Computer Organization

Instruction Set Characteristics,
Instruction Formats, Addressing
Modes, RTL & Micro-Operations, CISC,
RISC.

Chapters (10 + 11 + Mano Ch.4 + 13)

The Von Neumann Computer Model

e Partitioning of the computing engine into components:
— Central Processing Unit (CPU): Control Unit (instruction
decode , sequencing of operations), Datapath (registers,

arithmetic and logic unit, buses).
— Memory: Instruction and operand storage.

— Input/Output (I/0) sub-system: I/O bus, interfaces,

devices.

— The stored program concept: Instructions from an
instruction set are fetched from a common memory and
executed one at a time

Control Input
Memory| - >
(instructionf, Datapath
data) registers
ALU, buses Output
Computer Systeml___CPU 1/0 Devicesl

Major CPU Performance Limitation: The Von Neumann computing model implies sequential
execution oneinstruction at atime

Hierarchy of Computer Architecture

High-L evel Language Programs

Softwar e

M achine Language
Program

Softwar e/Har dwar e

Boundary

Hardware

L ogic Diagrams

Circuit Diagrams

A

»

Application

Assembly Language
Programs

Operating
System

- : v BIOS (Basic | nput/Output System)
| Compiler | | Flrmwarg|’ _
| nstruction Set

Architecture
| Instr. Set Proc. ‘ /O system \ (1SA)

Datapath & Controi

ThelSA formsan abstraction layer

that setstherequirementsfor both

Digita] D&ign

Circuit Design

l ayout

VLSl placement & routing

complier and CPU designers

Microprogram

Register Transfer
Notation (RTN)

How to Speak Computer

High Level Language temp = v[K];
Program V[K] = v[k+1];
v[k+1] = temp;
Compiler
lw $15, 0($2)
Assembly Language lw 316, 4(32)
Program sw $16, 0(%$2)
sw $15, 4(%$2)
Assembler
1000110001100010000000000000000
M achine Language 1000110011110010000000000000100
Program 1010110011110010000000000000000

1010110001100010000000000000100
Machine | nter pretation

Control Signal Spec

ALUOP[0:3] <= IngtReg[9:11] & MASK

Need translation from application to physics

Generic CPU Machine Instruction
Execution Steps

i

Instruction Obtain instruction from program storage
Fetch

!

Instruction Determine required actions and instruction size
Decode

!

Operand Locate and obtain operand data
Fetch

y

Execute Compute result value or status

k|

Result
Store

l

Next

Instruction
|

Deposit results in storage for later use (if required)

Determine successor instruction

Computing Element Choices

General Purpose Processors (GPPs): Intended for general

RLROSe.COmPULINg.deskions SetMELS mClUSLOLS)

Application-Specific Processors (ASPs): Processors with ISAs
and architectural features tailored towards specific application
domains

— E.g Digital Signal Processors (DSPs), Network Processors (NPs), Media

Processors, Graphics Processing Units (GPUs), Vector Processors??? ...

Co-Processors: A hardware (hardwired) implementation of
specific algorithms with limited programming interface (augment
GPPs or ASPs)

Configurable Hardware:
— Field Programmable Gate Arrays (FPGAS)
— Configurable array of simple processing elements

Application Specific Integrated Circuits (ASICs): A custom VLSI
hardware solution for a specific computational task

The choice of one or more depends on a number of factors
including:

- Type and complexity of computational algorithm

(general purpose vs. Specialized)

- Desired level of flexibility/ - Performance requirements
programmability
- Development cost/time - System cost 6

- Power reauirements - Real-time constrains

Instruction Set Characteristics

Chapter 10

Instruction Set Architecture (ISA)

e Complete set of instructions used by a machine

e Abstract interface between the HW and lowest-
level SW.

e An ISA includes the following ...

— Instructions and Instruction Formats
- Data Types, Encodings, and Representations
- Programmable Storage: Registers and Memory
— Addressing Modes: to address Instructions and Data
- Handling Exceptional Conditions (like division by zero)

o Examples(Versions) First Introduced in
— Intel (8086, 80386, Pentium, ...) 1978
—MIPS (MIPS I, II, III, 1V, V) 1986
— PowerPC (601, 604, ...) 1993

The Instruction Set Architecture

e ISA is considered part of the SW
e Must be designed to survive changes in
hardware technology, software

technology, and application characteristic.

—Is the agreed-upon interface between all the
software that runs on the machine and the
hardware that executes it.

e Advantages:

—Different implementations of the same
architecture

—Easier to change than HW

—Standardizes instructions, machine language
bit patterns, etc.

e Disadvantage:
—Sometimes prevents using new innovations

Instruction Set Architecture:
Critical Interface

software

1 B O B S S S S S A N S N S S S S I S S S S~ A A I S A S S S S S S S S S A S S S S S N S A S S S S S S S S S S S S S B B B

hardware

e Properties of a good abstraction
— Lasts through many generations (portability)
— Used in many different ways (generality)
— Provides convenient functionality to higher levels
— Permits an efficient implementation at lower levels

Elements of an Instruction

e Operation code (Op code)
—Specify the operation (e.g., ADD, I/0)
e Source Operand reference
—OQOperands that are input to the operation.

e Result Operand reference
—Put the answer here

e Next Instruction Reference

—Tells the processor where to fetch the next
instruction

Instruction Representation

e In machine code each instruction has a
unique bit pattern

e For human consumption (well,
programmers anyway) a symbolic
representation is used

—e.g. ADD, SUB, LOAD

e Operands can also be represented in this
way
—ADD A,B

Simple Instruction Format

4 bits

6 bits

6 bits

Opcode

Operand Reference

Operand Reference

16 bits

>

Where have all the Operands Gone?
Where is the next instruction to be fetched?

e Main memory (or virtual memory or
cache)

e CPU register

e I/O device

Typical Instructions

Data Movement Load (from memory) Store (to memory)
memory-to-memory move register-to-register move
input (from /O device) output (to /0 device)
push, pop (to/from stack)

Arithmetic Data Types: (signed & unsigned) Integer (binary + decimal)

(signed & unsigned) Floating Point Numbers
Operations: Add, Subtract, Multiply, Divide
Logical Not, and, or, set, clear
Shift Arithmetic (& Logical) shift (left/right), rotate (left/right)

Control (Jump/Branch)

unconditional, conditional

Subroutine Linkage

call, return

Interrupt

trap, return

Synchronisation

test & set (atomic r-m-w)

String

search, compare, translate

Types of Operation

Shift and Rotate Operations
CTTTT T ———TT9

{a) Logical right shifi

R e N T W T e T e T ek

- . .

(b} Logical lefi shifi

e Wl Vel 1 Pl Y
s - . -

{c) Arithmetic right shifli

R S Y Y [.

s - = &

{d} Arithmetic lefl shift

P Va1 a1
- - -

{e) Right motate

BT T T T N "

- . .

{f) Lefi Totate

Types of Operation

e Input/Output
—May be specific instructions

—May be done using data movement
instructions (memory mapped)

—May be done by a separate controller (DMA)

e Systems Control
—For operating systems use

Transfer of Control

e Branch

—e.g. BRZ X branch to x if result of (ADD,SUB,...) is zero
— Uses condition bits register
— See next slide

o Skip
—e.g. increment and skip if zero ISZ
301

309 ISZ Ri
310 BR 301

311
* eg. Rlis set to -1000, the loop will be executed 1000 times

e Subroutine call
—c.f. interrupt call

Branch Instruction

Uncond itional
Branch

Memory
Address

200
201
— 202
203

210
211

Instruction

SUB X, Y

BRZ 211

Conditional
Branch

Conditonal
Branch

Procedure Calls Instructions

e Computer program that is incorporated
with larger program.

e At any point in the program the procedure
may be invoked, or

e When the procedure is executed, return to
the point at which the call took place.

e Advantages:

—Economy:
+The same piece of Code can be used many times-
efficient use of storage space in the system
—Modularity

+ Allow large programming tasks to be divided into
smaller units which eases the programming
task

Procedure Calls Instructions

Addresses
4{WH}

411K}
4101

45(H)

6}
4601

4051
4651

45}

Main memory

CALL Procl

CALL Procl

CALL Procl

RETURN

RETURN

Main
pPrisEram

Procedure
Procl

Procedure
Froc2

E 3

Procedure Calls Instructions

e Involves two basic instructions
—Call: branch to the procedure location

—Return: from the procedure to the place from
which it was called

e Stack can be used to store the return
address.

Use of Stack

-

(a) Imdtal stock

hlehls

4101

-

(b After
CALL Frocl

4601

4101

4101

L]

() Imitial

CALL Proc?

() Alfter
KETLU KM

4651

4101

-

4101

L]

() Afler

CALL Proc}

-

(I After
HETLIHKM

iz Alter
HETLUKN

Types of Operand

e Addresses

e Numbers
—Integer/floating point

e Characters
—ASCII (IRA) etc.

e Logical Data
—Bits or flags

Number of Addresses in Instruction

e 3 addresses

—OQOperand 1, Operand 2, Result
—ADD a,b,c (a=b+c;)

Insiruction Conumend

SUB Y.A.H T—A—B
MPY T,DE T—DxE
ADD T.T,C T+T+LC
oy Y. Y. T Y e Y =T

Number of Addresses

e 2 addresses
— One address doubles as operand and result
— ADD a,c (a=a+Db)
— Reduces length of instruction

— Requires some extra work
— Temporary storage to hold some results

Instruction Comument
MOVE Y. A Y — A
SUB Y.B Y+~—¥Y —BR
MOVE T, D T+« D
MPY T.E T4+T X E
ADDy T.C T4 T+
DEY ¥.T Y=Y =+T

Number of Addresses

e 1 address
— Implicit second address
— Usually a register (accumulator)
—ADD B (AC = AC + B)
— Common on early machines

Instruction Comment
LOALID D AC+— D

MPY E AC &= AC x E
ADD C AC+—ANC + C
STOR Y Y +— AC
LOAD A AC — A

SUR B AC«— AC — B
DY Y AC+—AC =Y
STOR Y Y &= AC

Number of Addresses

e 0 (zero) addresses

—Applicable to a special memory organization
called Stack

—Stack is known location

—Often at least the top two stack elements are
INn processor registers
- ADD
— All addresses implicit

Number of Addresses

e 4 addresses

—OQOperand 1, Operand 2, Result, and next
Instruction

—Not common
—Needs very long words to hold everything

Number of Addresses

Number of Addresses symbaolic Representation Interpretation
3 OF A B C A«—BOPC
2 OP A B A—AOPB
1 OF A AC+—ACOPA
I Op T+ (T—-1)OPT

How Many Addresses

e More addresses
—More complex (powerful?) instructions

—More registers
— Inter-register operations are quicker

—Fewer instructions per program
e Fewer addresses
—Less complex (powerful?) instructions

—More instructions per program
—Faster fetch/execution of instructions

e Most processor designs involve a variety
of instruction formats.

Fundamental Issues in Instruction Set Design

e Operation repertoire
— How many ops?
— What can they do?
— How complex are they?

e Data types
— The data type that the processor can deal with

— E.qg., Pentium can deal wit data types of:
- Byte, 8 bits
- Word, 16 bits
— Doubleword, 32 bits
— Quadword, 64 bits
— Other data type...

e Instruction formats
— Length of op code field
— Number of addresses

Fundamental Issues in Instruction Set Design

e Registers
—Number of CPU registers available

—Which operations can be performed on which
registers?

e Addressing modes (later...)

e RISC v CISC

Types of Operand

e Addresses

e Numbers
—Integer/floating point

e Characters
—ASCII etc.

e Logical Data
—Bits or flags

Where have all the Operands Gone?
Where is the next instruction to be fetched?

e Main memory (or virtual memory or
cache)

e CPU register

e I/O device

Code Example

e In a CPU with registers sO — s4, interpret
the following code:

mov sO, 5
mov si, -3
mul s2, s1, sO
mul s0O, sO
mul s1, sl
sub s1, sO
add s2, sl

Summary points

e What is an instruction set architecture
(ISA)?

e What are the instruction types?

e What are the basic components of an
Instruction?

e What is the stack?

