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Infix & Postfix Representations

• Infix notation

— c = a + b

— c = a - b

• Postfix notation

— a b + 

— a b -



Machine Instructions

• What is an Instruction? 

• What are the instruction components?



Instruction Operands

• What is an Operand?

• Where are the Operands found?

• How the CPU Find the Operands?



Typical Instructions



Instruction Types

• Load, Store, Move, Input, Output

• Add, Sub, Mul, Div

• NOT, AND, OR, Set, Clear

• Shift Left (Logical/Arithmetic), Shift Right 
(Logical/Arithmetic).

• Jump, Branch

• Call, Return



Number of Addresses (Operands)

• 0 – Addresses (Operands)

• 1 – Address (Operands)

• 2 – Addresses (Operands)

• 3 – Addresses (Operands)



How many Operand (Address) an Instruction 

Need? (Maximum)

• Load, Store, Move, Input, Output

• Add, Sub, Mul, Div

• NOT, AND, OR, Set, Clear

• Shift Left (Logical/Arithmetic), Shift Right 
(Logical/Arithmetic).

• Jump, Branch

• Call, Return



Addresses Mode

• An Address Tells Us Where the Data to be 
Processed Exists?

• So where it is possible to find the Data?

—Given Directly: Immediate Addressing Mode

—In CPU Register: Register Addressing Mode

—In Memory:

– Direct Addressing Mode

– Indirect Addressing Mode

– Stack Addressing

– Register Indirect Addressing Mode

– Displacement Addressing Mode



Direct Addressing Diagram
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Indirect Addressing Diagram
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Register Indirect Addressing Diagram
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Displacement Addressing Diagram
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Displacement Addressing Types

• Relative Addressing

• Base-Register Addressing

• Indexed Addressing



Combinations

• Postindex

• EA = (A) + (R)

• Preindex

• EA = (A+(R))



move r0, 10
move r1, 0
move r2, 0

L1:  
BRE r1, r0, Exit
shl r3, r1, 1
add r2, r2, r3
add r1, r1, 1
BR L1

Exit:
Load r4, (r2)
store r4, 8(r2)



Homework

1. For the following data structures, draw the big-endian and 
little-endian layouts

a. struct {  

double i; //0x1112131415161718

};

b. struct {

int i; //0x11121314

int j; //0x15161718

};

c. struct {

short i; //0x1112

short j; //0x1314

short k; //0x1516

short l; //0x1718

};



Homework

• Convert the expression A + B - C to 
postfix notation.

• Show the steps involved. Is the result 
equivalent to (A + B) - C or A + (B – C) ?

• Does it matter?


