
Computer Organization

Instruction Set Characteristics,

Instruction Formats, Addressing

Modes, RTL & Micro-Operations, CISC,

RISC.

Chapters (10 + 11 + Mano Ch.4 + 13)

1

Infix & Postfix Representations

• Infix notation

— c = a + b

— c = a - b

• Postfix notation

— a b +

— a b -

Machine Instructions

• What is an Instruction?

• What are the instruction components?

Instruction Operands

• What is an Operand?

• Where are the Operands found?

• How the CPU Find the Operands?

Typical Instructions

Instruction Types

• Load, Store, Move, Input, Output

• Add, Sub, Mul, Div

• NOT, AND, OR, Set, Clear

• Shift Left (Logical/Arithmetic), Shift Right
(Logical/Arithmetic).

• Jump, Branch

• Call, Return

Number of Addresses (Operands)

• 0 – Addresses (Operands)

• 1 – Address (Operands)

• 2 – Addresses (Operands)

• 3 – Addresses (Operands)

How many Operand (Address) an Instruction

Need? (Maximum)

• Load, Store, Move, Input, Output

• Add, Sub, Mul, Div

• NOT, AND, OR, Set, Clear

• Shift Left (Logical/Arithmetic), Shift Right
(Logical/Arithmetic).

• Jump, Branch

• Call, Return

Addresses Mode

• An Address Tells Us Where the Data to be
Processed Exists?

• So where it is possible to find the Data?

—Given Directly: Immediate Addressing Mode

—In CPU Register: Register Addressing Mode

—In Memory:

– Direct Addressing Mode

– Indirect Addressing Mode

– Stack Addressing

– Register Indirect Addressing Mode

– Displacement Addressing Mode

Direct Addressing Diagram

Address AOpcode

Instruction

Memory

Operand

Indirect Addressing Diagram

Address AOpcode

Instruction

Memory

Operand

Pointer to operand

Register Indirect Addressing Diagram

Register Address ROpcode

Instruction

Memory

OperandPointer to Operand

Registers

Displacement Addressing Diagram

Register ROpcode

Instruction

Memory

OperandPointer to Operand

Registers

Address A

+

Displacement Addressing Types

• Relative Addressing

• Base-Register Addressing

• Indexed Addressing

Combinations

• Postindex

• EA = (A) + (R)

• Preindex

• EA = (A+(R))

move r0, 10
move r1, 0
move r2, 0

L1:
BRE r1, r0, Exit
shl r3, r1, 1
add r2, r2, r3
add r1, r1, 1
BR L1

Exit:
Load r4, (r2)
store r4, 8(r2)

Homework

1. For the following data structures, draw the big-endian and
little-endian layouts

a. struct {

double i; //0x1112131415161718

};

b. struct {

int i; //0x11121314

int j; //0x15161718

};

c. struct {

short i; //0x1112

short j; //0x1314

short k; //0x1516

short l; //0x1718

};

Homework

• Convert the expression A + B - C to
postfix notation.

• Show the steps involved. Is the result
equivalent to (A + B) - C or A + (B – C) ?

• Does it matter?

