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Different Representations of Natural Numbers

XXVII Roman numerals (not positional)
27 Radix-10 or decimal number (positional)

110112 Radix-2 or binary number (also positional)

Fixed-radix positional representation with k digits

Positional Number Systems

Fixed-radix positional representation with k digits

Number N in radix r = (dk–1dk–2 . . . d1d0)r

Value = dk–1×r k–1 + dk–2×r k–2 + … + d1×r + d0

Examples: (11011)2 = 1×24 + 1×23 + 0×22 + 1×2 + 1 = 27

(2103)4 = 2×43 + 1×42 + 0×4 + 3 = 147



Binary Numbers

� Each binary digit (called bit) is either 1 or 0

� Bits have no inherent meaning, can represent

� Unsigned and signed integers

� Characters

� Floating-point numbers

Most
Significant Bit

Least
Significant Bit

� Floating-point numbers

� Images, sound, etc.

� Bit Numbering

� Least significant bit (LSB) is rightmost (bit 0)

� Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

1 0 0 1 1 1 0 1

27 26 25 24 23 22 21 20

01234567

Significant Bit Significant Bit



Hexadecimal Integers

� 16 Hexadecimal Digits: 0 – 9, A – F

� More convenient to use than binary numbers

Binary, Decimal, and Hexadecimal Equivalents



Converting Binary to Hexadecimal

� Each hexadecimal digit corresponds to 4 binary bits

� Example:

Convert the 32-bit binary number to hexadecimal

1110 1011 0001 0110 1010 0111 1001 01001110 1011 0001 0110 1010 0111 1001 0100

� Solution:

0100

4

1001

9

0111

7

1010

A

0110

6

0001

1

1011

B

1110

E



Integer Storage Sizes

Storage Type Unsigned Range Powers of 2

Byte 0 to 255 0 to (28 – 1)

Byte 8

16

32

64

Half Word

Word

Double Word

Storage Sizes

What is the largest 20-bit unsigned integer?

Answer: 220 – 1 = 1,048,575

Byte 0 to 255 0 to (28 – 1)

Half Word 0 to 65,535 0 to (216 – 1)

Word 0 to 4,294,967,295 0 to (232 – 1)

Double Word 0 to 18,446,744,073,709,551,615 0 to (264 – 1)



Signed Integers

� Several ways to represent a signed number
� Sign-Magnitude

� Biased

� 1's complement

� 2's complement

� Divide the range of values into 2 equal parts
� First part corresponds to the positive numbers (≥ 0)

� Second part correspond to the negative numbers (< 0)

� Focus will be on the 2's complement representation
� Has many advantages over other representations

� Used widely in processors to represent signed integers



Sign Bit

� Highest bit indicates the sign

� 1 = negative

� 0 = positive 1 1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

Sign bit

Negative

Positive

•For Hexadecimal Numbers, check most significant digit

•If highest digit is > 7, then value is negative

•Examples: 8A and C5 are negative bytes

•B1C42A00 is a negative word (32-bit signed integer)
•Problems

•Need to consider both sign and magnitude in arithmetic
•Two representations of zero (+0 and -0)

0 0 0 0 1 0 1 0 Positive



Two's Complement Representation

8-bit Binary
value

Unsigned
value

Signed
value

00000000 0 0

00000001 1 +1

00000010 2 +2

. . . . . . . . .

01111110 126 +126

� Positive numbers
� Signed value = Unsigned value

� Negative numbers
� Signed value = Unsigned value – 2n

� n = number of bits
01111110 126 +126

01111111 127 +127

10000000 128 -128

10000001 129 -127

. . . . . . . . .

11111110 254 -2

11111111 255 -1

� Negative weight for MSB
� Another way to obtain the signed 

value is to assign a negative weight 
to most-significant bit

= -128 + 32 + 16 + 4 = -76

1 0 1 1 0 1 0 0

-128 64 32 16 8 4 2 1



Sign Extension

Step 1: Move the number into the lower-significant bits

Step 2: Fill all the remaining higher bits with the sign bit

� This will ensure that both magnitude and sign are correct

� Examples
� Sign-Extend 10110011 to 16 bits� Sign-Extend 10110011 to 16 bits

� Sign-Extend 01100010 to 16 bits

� Infinite 0s can be added to the left of a positive number

� Infinite 1s can be added to the left of a negative number

10110011 = -77 11111111 10110011 = -77

01100010 = +98 00000000 01100010 = +98



Ranges of Signed Integers

For n-bit signed integers: Range is -2n–1 to (2n–1 – 1)

Positive range: 0 to 2n–1 – 1

Negative range: -2n–1 to -1

Storage Type Unsigned Range Powers of 2

Practice: What is the range of signed values that may be stored in 20 bits?

Byte –128 to +127 –27 to (27 – 1)

Half Word –32,768 to +32,767 –215 to (215 – 1)

Word –2,147,483,648 to +2,147,483,647 –231 to (231 – 1)

Double Word
–9,223,372,036,854,775,808 to

+9,223,372,036,854,775,807
–263 to (263 – 1)



Binary Addition

� Start with the least significant bit (rightmost bit)

� Add each pair of bits

� Include the carry in the addition, if present

0 0 0 1 1 1 0 1

0 0 1 1 0 1 1 0

+
(54)
(29)
(83)

1carry

01234bit position: 567

11 1

0 1 0 1 0 0 1 1



Binary Subtraction

� When subtracting A – B, convert B to its 2's complement

� Add A to (–B)

0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1

0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0 (2's complement)
– +

borrow: carry:111 1111

0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0 (2's complement)

0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1  (same result)

� Final carry is ignored, because
� Negative number is sign-extended with 1's

� You can imagine infinite 1's to the left of a negative number

� Adding the carry to the extended 1's produces extended zeros



Hardware for Addition and Subtraction



Carry and Overflow

� Carry is important when …
� Adding or subtracting unsigned integers

� Indicates that the unsigned sum is out of range

� Either < 0 or >maximum unsigned n-bit value

� Overflow is important when …
� Adding or subtracting signed integers

� Indicates that the signed sum is out of range

� Overflow occurs when
� Adding two positive numbers and the sum is negative

� Adding two negative numbers and the sum is positive

� Can happen because of the fixed number of sum bits



Carry and Overflow Examples
� We can have carry without overflow and vice-versa

� Four cases are possible (Examples are 8-bit numbers)

1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 0 0 1 1 1

15

248 (-8)

7

11111

0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 1 0 1 1 1

15

8

23

1

0 1 0 0 0 0 0 0

0 1 0 0 1 1 1 1
+

1 0 0 0 1 1 1 1

79

64

143
(-113)

Carry = 0    Overflow = 1

1

1 0 0 1 1 1 0 1

1 1 0 1 1 0 1 0
+

0 1 1 1 0 1 1 1

218 (-38)

157 (-99)

119

Carry = 1    Overflow = 1

111

0 0 0 0 0 1 1 1 7

Carry = 1    Overflow = 0

0 0 0 1 0 1 1 1 23

Carry = 0    Overflow = 0



Addition of Numbers in Twos Complement 

Representation



Subtraction of Numbers in Twos Complement 

Representation (M – S)



� Paper and Pencil Example:

Multiplicand 1100 2 = 12
Multiplier × 1101 2 = 13

1100
0000

1100

Unsigned Multiplication

Binary multiplication is easy
0 × multiplicand = 01100

1100

Product 10011100 2 = 156

� m-bit multiplicand × n-bit multiplier = (m+n)-bit product

� Accomplished via shifting and addition

� Consumes more time and more chip area

0 × multiplicand = 0

1 × multiplicand = multiplicand



Unsigned Binary Multiplication



Flowchart for Unsigned Binary 

Multiplication



Execution of Example



Multiplying Negative Numbers

• This does not work!

• Solution 1

—Convert to positive if required

—Multiply as above

—If signs were different, negate answer

• Solution 2

—Booth’s algorithm



Booth’s Algorithm



Example of Booth’s Algorithm



Examples Using Booth's Algorithm



How it works

• Consider a positive multiplier consisting of a block 
of 1s surrounded by 0s. For example, 00111110. 
The product is given by :

• where M is the multiplicand.

• The number of operations can be reduced • The number of operations can be reduced 
to two by rewriting the same as 

• Note that:

2n + 2n-1 +…+2n-k = 2n+1 – 2n-k



How it works

• So, the product can be generated by one 
addition and one subtraction 

• In Booth’s algorithm 

—perform subtraction when the first 1 of the 
block is encountered (1 - 0)block is encountered (1 - 0)

—perform addition when the last 1 of the block 
is encountered (0 - 1)

• (1 - 0) and (0 - 1) are observed from 

Q0 – Q-1 (see previous example)



Division

• More complex than multiplication

• Negative numbers are really bad!

• Based on long division



Division of Unsigned Binary Integers

1011

00001101

10010011
1011
001110

1011

Quotient

Dividend

Partial

Divisor

001111

001110
1011

1011
100 Remainder

Partial
Remainders



Real Numbers

• Numbers with fractions

• Could be done in pure binary

—1001.1010 = 23 + 20 +2-1 + 2-3 =9.625

• Where is the binary point?

• Fixed?• Fixed?

—Very limited

• Moving?

—How do you show where it is?



Exponential Notation

The representations differ 

• The following are equivalent 
representations of 1,234

123,400.0    x 10-2

12,340.0    x 10-1 The representations differ 
in that the decimal place –
the “point” -- “floats” to 
the left or right (with the 
appropriate adjustment in 
the exponent).

p. 122

12,340.0    x 10-1

1,234.0    x 100

123.4    x 101

12.34   x 102

1.234  x 103

0.1234 x 104



Parts of a Floating Point Number

Exponent
-0.9876 x 10-3

Sign of
mantissa

Location of
decimal point Significand

Sign of
exponent

Baseor Mantissa

In binary, the significand is represented by 1s and 0’s, and the 

Base = 2. E.g. -1.1111011 x 23



Biased Representation

• Other type of binary number representations

• A fixed value called Bias is added for the 
binary value

• Typically, the bias equals (2k-1-1), where K is 
the number of bits in the binary number.

• E.g for 4 bit representation, 

–The bias value= 24-1-1= 7

–Representation of +8 = 1111

–Representation of -7 = 0000



Representation Format

32 bits

Significand (23 bits)

Exponent (8 bits)

Sign of Sinificand(1 bit)



Floating Point

• +/- .significand x 2exponent

• Misnomer

• Point is actually fixed between sign bit and body 
of mantissa

• Exponent indicates place value (point position)



Floating Point Examples



Signs for Floating Point

• Mantissa is stored in 2s compliment

• Exponent is in excess or biased notation

—e.g. Excess (bias) 128 means

—8 bit exponent field

—Pure value range 0-255 (8-bit)

—Subtract 127 to get correct value

– Bias= 28-1-1= 127

—Range of exponent values:  -127 to +128

– For representation: bias must be added for any value

– Exponent value -127 is represented as -127+127 = 
0 (00000000:Min value)

– Exponent value +128 is represented as 128+127 = 
255 (11111111:Max value)



Normalization

• FP numbers are usually normalized

• i.e. exponent is adjusted so that leading 
bit (MSB) of Significand is 1

• Since it is always 1 there is no need to 
store it

• (c.f. Scientific notation where numbers 
are normalized to give a single digit 
before the decimal point

• E.g.,

—Significand →
—Represents…

10100000000000000000000

1.101 2 = 1.625 10



Converting from Floating Point

• E.g., What decimal value is represented 
by the following 32-bit floating point 
number?

C17B000016



• Step 1

—Express in binary and find S, E, and M

C17B000016 = 

1 10000010 111101100000000000000002

S E M

1 = negative
0 = positive



• Step 2

—Find “real” exponent, n

—n = E – 127

= 100000102 – 127

= 130 – 127

= 3= 3



• Step 3

—Put S, M, and n together to form binary result

—(Don’t forget the implied “1.” on the left of the 
mantissa.)

-1.11110112 x 2
n =

-1.11110112 x 2
3 =

-1111.10112



• Step 4

—Express result in decimal

-1111.10112

-15 2-1 = 0.5-15 2-1 = 0.5
2-3 = 0.125
2-4 = 0.0625

0.6875

Answer: -15.6875



Converting to Floating Point

• E.g., Express 36.562510 as a 32-bit 
floating point number (in hexadecimal)



• Step 1

—Express original value in binary

36.562510 =

100100.10012



• Step 2

—Normalize

100100.10012 = 

1.0010010012 x 25



• Step 3

—Determine S, E, and M

+1.0010010012 x 25

MS n E = n + 127

S = 0 (because the value is positive)

MS n E = n + 127
= 5 + 127
= 132
= 100001002



• Step 4

—Put S, E, and M together to form 32-bit binary 
result

0 10000100 001001001000000000000002
S E M



• Step 5

—Express in hexadecimal

0 10000100 001001001000000000000002 =

0100 0010 0001 0010 0100 0000 0000 00002 =

4    2    1    2    4    0    0    016 

Answer: 4212400016



FP Ranges

• For a 32 bit number

—8 bit exponent 

—+/- 2256 ≈ 1.5 x 1077

• Accuracy

—The effect of changing lsb of mantissa

—23 bit mantissa 2-23 ≈ 1.2 x 10-7

—About 6 decimal places



Expressible Numbers



Density of Floating Point Numbers



IEEE 754

• Standard for floating point storage

• 32 and 64 bit standards

• 8 and 11 bit exponent respectively

• Extended formats (both mantissa and 
exponent) for intermediate resultsexponent) for intermediate results



IEEE 754 Formats



FP Arithmetic +/-

• Check for zeros

• Align significands (adjusting exponents)

• Add or subtract significands

• Normalize result



FP Addition & Subtraction Flowchart

Z=X±Y



FP Arithmetic x/÷÷÷÷

• Check for zero

• Add/subtract exponents 

• Multiply/divide significands (watch sign)

• Normalize

• Round• Round

• All intermediate results should be in 
double length storage



Floating Point Multiplication

Z=X x Y



Floating Point Division

Z=X/Y 


