
Computer Organization

Instruction Set Characteristics,

Instruction Formats, Addressing

Modes, RTL & Micro-Operations, CISC,

RISC.

Chapters (10 + 11 + Mano Ch.4 + 13)

1

The Von Neumann Computer Model

• Partitioning of the computing engine into components:
— Central Processing Unit (CPU): Control Unit (instruction

decode , sequencing of operations), Datapath (registers,
arithmetic and logic unit, buses).

— Memory: Instruction and operand storage.
— Input/Output (I/O) sub-system: I/O bus, interfaces,

devices.
— The stored program concept: Instructions from an

instruction set are fetched from a common memory and
executed one at a time

-Memory

(instructions,
data)

Control

Datapath
registers
ALU, buses

CPUComputer System

Input

Output

I/O Devices

Major CPU Performance Limitation: The Von Neumann computing model implies Neumann computing model implies sequential sequential
executionexecution one instruction at a timeone instruction at a time

Hierarchy of Computer ArchitectureHierarchy of Computer Architecture

I/O systemInstr. Set Proc.

Compiler

Operating
System

Application

Digital Design
Circuit Design

Instruction Set
Architecture

Firmware

Datapath & Control

Layout

Software

Hardware

Software/Hardware
Boundary

High-Level Language Programs

Assembly Language
Programs

Microprogram

Register Transfer
Notation (RTN)

Logic Diagrams

Circuit Diagrams

Machine Language
Program e.g.

BIOS (Basic Input/Output System)
e.g.
BIOS (Basic Input/Output System)

VLSI placement & routing

(ISA)
The ISA forms an abstraction layer
that sets the requirements for both

complier and CPU designers

How to Speak Computer

High Level Language
Program

Assembly Language
Program

Compiler
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Control Signal Spec

Machine Interpretation

ALUOP[0:3] <= InstReg[9:11] & MASK

Machine Language
Program

Assembler

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

Need translation from application to physics

5

Generic CPU Machine Instruction

Execution Steps

6

Computing Element Choices
• General Purpose Processors (GPPs): Intended for general

purpose computing (desktops, servers, clusters..)

• Application-Specific Processors (ASPs): Processors with ISAs
and architectural features tailored towards specific application
domains
— E.g Digital Signal Processors (DSPs), Network Processors (NPs), Media

Processors, Graphics Processing Units (GPUs), Vector Processors??? ...

• Co-Processors: A hardware (hardwired) implementation of
specific algorithms with limited programming interface (augment
GPPs or ASPs)

• Configurable Hardware:
— Field Programmable Gate Arrays (FPGAs)

— Configurable array of simple processing elements

• Application Specific Integrated Circuits (ASICs): A custom VLSI
hardware solution for a specific computational task

• The choice of one or more depends on a number of factors
including:

- Type and complexity of computational algorithm

(general purpose vs. Specialized)
- Desired level of flexibility/ - Performance requirements

programmability
- Development cost/time - System cost
- Power requirements - Real-time constrains

Instruction Set Characteristics

Chapter 10

7

• Complete set of instructions used by a machine

• Abstract interface between the HW and lowest-
level SW.

• An ISA includes the following …

—Instructions and Instruction Formats

– Data Types, Encodings, and Representations

– Programmable Storage: Registers and Memory

– Addressing Modes: to address Instructions and Data

– Handling Exceptional Conditions (like division by zero)

• Examples(Versions) First Introduced in

—Intel (8086, 80386, Pentium, ...) 1978

—MIPS (MIPS I, II, III, IV, V) 1986

—PowerPC (601, 604, …) 1993

Instruction Set Architecture (ISA)

The Instruction Set Architecture

• ISA is considered part of the SW
• Must be designed to survive changes in

hardware technology, software
technology, and application characteristic.
—Is the agreed-upon interface between all the

software that runs on the machine and the
hardware that executes it.

• Advantages:
—Different implementations of the same

architecture
—Easier to change than HW
—Standardizes instructions, machine language

bit patterns, etc.

• Disadvantage:
—Sometimes prevents using new innovations

Instruction Set Architecture:

Critical Interface

• Properties of a good abstraction
— Lasts through many generations (portability)
— Used in many different ways (generality)
— Provides convenient functionality to higher levels
— Permits an efficient implementation at lower levels

instruction set

software

hardware

Elements of an Instruction

• Operation code (Op code)

—Specify the operation (e.g., ADD, I/O)

• Source Operand reference

—Operands that are input to the operation.

• Result Operand reference

—Put the answer here

• Next Instruction Reference

—Tells the processor where to fetch the next
instruction

Instruction Representation

• In machine code each instruction has a
unique bit pattern

• For human consumption (well,
programmers anyway) a symbolic
representation is used

—e.g. ADD, SUB, LOAD

• Operands can also be represented in this
way

—ADD A,B

Simple Instruction Format

Where have all the Operands Gone?

Where is the next instruction to be fetched?

• Main memory (or virtual memory or
cache)

• CPU register

• I/O device

Typical Instructions

Types of Operation

Shift and Rotate Operations

Types of Operation

• Input/Output

—May be specific instructions

—May be done using data movement
instructions (memory mapped)

—May be done by a separate controller (DMA)

• Systems Control

—For operating systems use

Transfer of Control

• Branch
—e.g. BRZ X branch to x if result of (ADD,SUB,…) is zero

—Uses condition bits register

—See next slide

• Skip
—e.g. increment and skip if zero ISZ

301
.

.

309 ISZ R1

310 BR 301

311

* eg. R1is set to -1000, the loop will be executed 1000 times

• Subroutine call
—c.f. interrupt call

Branch Instruction

Procedure Calls Instructions

• Computer program that is incorporated
with larger program.

• At any point in the program the procedure
may be invoked, or called

• When the procedure is executed, return to
the point at which the call took place.

• Advantages:

—Economy:

+The same piece of Code can be used many times-
efficient use of storage space in the system

—Modularity

+Allow large programming tasks to be divided into
smaller units which eases the programming
task

Procedure Calls Instructions

Procedure Calls Instructions

• Involves two basic instructions

—Call: branch to the procedure location

—Return: from the procedure to the place from
which it was called

• Stack can be used to store the return
address.

Use of Stack

Types of Operand

• Addresses

• Numbers

—Integer/floating point

• Characters

—ASCII (IRA) etc.

• Logical Data

—Bits or flags

Number of Addresses in Instruction

• 3 addresses

—Operand 1, Operand 2, Result

—ADD a,b,c (a = b + c;)

Number of Addresses

• 2 addresses

—One address doubles as operand and result

— ADD a,c (a = a + b)

—Reduces length of instruction

—Requires some extra work

– Temporary storage to hold some results

Number of Addresses

• 1 address
—Implicit second address
—Usually a register (accumulator)
—ADD B (AC = AC + B)
—Common on early machines

Number of Addresses

• 0 (zero) addresses

—Applicable to a special memory organization
called Stack

—Stack is known location

—Often at least the top two stack elements are
in processor registers

– ADD

– All addresses implicit

Number of Addresses

• 4 addresses

—Operand 1, Operand 2, Result, and next
instruction

—Not common

—Needs very long words to hold everything

Number of Addresses

How Many Addresses

• More addresses

—More complex (powerful?) instructions

—More registers

– Inter-register operations are quicker

—Fewer instructions per program

• Fewer addresses

—Less complex (powerful?) instructions

—More instructions per program

—Faster fetch/execution of instructions

• Most processor designs involve a variety
of instruction formats.

Fundamental Issues in Instruction Set Design

• Operation repertoire

—How many ops?

—What can they do?

—How complex are they?

• Data types

—The data type that the processor can deal with

—E.g., Pentium can deal wit data types of:

– Byte, 8 bits

– Word, 16 bits

– Doubleword, 32 bits

– Quadword, 64 bits

– Other data type…

• Instruction formats

—Length of op code field

—Number of addresses

Fundamental Issues in Instruction Set Design

• Registers

—Number of CPU registers available

—Which operations can be performed on which
registers?

• Addressing modes (later…)

• RISC v CISC

Types of Operand

• Addresses

• Numbers

—Integer/floating point

• Characters

—ASCII etc.

• Logical Data

—Bits or flags

Where have all the Operands Gone?

Where is the next instruction to be fetched?

• Main memory (or virtual memory or
cache)

• CPU register

• I/O device

Code Example

• In a CPU with registers s0 – s4, interpret
the following code:

mov s0, 5

mov s1, -3

mul s2, s1, s0

mul s0, s0

mul s1, s1

sub s1, s0

add s2, s1

Summary points

• What is an instruction set architecture
(ISA)?

• What are the instruction types?

• What are the basic components of an
instruction?

• What is the stack?

