984

The Von Neumann Computer Model

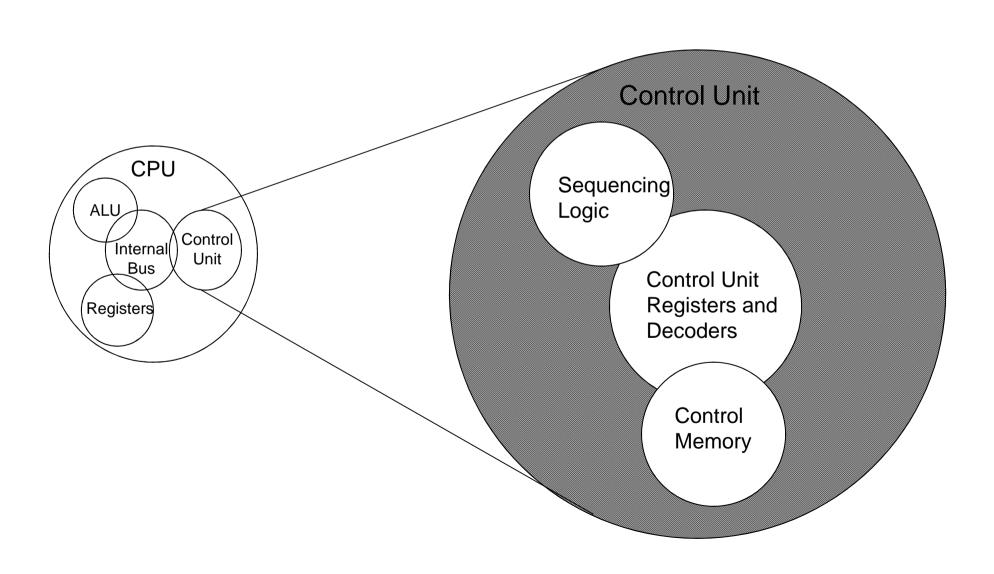
- Partitioning of the computing engine into components:
 - Central Processing Unit (CPU): Control Unit (instruction decode, sequencing of operations), Datapath (registers, arithmetic and logic unit, buses).
 - Memory: Instruction and operand storage.
 - Input/Output (I/O) sub-system: I/O bus, interfaces, devices.
 - The stored program concept: Instructions from an instruction set are fetched from a common memory and executed one at a time



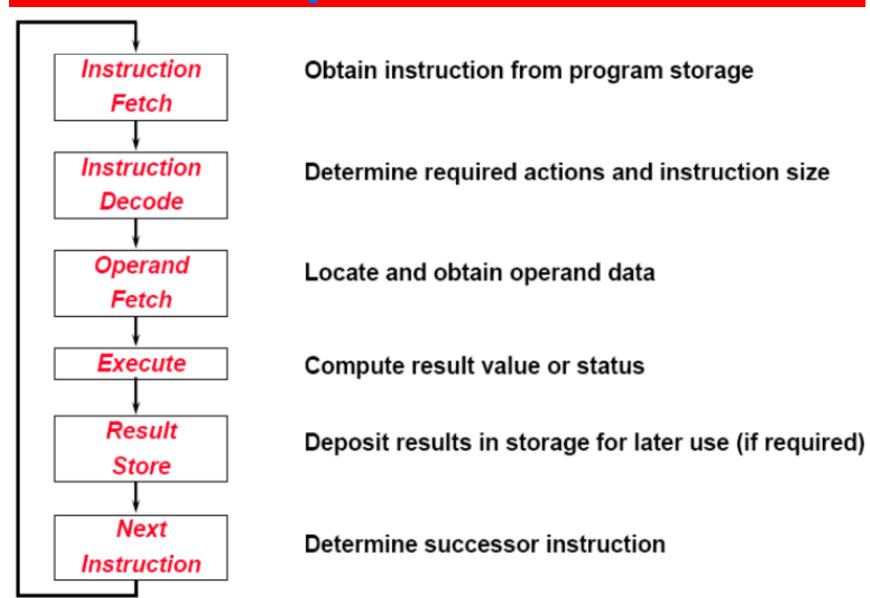
Major CPU Performance Limitation: The Von Neumann computing model implies <u>sequential</u> <u>execution</u> one instruction at a time

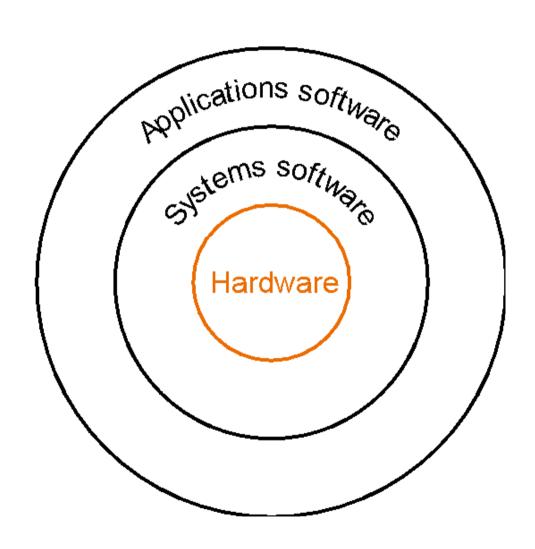
Structure & Function

- Structure is the way in which components relate to each other
- Function is the operation of individual components as part of the structure

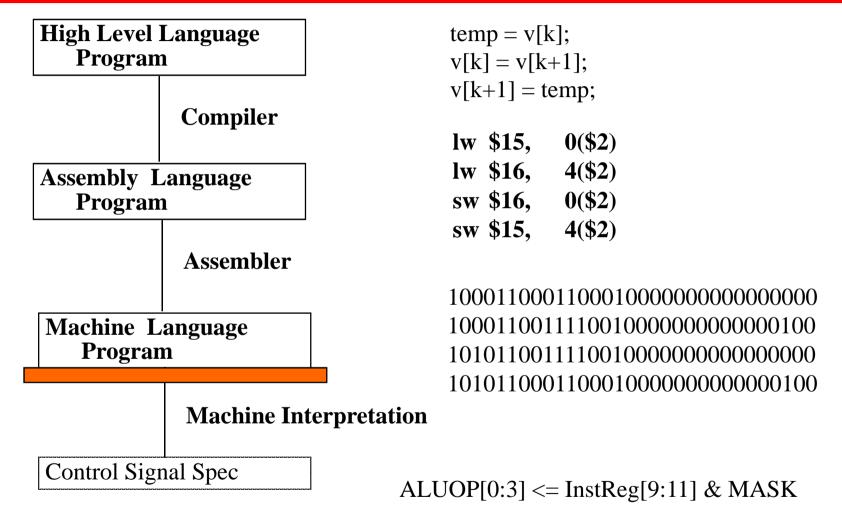

Structure - Top Level

Structure - The CPU


Structure - The Control Unit


Function

- All computer functions are:
 - —Data processing
 - —Data storage
 - -Data movement
 - —Control


Generic CPU Machine Instruction Execution Steps

A Simplified View of The Software/Hardware Hierarchical Layers

How to Speak Computer

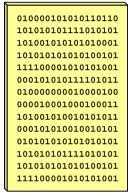
Need translation from application to physics

The Big (Simplified) Picture

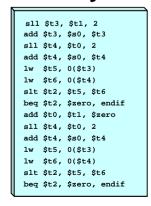
High-level code

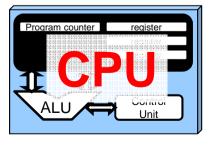
```
char *tmpfilename;
int num_schedulers=0;
int num_request_submitters=0;
int i,j;

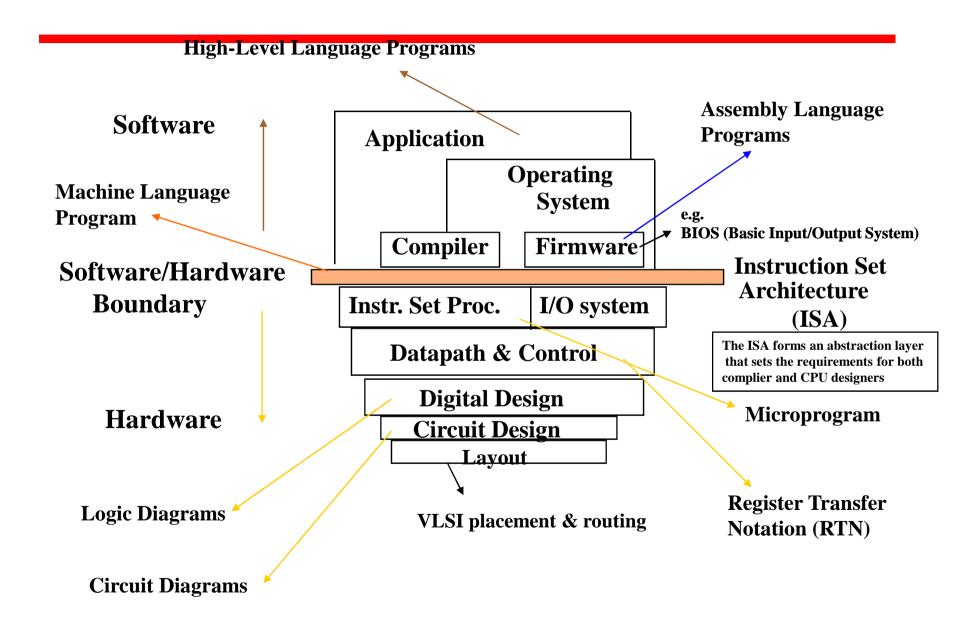
if (!(f = fopen(filename,"r"))) {
    xbt_assert1(0,"Cannot open file %s",filename);
    }


while(fgets(buffer,256,f)) {
    if (!strncmp(buffer,"SCHEDULER",9))
    num_schedulers++;
    if (!strncmp(buffer,"REQUESTSUBMITTER",16))
    num_request_submitters++;
}
fclose(f);
tmpfilename = strdup("/tmp/jobsimulator_
```


Machine code

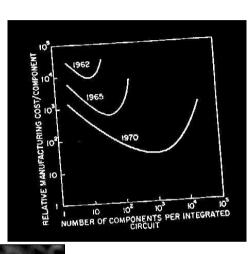


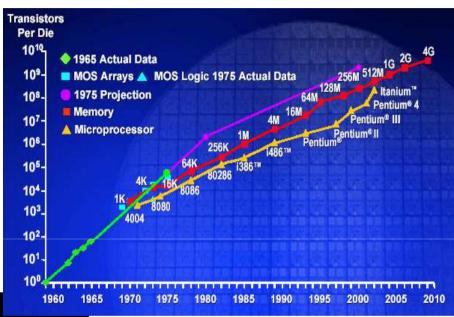




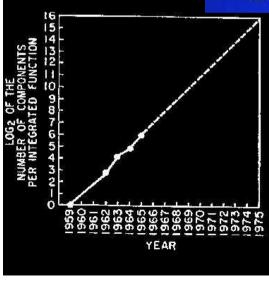
Assembly code

Hierarchy of Computer Architecture


Technology Change


- Technology changes rapidly
 - -HW
 - Vacuum tubes: Electron emitting devices
 - Transistors: On-off switches controlled by electricity
 - Integrated Circuits (IC/ Chips): Combines thousands of transistors
 - Very Large-Scale Integration (VLSI): Combines millions of transistors
 - What next?

-SW

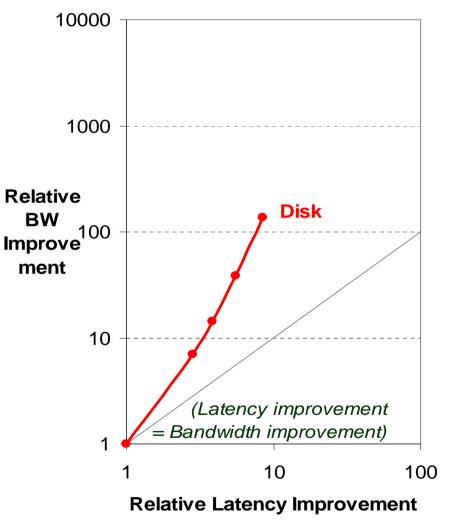

- Machine language: Zeros and ones
- Assembly language: MnemonicsHigh-Level Languages: English-like
- Artificial Intelligence languages: Functions & logic predicates
- Object-Oriented Programming: Objects & operations on objects

Moore's Law: 2X transistors / "year"

Moore's Law

- Increased density of components on chip
- Gordon Moore co-founder of Intel
- Number of transistors on a chip will double every year
- Since 1970's development has slowed a little
 - Number of transistors doubles every 18 months
- Cost of a chip has remained almost unchanged
- Higher packing density means shorter electrical paths, giving higher performance
- Smaller size gives increased flexibility
- Reduced power and cooling requirements
- Fewer interconnections increases reliability

Tracking Technology Performance Trends


- Drill down into 4 technologies:
 - —Disks,
 - -Memory,
 - -Network,
 - —Processors
- Compare for Bandwidth vs. Latency improvements in performance over time
- Bandwidth: number of events per unit time
 - —E.g., M bits / second over network, M bytes / second from disk
- Latency: elapsed time for a single event
 - E.g., one-way network delay in microseconds, average disk access time in milliseconds

Disks: Archaic(Nostalgic) v. Modern(Newfangled)

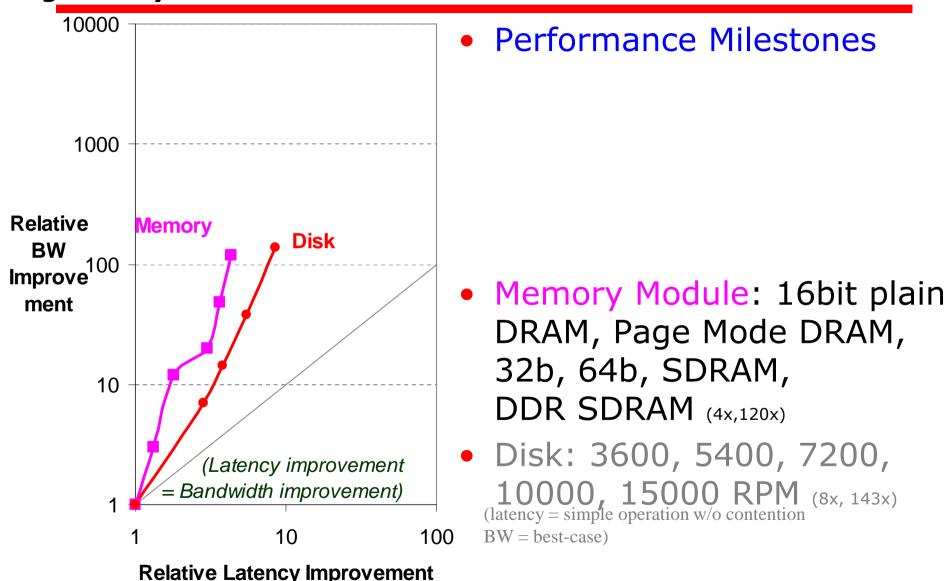
- CDC Wren I, 1983
- 3600 RPM
- 0.03 GBytes capacity
- Tracks/Inch: 800
- Bits/Inch: 9550
- Three 5.25" platters
- Bandwidth:0.6 MBytes/sec
- Latency: 48.3 ms
- Cache: none

- Seagate 373453, 2003
 - 15000 RPM (4X)
- 73.4 GBytes (2500X)
- Tracks/Inch: 64000 (80X)
- Bits/Inch: 533,000 (60X)
- Four 2.5" platters (in 3.5" form factor)
- Bandwidth: 86 MBytes/sec (140X)
- Latency: 5.7 ms (8X)
- Cache: 8 MBytes

Latency Lags Bandwidth (for last ~20 years)

Performance Milestones

Disk: 3600, 5400, 7200,
 10000, 15000 RPM (8x, 143x)


(latency = simple operation w/o contention BW = best-case)

Memory: Archaic (Nostalgic) v. Modern (Newfangled)

- 1980 DRAM (asynchronous)
- 0.06 Mbits/chip
- 64,000 xtors, 35 mm²
- 16-bit data bus per module, 16 pins/chip
- 13 Mbytes/sec
- Latency: 225 ns
- (no block transfer)

- 2000 Double Data Rate Synchr. (clocked) DRAM
- 256.00 Mbits/chip (4000X)
- 256,000,000 xtors, 204 mm²
- 64-bit data bus per
 DIMM, 66 pins/chip (4X)
- 1600 Mbytes/sec (120X)
- Latency: 52 ns (4X)
- Block transfers (page mode)

Latency Lags Bandwidth (last ~20 years)

LANs: Archaic (Nostalgic)v. Modern (Newfangled)

- Ethernet 802.3
- Year of Standard: 1978
- 10 Mbits/s link speed

Coaxial Cable:

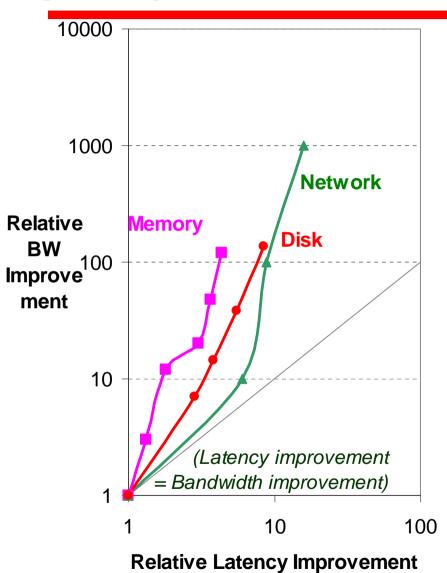
Latency: 3000 μsec

Plastic Covering

Insulator

Copper core

Shared media


Coaxial cable

- Ethernet 802.3ae
- Year of Standard: 2003
- 10,000 Mbits/s (1000X)link speed
- Latency: 190 µsec (15X)
- Switched media
- Category 5 copper wire

"Cat 5" is 4 twisted pairs in bundle Twisted Pair: Braided outer conductor

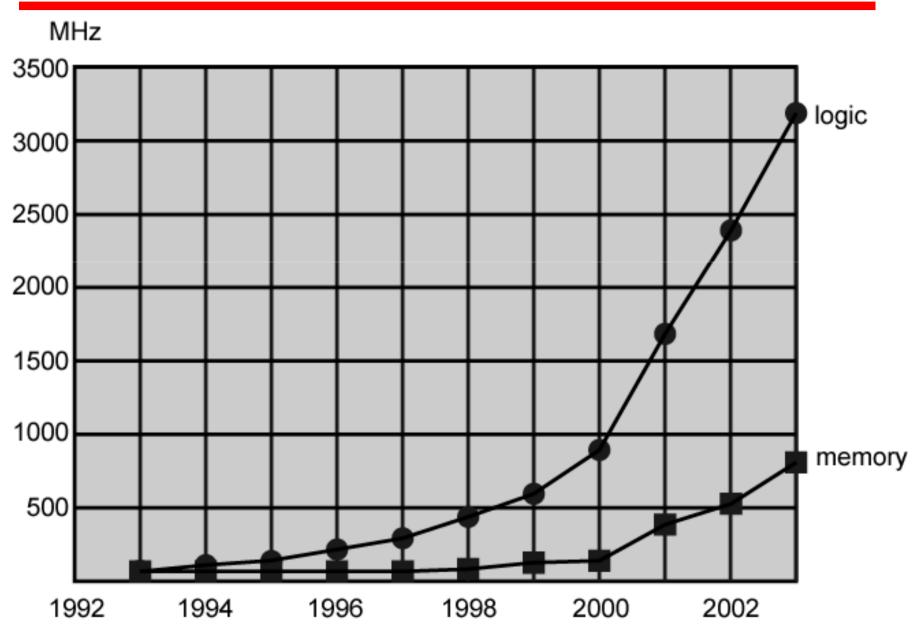
> Copper, 1mm thick, twisted to avoid antenna effect

Latency Lags Bandwidth (last ~20 years)

Performance Milestones

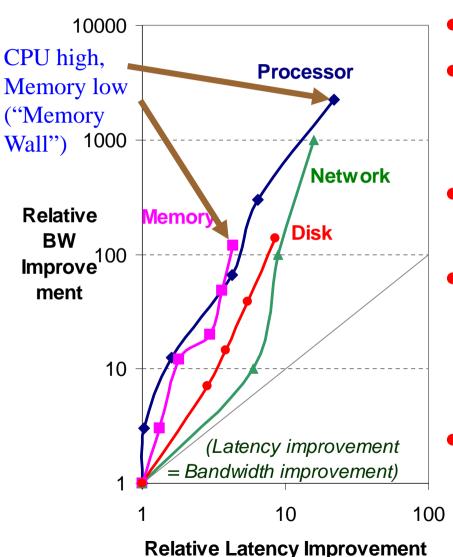
- Ethernet: 10Mb, 100Mb,
 1000Mb, 10000 Mb/s (16x,1000x)
- Memory Module: 16bit plain DRAM, Page Mode DRAM, 32b, 64b, SDRAM, DDR SDRAM (4x,120x)
- Disk: 3600, 5400, 7200,
 10000, 15000 RPM (8x, 143x)

(latency = simple operation w/o contention BW = best-case)


CPUs: Archaic (Nostalgic) v. Modern (Newfangled)

- 1982 Intel 80286
- 12.5 MHz
- 2 MIPS (peak)
- Latency 320 ns
- 134,000 xtors, 47 mm²
- 16-bit data bus, 68 pins
- Microcode interpreter, separate FPU chip
- (no caches)

- 2001 Intel Pentium 4
- 1500 MHz (120X)
- 4500 MIPS (peak) (2250X)
- Latency 15 ns (20X)
- 42,000,000 xtors, 217 mm²
- 64-bit data bus, 423 pins
- 3-way superscalar,
 Dynamic translate to RISC,
 Superpipelined (22 stage),
 Out-of-Order execution
- On-chip 8KB Data caches,
 96KB Instr. Trace cache,
 256KB L2 cache


Logic and Memory Performance Gap

Solutions

- Increase number of bits retrieved at one time
 - —Make DRAM "wider" rather than "deeper"
- Change DRAM interface
 - —Cache
- Reduce frequency of memory access
 - —More complex cache and cache on chip
- Increase interconnection bandwidth
 - —High speed buses
 - —Hierarchy of buses

Latency Lags Bandwidth (last ~20 years)

- Performance Milestones
- Processor: '286, '386, '486, Pentium, Pentium Pro, Pentium 4 (21x,2250x)
- Ethernet: 10Mb, 100Mb,
 1000Mb, 10000 Mb/s (16x,1000x)
- Memory Module: 16bit plain DRAM, Page Mode DRAM, 32b, 64b, SDRAM, DDR SDRAM (4x,120x)
- Disk: 3600, 5400, 7200, 10000, 15000 RPM (8x, 143x)

Rule of Thumb for Latency Lagging BW

 In the time that bandwidth doubles, latency improves by no more than a factor of 1.2 to 1.4

(and capacity improves faster than bandwidth)

Stated alternatively:
 Bandwidth improves by more than the square of the improvement in Latency

Improvements in Chip Organization and Architecture

- Increase hardware speed of processor
 - Fundamentally due to shrinking logic gate size
 - More gates, packed more tightly, increasing clock rate
 - Propagation time for signals reduced
- Increase size and speed of caches
 - Dedicating part of processor chip
 - Cache access times drop significantly
- Change processor organization and architecture
 - Increase effective speed of execution
 - —Parallelism

Major Points

- What are the basic components of a general purpose processor?
- What are the basic components of a CPU?
- What is an instruction?
- What are the main parameters affecting performance?
- Look at the review questions at the end of Chapter 2