Computer Organization

Computer Arithmetic

Chapter 9

Positional Number Systems

Different Representations of Natural Numbers

XXVII Roman numerals (not positional)
27 Radix-10 or decimal number (positional)
11011, Radix-2 or binary number (also positional)

Fixed-radix positional representation with A digits

Number Ninradix r=(ad_,d, , ... d,q,),

Value =d,_ xr*t +d, ,xr* 2+ ... +dxr+d,

Examples: (11011), = 1x24+ 1x23+ 0x22+ 1x2 + 1 =27
(2103), = 2x43 + 1x42 + 0x4 + 3 = 147

Binary Numbers

* Each binary digit (called bit) is either 1 or O

¢ Bits have no inherent meaning, can represent

¢ Bit Numbering

< Unsigned and signed integers

< Characters

Most Least
<% Floating-point numbers Significant Bit Significant Bit
< Images, sound, etc. 7 6 5 4 3 2 1 0

1,002 /1|1 |01

27 26 25 24 28 22 2t 20

< Least significant bit (LSB) is rightmost (bit 0)

<> Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

% 16 Hexadecimal Digits: 0 -9, A—-F

Hexadecimal Integers

“* More convenient to use than binary numbers

Binary, Decimal, and Hexadecimal Equivalents

Binary Decimal Hexadecimal Binary Decimal | Hexadecimal
0000 0 {0 1000 8 3
(WY | | | 1001 Y 9
0010 2 2 1010 10 A
0011 3 3 1011 11 B
0100 4 4 1100 12
0101 5 5 1101 13 D
0110 6 6 1110 14 E
0111 7 7 111 15 F

Converting Binary to Hexadecimal

s Each hexadecimal digit corresponds to 4 binary bits
s Example:
Convert the 32-bit binary number to hexadecimal

1110 1011 0001 0110 1010 0111 1001 0100

s+ Solution:

E B 1 6 A 7 9 4
1110 | 1011 | 0001 | 0110 | 1010 | 0111 | 1001 | O100

Integer Storage Sizes

Byte 8
Half Word 16 Storage Sizes
Word 32
Double Word 64

Storage Type Unsigned Range Powers of 2
Byte 0 to 255 Oto (28 - 1)
Half Word 0 to 65,535 0to (216 -1)
Word 0 to 4,294,967,295 O0to (232-1)
Double Word 0 to 18,446,744,073,709,551,615 0to (2%4 - 1)

What is the largest 20-bit unsigned integer?

Answer: 220 —

1=1,048,575

Signed Integers

*» Several ways to represent a sighed number
< Sign-Magnitude
< Biased
< 1's complement

< 2's complement

¢ Divide the range of values into 2 equal parts
<> First part corresponds to the positive numbers (= 0)

<> Second part correspond to the negative numbers (< 0)

¢ Focus will be on the 2's complement representation
< Has many advantages over other representations

< Used widely in processors to represent signed integers

Sign Bit

¢ Highest bit indicates the sign

“ 1 = negative Sigrj bit

% 0 = positive tjiprpt7o 1717001 Negative
!
cjo0j0)0/ 170} 10 Positive

*For Hexadecimal Numbers, check most significant digit
oIf highest digit is > 7, then value is negative
Examples: 8A and C5 are negative bytes

*B1C42A00 is a negative word (32-bit signed integer)
*Problems

*Need to consider both sign and magnitude in arithmetic
*Two representations of zero (+0 and -0)

Two's Complement Representation

+» Positive numbers

< Signed value = Unsigned value

“* Negative numbers
< Signed value = Unsigned value — 2”7

<> n=number of bits

“* Negative weight for MSB

<> Another way to obtain the signed
value is to assign a negative weight
to most-significant bit

1/0/1]1/0]1]0,0

-128 64 32 16 8 4 2 1

=-128+32+16+4=-76

8-bit Binary | Unsigned | Signed
value value value
00000000 0 0
00000001 1 +1
00000010 2 +2
01111110 126 +126
01111111 127 +127
10000000 128 -128
10000001 129 -127
11111110 254 -2
11111111 255 -1

Sign Extension

Step 1: Move the number into the lower-significant bits
Step 2: Fill all the remaining higher bits with the sign bit
¢+ This will ensure that both magnitude and sign are correct
“ Examples
< Sign-Extend 10110011 to 16 bits
10110011 =-77 = 11111111 1?13@011 =77

< Sign-Extend 01100010 to 16 bits
01100010 = +98 —> O@OOOOOO SE@010 = +98

** Infinite Os can be added to the left of a positive number

** Infinite 1s can be added to the left of a negative number

Ranges of Signed Integers

For r-bit signed integers: Range is -271to (271 - 1)
Positive range: 0 to 271 -1

Negative range: -2+1to -1

Storage Type Unsigned Range Powers of 2

Byte —128 to +127 —27t0 (27 -1)

Half Word —32,768 to +32,767 2% t0 (215 -1)

Word —2,147,483,648 to +2,147,483,647 —231to (231 - 1)
—-9,223,372,036,854,775,808 to

Double Word —2%3 10 (203 - 1)
+9,223,372,036,854,775,807

Practice: What is the range of signed values that may be stored in 20 bits?

Binary Addition

» Start with the least significant bit (rightmost bit)
“ Add each pair of bits

“ Include the carry in the addition, if present

carry 1 1 1 1

o/ o0j1/12/0]1]1/|0 54
000111012 3

+

29
(83)

~
o
3
I
w
N
=
o

bit position:

Binary Subtraction

“* When subtracting A — B, convert B to its 2's complement
“ Add A to (-B)

borrow: 1 1 1 carry: 1 1 11
01001101 01001101
— |:l'> +
00111010 11000110 (2'scomplement)
00010011 00010011 (sameresult)

“ Final carry is ignored, because
< Negative number is sign-extended with 1's
< You can imagine infinite 1's to the left of a negative number

<> Adding the carry to the extended 1's produces extended zeros

Hardware for Addition and Subtraction

h 4

B Register | A Register I

Complementer

OIF = owerflonae bt
SW o= Switch (select addition or subtraction

Carry and Overflow

¢ Carry is important when ...
<> Adding or subtracting unsigned integers
< Indicates that the unsigned sum is out of range

< Either < 0 or >maximum unsigned r-bit value

“ Overflow is important when ...
<> Adding or subtracting signed integers

< Indicates that the signed sum is out of range

“ Overflow occurs when
< Adding two positive numbers and the sum is negative
< Adding two negative numbers and the sum is positive

<> Can happen because of the fixed number of sum bits

Carry and Overflow Examples

“* We can have carry without overflow and vice-versa
¢ Four cases are possible (Examples are 8-bit numbers)

1 1 1 1 1 1
o,0/0|0]2 1|1 1 15 O, 00|02 1|11 15
+ +
o/jojo,0/1/0|0]|O0 8 1111/ 1|{1]0|0)| 0/ 248(-8)
o,0/0|1]0]12 |1 1 23 O, 000|001 |11 7
Carry =0 Overflow =0 Carry=1 Overflow =0
1 1 1
o,1/]0{0]2 1|1 1 79 1/1/0|1/1,0|1)0/|218(-38)
+ +
O0,1/0{0]0]0|0|O0 64 1100|2212 ,1|0]1/|157(-99
170001 |1|1 1 143 o/ 1/1{1/01 1|1 119
(-113)

Carry =0 Overflow =1 Carry=1 Overflow =1

Addition of Numbers in Twos Complement

Representation
1001 = —7 1100 = —4
+0101 = 5 +0100 = 4
1110 = =2 10000 = O
(a) (=7) + (+3) (b) (—4) + (+4)
0011 = 3 1100 = —4
+0100 = 4 +1111 = —1
0111 = 7 11011 = =5

(e) (+3) + (+4)

(d) (=) + (=1)

0101 = 5
+0100 = 4
1001 = Overflow

(e) (+3) + (+4)

1001 = =7
+1010
10011 = Overflow

() =7) + (-6)

I
I
o

Subtraction of Numbers in Twos Complement
Representation (M - S)

0010 = 2 0101 5
+1001 = =7 +1110 = =2
1011 = =5 10011 = 3
(a) M = 2 0010 (b)y M 5 0101
g =7 = 0111 S = 2 = 0010
-5 = 1001 -5 = 1110
1011 = =5 0101 5
+1110 = =2 +0010 = 2
11001 = =7 0111 = 7
(c) M ==5 = 1011 (dy M = 5 = 0101
3 2 = 0010 S ==2 = 1110
-5 = 1110 -5 = 0010
0111 = 7 1010 = —6
+0111 = 7 +1100 = —4
1110 = overflow 10110 = overflow
(e)y M= 7 = 0111 (fy M = —6 = 1010
g = =7 = 1001 s = 4 = 0100
-5 = 0111 -5 = 1100

Unsigned Multiplication

*» Paper and Pencil Example:

Multiplicand 1100, =12
Multiplier x 1101, =13
1100 _ —
0000 Binary r-Tll-J|'[Ip|IC_atIOn IS easy
1100 0 x mult?pl?cand : 0 N
1100 1 x multiplicand = multiplicand
Product 10011100 , =156

s m-bit multiplicand x n-bit multiplier = (m+n)-bit product
* Accomplished via shifting and addition

* Consumes more time and more chip area

Unsignhed Binary Multiplication

Multiplicand

My,

n=-Bit Adder

Add
i

Shift and Add
Control Logic

Shift Right

>

(a) Block

Du-l

"'}‘II

Diagram

Multiplier

Flowchart for Unsigned Binary

Multiplication

C,A 0

M Multiplicand
Q) Multiplier
Count n

Shift C, A, Q
Count Count — 1

Product
in A,

Execution of Example

=R

A
aooo

1011
0101

0010

1101
0110

0001
1000

<
1101

1101
1110

1111

1111
1111

1111
1111

IM
1011

1011
1011

1011

1011
1011

1011
1011

Initial Values

Add
Shift

shift

Add
shifc

Add
shift

f
§
§
§

First
Cyvcle

Second
Cycle

Third
Cycle

Fourth
Cycle

Multiplying Negative Numbers

e This does not work!

e Solution 1
—Convert to positive if required
—Multiply as above
—If signs were different, negate answer
e Solution 2
—Booth’s algorithm

Booth’s Algorithm

START

A 0,Q, 0
M Multiplicand
Q) Multiplier
Count n

Arithmetic Shift

Right: A, Q, Q_]
Count Count -1

Mo

Example of Booth’s Algorithm

A
0000

1001
1100

1110

0101
0010

0001

o
0011

0011
1001

0100

0100
1010

0101

Q-1
0

=

-

M
0111

0111
0111

0111

0111
0111

0111

Initial Values

A A—H}_ First
Shift Cycle

Second
Cvele

o + M}_ Third

Shift

Shlft Cycle

Fourth

Shiftc
Cyvole

Examples Using Booth's Algorithm

0111 0111
x0011 (0) x1101 (0)
11111001 1-0 11111001 1-0
0000000 1-1 0000111 0—1
000111 0—1 111001 1-0
00010101 (21) 11101011 (—21)
(@) (7) x (3)=(2D) (b) (7) x (=3) = (-21)
1001 1001
x0011 (0) x1101 (0)
00000111 1-0 00000111 1—-0
0000000 1-1 1111001 0—1
111001 0—1 000111 1—-0
11101011 (=21) 00010101 (21)
(c) (-7) x (3)=(-21) (d) (-7) x (-3) = (2I)

How it works

e Consider a positive multiplier consisting of a block
of 1s surrounded by 0s. For example, 00111110.
The product is given by :

Mx"00111110"=Mx (2°+2*+2° 4 2* 42" = M x 62
e where M is the multiplicand.

e The number of operations can be reduced
to two by rewriting the same as

Mx"01000000-10" =M x (2°=2") = M x 62.

e Note that:
2" 4 2n-1 4 420k = 2n+1 _ In-k

How it works

e S0, the product can be generated by one
addition and one subtraction

e In Booth's algorithm

—perform subtraction when the first 1 of the
block is encountered (1 - 0)

—perform addition when the last 1 of the block
is encountered (0 - 1)

e (1-0)and (0 -1) are observed from
Qo — Q.4 (see previous example)

Division
e More complex than multiplication

e Negative numbers are really bad!
e Based on long division

Division of Unsigned Binary Integers

00001101 * Quotient

Divisor— 101110010011 - Dividend
1011
001110

Partia < 1011},
Remainders

001111
1011 _
100 ° Remainder

Real Numbers

e Numbers with fractions

e Could be done in pure binary
—1001.1010 = 23 + 20 421 4+ 2-3=9,625
e Where is the binary point?
e Fixed?
—Very limited
e Moving?
—How do you show where it is?

Exponential Notation

e The following are equivalent

of 1,234

- [\
10-* The representations diff

In that the decimal place -

representations
123,400.0 x 102
12,340.0 X
1,234.0 x 100
123.4 x 10!
12.34 x 102
1.234 x 103
1234 x 104

the “point” -- “floats” to

the left or right (with the
appropriate adjustment in
the exponent).

J

p. 122

Parts of a Floating Point Number

-0.9876 x 1023 —eonen

| -I- | Sign of
Sign of L ocation of SR exponent
mantissal |decimal point S'gn; ean
/
or Mantissa Base

In binary, the significand is represented by 1s and 0’s, and the

Base = 2. E.¢.1.1111011 x ?

Biased Representation

e Other type of binary number representations

e A fixed value called Bias is added for the
binary value

e Typically, the bias equals (2k-1-1), where K is
the number of bits in the binary number.

e E.g for 4 bit representation,
-The bias value= 241-1=7
- Representation of +8 = 1111
—Representation of -7 = 0000

Representation Format

32 bits

1 Significand (23 bits)

1 EXponent (8 bits)

1 Sign of Sinificand(1 bit]

Floating Point

sign of
significand 8 bits - 93 bits
\T biased exponent significand
(a) Format

e +/- .significand x 2¢&xponent
e Misnomer

e Point is actually fixed between sign bit and body
of mantissa

e Exponent indicates place value (point position)

Floating Point Examples

sign of
lgnificand
SEIETY e—— 8 hbits > 73 bils >
\T biased exponent significand

(a) Bormat
1.1010001 x 2% _- o 10010011
~1.1010001 z-f'-f'” = 1 10010011
1.1010001 X 2‘_-“_-”” = 0 01101011
-1.1010001 x 2729200 - 3 pi1i1p1011

(b} Examples

10100010000 000000000000
10100010000 000000000000

1310001000000 0000000000
1310001000000 0000000000

1.638125
-1.638125

1.638125
-1.638125

Signs for Floating Point

e Mantissa is stored in 2s compliment

e Exponent is in excess or biased notation
—e.g. Excess (bias) 128 means
—8 bit exponent field
—Pure value range 0-255 (8-bit)
—Subtract 127 to get correct value
- Bias= 281-1= 127
—Range of exponent values: -127 to +128

— For representation: bias must be added for any value

— Exponent value -127 is represented as -127+127 =
0 (00000000:Min value)

— Exponent value +128 is represented as 128+127 =
255 (11111111:Max value)

Normalization

e FP numbers are usually normalized

e i.e. exponent is adjusted so that leading
bit (MSB) of Significand is 1

e Since it is always 1 there is no need to
store it

e (c.f. Scientific notation where numbers
are normalized to give a single digit
before the decimal point

e E.q.,
—Significand 10100000000000000000000

—Represents... 1.101 , =1.625

Converting from Floating Point

e E.g., What decimal value is represented
by the following 32-bit floating point
number?

C17B0000

e Step 1
—Express in binary and find S, E, and M

C17B0000, =
1 10000010 11110110000000000000000,
S E M

1 :_negative.
0 = positive

e Step 2
—Find “real” exponent, n
—n =E-127
= 10000010, - 127
=130 - 127
=3

o Step 3
—Put S, M, and n together to form binary result

—(Don’t forget the implied “1.” on the left of the
mantissa.)

-1.1111011, x 27 =
-1.1111011, x 23 =
-1111. 1011,

e Step 4
—EXpress result in decimal

-1111. 1011,
15 [21 =05
23 = 0.125
24 = 0.0625

0.6875

/
Answer: -156875

Converting to Floating Point

e E.g., Express 36.5625,, as a 32-bit
floating point number (in hexadecimal)

e Step 1
—EXxpress original value in binary

36. 5625,, =

100100. 1001,

e Step 2

—Normalize

100100. 1001, =

1.001001001, x 2°

o Step 3
—Determine S, E, and M

+1. 001001001, x 2%
s T v r E =7n+127
=5+ 127
=132
=10000100,

S = 0 (because the value is positipe)

e Step 4

—Put S, E, and M together to form 32-bit binary
result

0 10000100 00100100100000000000000,
S E M

e Step 5
—EXxpress in hexadecimal

0 10000100 00100100100000000000000, =
0100 0010 0001 0010 0100 OOOO OOOO 0000, =

4 2 1 2 4 0 0 0

Answer: 42124000

FP Ranges

e For a 32 bit number
—8 bit exponent
—+/- 22°6=1.5 x 107/
e Accuracy

—The effect of changing Isb of mantissa
—23 bit mantissa 243= 1.2 x 10/
—About 6 decimal places

Expressible Numbers

Expressible Integers

A

- | | | Number
_2¥ o 23 _q Line

{a) Twos Complement Integers

Negative Positive
Underflow Underflow
Negalive Expressible Negative Expressible Positive Posilive
Overflow Numbers \ / Numbers Overflow

_ l] _ l.l-l} 2]33 _ {Ls 2-”? 0 [Li zaIIT {-.I _ 2.34} zlm Line

{b) Floating-Point Numbers

Density of Floating Point Numbers

IEEE 754

e Standard for floating point storage
e 32 and 64 bit standards
e 8 and 11 bit exponent respectively

o Extended formats (both mantissa and
exponent) for intermediate results

IEEE 754 Formats

sLgn

hil}

sLgn

=2 Dl s—p—— 23 bils -
binszed :
raction
exponent
(a) Single format
I [[- S—— 52 bils

hil}

biazed
exponent

fraction

(b} Double format

FP Arithmetic +/-

e Check for zeros

e Align significands (adjusting exponents)
e Add or subtract significands

e Normalize result

FP Addition & Subtraction Flowchart

SUBTRACT

Change
signof ¥

Yes

Inerement
graller

exponent

Shift
gignificand
right

Put ather
mamber in £

RETURN

RETURN

Report
e T low

Eigned
gignificands

Inerement
EXpOTEnt

Yieg

Hesnlts
rtrmalized !

FP Arithmetic x/-

e Check for zero

e Add/subtract exponents

e Multiply/divide significands (watch sign)
e Normalize

e Round

o All intermediate results should be in
double length storage

Floating Point Multiplication

MULTIPLY

Add
Exponents

Subtract Bias

RETURN

Report
Underflow

Multiply
Significands

L=XXY

Normalize

Z=XIY

RETURMN

Subitiract
Exponents

nderflow

Divide
Significands

Normalize

Round

Report
Underflow

RETURM

