Computer Organization

Instruction Set Characteristics,
Instruction Formats, Addressing
Modes, RTL & Micro-Operations, CISC,
RISC.

Chapters (10 + 11 + Mano Ch.4 + 13)

Typical Instructions

Data Movement

Load (from memory) Store (to memory)
memory-to-memory move register-to-register move
input (from /O device) output (to I/O device)

push, pop (to/from stack)

Arithmetic Data Types: (signed & unsigned) Integer (binary + decimal)
(signed & unsigned) Floating Point Numbers
Operations: Add, Subtract, Multiply, Divide
Logical Not, and, or, set, clear
Shift Arithmetic (& Logical) shift (left/right), rotate (left/right)

Control (Jump/Branch)

unconditional, conditional

Subroutine Linkage

call, return

Interrupt

trap, return

Synchronisation

test & set (atomic r-m-w)

String

search, compare, translate

Interpret the Assembly code:

loop:

finish:

mov al, 10
mov t0, O

BREQ al, O, finish
add t0, a0

sub al, 1

BR loop

add t0, t0, 100
add vO, t0, O

Convert the C code to Assembly

a =38
b=2
c=4
rO =20

for(i=0;i<a; i++){
rO +=1i*b + c

»

Addressing Modes

Chapter 11

Types of Operand

o Addresses
e Numbers
—Integer/floating point

e Characters
—ASCII etc.

e Logical Data
—Bits or flags

Memory Locations and Operations

e The (main) memory can be modeled as an
array of millions of adjacent cells, each
capable of storing a binary digit (bit),
having value of 1 or O.

e These cells are organized in the form of
groups of fixed number, say n, of cells
that can be dealt with as an atomic entity.

An entity consisting of 8-bit is called a
byte.

e The entity consisting of n-bit that can be
stored and retrieved in and out of the
memory using one basic memory
operation is called a word.

Memory Locations and Operations

e In order to be able to move a word in and
out of the memory, a distinct address has
to be assigned to each word.

e This address will be used to determine the
location in the memory in which a given
word is to be stored. This is called a
memory write operation.

e Similarly, the address will be used to
determine the memory location from
which a word is to be retrieved from the
memory. This is called a memory read
operation.

Registers and Operations

CPU must have some working space (temporary
storage) Called registers

Number and function vary between processor
designs

Top level of memory hierarchy

User Visible Registers

— Data register

— Address register

In order to be able to move a word in and
out of the Register, a distinct address or
register number has to be assigned.

This address will be used to determine the
specific register in which a given word is
to be stored or read.

Addressing Modes

e Immediate

e Direct

e Indirect

e Register

o Register Indirect

e Displacement (Indexed)
e Stack

Immediate Addressing

e Operand is part of instruction
e Operand = address field

e e.g. ADD 5

— Add 5 to contents of accumulator
— 5 is operand

Opcode Operand

No memory reference to fetch data
Fast
Limited range

The use of immediate addressing leads to poor

programming ractice. This is because a change
In the value of an operand requires a change in

every instruction that uses the immediate value
of such operand.

Direct Addressing

e Address field contains address of operand
o Effective address (EA) = address field (A)

e e.g. ADD A

—Add contents of cell A to accumulator
—Look in memory at address A for operand

e Single memory reference to access data

e No additional calculations to work out
effective address

e Limited address space

Direct Addressing Diagram

|nstruction
Opcode AddressA

Memory

Operand

Indirect Addressing (1)

e Memory cell pointed to by address field
contains the address of (pointer to) the
operand

e EA = (A)

—Look in A, find address (A) and look there for
operand

e e.g. ADD (A)

—Add contents of cell pointed to by contents of
A to accumulator

Indirect Addressing (2)

e Large address space
e 2" where n = word length

e May be nested, multilevel, cascaded
—e.g. EA = (((A)))

— Draw the diagram yourself
e Multiple memory accesses to find operand

e Hence slower

Indirect Addressing Diagram

| nstruction

Opcode

AddressA

Memory

" Pointer to operand

Operand

Register Addressing (1)

e Operand is held in register named in
address filed

e EA=R

e Limited number of registers

e Very small address field needed
—Shorter instructions
—Faster instruction fetch

Register Addressing (2)

e No memory access
e Very fast execution
e Very limited address space

e Multiple registers helps performance

—Requires good assembly programming or
compiler writing

—C programming
- register int a;

e Direct addressing

Register Addressing Diagram

| nstruction

Opcode

Register Address R

Registers

Operand

Register Indirect Addressing

e C.f. indirect addressing

e EA = (R)

e Operand is in memory cell pointed to by
contents of register R

e Large address space (2")

e One fewer memory access than indirect
addressing

Register Indirect Addressing Diagram

| nstruction

Opcode| Register Address R

Memory

Registers

" Pointer to Operand " Operand

Displacement Addressing

e EA=A+ (R)
e Address field hold two values
—A = base value

—R = register that holds displacement
—Or vice versa

Displacement Addressing Diagram

| nstruction

OpcodeRegister R

AddressA

Registers

" Pointer to Operand

Memory

Operand

Relative Addressing

e A version of displacement addressing
e R = Program counter, PC
e EA=A + (PC)

e i.e. get operand from A cells from current
location pointed to by PC

e |ocality of reference & cache usage

Base-Register Addressing

e A holds displacement

e R holds pointer to base address
e R may be explicit or implicit

e e.g. segment registers in 80x86

Indexed Addressing

e A = base

e R = displacement

e EA=A+R

e Good for accessing arrays
—EA=A+R
—R++

Combinations

e Postindex
e EA = (A) + (R)

e Preindex
e EA = (A+(R))

Stack Addressing

e Operand is (implicitly) on top of stack
° e.g.

—ADD Pop top two items from stack
and add

