Computer Organization

Computer Arithmetic

Chapter 9

Positional Number Systems

Different Representations of Natural Numbers

```
XXVII Roman numerals (not positional)
```

27 Radix-10 or decimal number (positional)

11011₂ Radix-2 or binary number (also positional)

Fixed-radix positional representation with k digits

Number
$$N$$
in radix $r = (d_{k-1}d_{k-2}...d_1d_0)_r$
Value = $d_{k-1} \times r^{k-1} + d_{k-2} \times r^{k-2} + ... + d_1 \times r + d_0$
Examples: $(11011)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2 + 1 = 27$
 $(2103)_4 = 2 \times 4^3 + 1 \times 4^2 + 0 \times 4 + 3 = 147$

Binary Numbers

- ❖ Each binary digit (called bit) is either 1 or 0
- ❖ Bits have no inherent meaning, can represent
 - ♦ Unsigned and signed integers
 - ♦ Characters
 - ♦ Floating-point numbers
 - ♦ Images, sound, etc.

Bit Numbering

- ♦ Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

Hexadecimal Integers

- ❖ 16 Hexadecimal Digits: 0 9, A F
- More convenient to use than binary numbers

Binary, Decimal, and Hexadecimal Equivalents

Binary Decimal		Hexadecimal	Binary	Decimal	Hexadecimal	
0000	0	0	1000	8	8	
0001	1	1	1001	9	9	
0010	2	2	1010	10	A	
0011	3	3	1011	11	В	
0100	4	4	1100	12	С	
0101	5	5	1101	13	D	
0110	6	6	1110	14	Е	
0111	7	7	1111	15	F	

Converting Binary to Hexadecimal

- Each hexadecimal digit corresponds to 4 binary bits
- Example:

Convert the 32-bit binary number to hexadecimal 1110 1011 0001 0110 1010 0111 1001 0100

❖ Solution:

E	В	1	6	A	7	9	4
1110	1011	0001	0110	1010	0111	1001	0100

Integer Storage Sizes

Storage Type	Unsigned Range	Powers of 2
Byte	0 to 255	0 to (2 ⁸ – 1)
Half Word	0 to 65,535	0 to $(2^{16}-1)$
Word	0 to 4,294,967,295	0 to $(2^{32} - 1)$
Double Word	0 to 18,446,744,073,709,551,615	0 to (2 ⁶⁴ – 1)

What is the largest 20-bit unsigned integer?

Answer: $2^{20} - 1 = 1,048,575$

Signed Integers

- Several ways to represent a signed number
 - ♦ Sign-Magnitude
 - ♦ Biased
 - ♦ 1's complement
- Divide the range of values into 2 equal parts

 - ♦ Second part correspond to the negative numbers (< 0)</p>
- ❖ Focus will be on the 2's complement representation
 - ♦ Has many advantages over other representations
 - ♦ Used widely in processors to represent signed integers

Sign Bit

- Highest bit indicates the sign
- ❖ 1 = negative
- \bullet 0 = positive

- •For Hexadecimal Numbers, check most significant digit
- •If highest digit is > 7, then value is negative
- Examples: 8A and C5 are negative bytes
- •B1C42A00 is a negative word (32-bit signed integer)
- Problems
 - Need to consider both sign and magnitude in arithmetic
 - •Two representations of zero (+0 and -0)

Two's Complement Representation

Positive numbers

♦ Signed value = Unsigned value

Negative numbers

- ⇒ Signed value = Unsigned value 2ⁿ
- $\Rightarrow n = \text{number of bits}$

❖ Negative weight for MSB

 Another way to obtain the signed value is to assign a negative weight to most-significant bit

	1	0	1	1	0	1	0	0	
-1	28	64	32	16	8	4	2	1	3

$$= -128 + 32 + 16 + 4 = -76$$

8-bit Binary value	Unsigned value	Signed value
00000000	0	0
00000001	1	+1
00000010	2	+2
01111110	126	+126
01111111	127	+127
10000000	128	-128
10000001	129	-127
11111110	254	-2
11111111	255	-1

Sign Extension

- Step 1: Move the number into the lower-significant bits
- Step 2: Fill all the remaining higher bits with the sign bit
- This will ensure that both magnitude and sign are correct
- Examples
- ❖ Infinite 0s can be added to the left of a positive number
- Infinite 1s can be added to the left of a negative number

Ranges of Signed Integers

For *n*-bit signed integers: Range is -2^{n-1} to $(2^{n-1}-1)$

Positive range: 0 to $2^{n-1} - 1$

Negative range: -2^{n-1} to -1

Storage Type	Unsigned Range	Powers of 2
Byte	-128 to +127	-2^7 to $(2^7 - 1)$
Half Word	-32,768 to +32,767	-2^{15} to $(2^{15}-1)$
Word	-2,147,483,648 to +2,147,483,647	-2^{31} to $(2^{31}-1)$
Double Word	-9,223,372,036,854,775,808 to	263 to (263 4)
Double Word	+9,223,372,036,854,775,807	-2^{63} to $(2^{63} - 1)$

Practice: What is the range of signed values that may be stored in 20 bits?

Binary Addition

- Start with the least significant bit (rightmost bit)
- Add each pair of bits
- Include the carry in the addition, if present

Binary Subtraction

- ❖ When subtracting A B, convert B to its 2's complement
- ❖ Add A to (–B)

- Final carry is ignored, because
 - ♦ Negative number is sign-extended with 1's
 - ♦ You can imagine infinite 1's to the left of a negative number
 - ♦ Adding the carry to the extended 1's produces extended zeros

Hardware for Addition and Subtraction

OF = overflow bit

SW = Switch (select addition or subtraction)

Carry and Overflow

- ❖ Carry is important when ...
 - ♦ Adding or subtracting unsigned integers
 - ♦ Indicates that the unsigned sum is out of range
 - ♦ Either < 0 or >maximum unsigned //-bit value
- ❖ Overflow is important when ...
 - ♦ Adding or subtracting signed integers
 - ♦ Indicates that the signed sum is out of range

Overflow occurs when

- ♦ Adding two positive numbers and the sum is negative
- ♦ Adding two negative numbers and the sum is positive
- ♦ Can happen because of the fixed number of sum bits

Carry and Overflow Examples

- We can have carry without overflow and vice-versa
- Four cases are possible (Examples are 8-bit numbers)

Addition of Numbers in Twos Complement Representation

1001 = -7 $+0101 = 5$ $1110 = -2$ $(a) (-7) + (+5)$	$ \begin{array}{rcl} & 1100 & = & -4 \\ & +0100 & = & 4 \\ & 10000 & = & 0 \\ & (b) (-4) + (+4) \end{array} $
$0011 = 3 + 0100 = 4 \hline 0111 = 7 (c) (+3) + (+4)$	1100 = -4 +1111 = -1 11011 = -5 (d) (-4) + (-1)
0101 = 5 + $0100 = 4$ 1001 = overflow (e) (+5) + (+4)	$ \begin{array}{r} 1001 = -7 \\ +1010 = -6 \\ \hline 10011 = \text{overflow} \\ \hline (f)(-7) + (-6) \end{array} $

Subtraction of Numbers in Twos Complement Representation (M – S)

$\begin{array}{rcl} 0010 & = & 2 \\ +\underline{1001} & = & -7 \\ 1011 & = & -5 \end{array}$	$ \begin{array}{rcl} 0101 & = & 5 \\ +1110 & = & -2 \\ \hline 10011 & = & 3 \end{array} $
(a) $M = 2 = 0010$	(b) $M = 5 = 0101$
S = 7 = 0111	S = 2 = 0010
-S = 1001	-S = 1110
$ 1011 = -5 \\ +1110 = -2 \\ 11001 = -7 $	$ \begin{array}{rcl} 0101 &=& 5 \\ +\underline{0010} &=& 2 \\ 0111 &=& 7 \end{array} $
(c) $M = -5 = 1011$	(d) $M = 5 = 0101$
S = 2 = 0010	S = -2 = 1110
-S = 1110	-S = 0010
0111 = 7	1010 = -6
+ $0111 = 7$	+1100 = -4
1110 = 0 overflow	10110 = Overflow
(e) $M = 7 = 0111$	(f) $M = -6 = 1010$
S = -7 = 1001	S = 4 = 0100
-S = 0111	-S = 1100

Unsigned Multiplication

Paper and Pencil Example:

Multiplicand $1100_2 = 12$ Multiplier $1101_2 = 13$ X 1100 Binary multiplication is easy 0000 $0 \times \text{multiplicand} = 0$ 1100 1 × multiplicand = multiplicand 1100 $10011100_2 = 156$

Product

- m-bit multiplicand x n-bit multiplier = (m+n)-bit product
- Accomplished via shifting and addition
- Consumes more time and more chip area

Unsigned Binary Multiplication

(a) Block Diagram

Flowchart for Unsigned Binary Multiplication

Execution of Example

C	A	Q	M			
0	0000	1101	1011	Initia	.1	Values
0 0	1011 0101	1101 1110	1011 1011	Add Shift	}	First Cycle
0	0010	1111	1011	Shift	}	Second Cycle
0	1101 0110	1111 1111	1011 1011	Add Shift	}	Third Cycle
1	0001 1000	1111 1111	1011 1011	Add Shift	}	Fourth Cycle

Multiplying Negative Numbers

- This does not work!
- Solution 1
 - —Convert to positive if required
 - —Multiply as above
 - —If signs were different, negate answer
- Solution 2
 - —Booth's algorithm

Booth's Algorithm

Example of Booth's Algorithm

A	Q	Q ₋₁	M	Initial Values
0000	0011	0	0111	
1001	0011	0	0111	A A - M } First Shift Cycle
1100	1001	1	0111	
1110	0100	1	0111	Shift Second Cycle
0101	0100	1	0111	$ \begin{array}{ccc} A & A + M \\ Shift & Cycle \end{array} $
0010	1010	0	0111	
0001	0101	0	0111	Shift } Fourth Cycle

Examples Using Booth's Algorithm

0111		0111	
×0011	(0)	×1101	(0)
11111001	1-0	11111001	1-0
0000000	1-1	0000111	0-1
000111	0-1	111001	1-0
00010101	(21)	11101011	(- 21)

(a)
$$(7) \times (3) = (21)$$

(b)
$$(7) \times (-3) = (-21)$$

(c)
$$(-7) \times (3) = (-21)$$

(d)
$$(-7) \times (-3) = (21)$$

How it works

 Consider a positive multiplier consisting of a block of 1s surrounded by 0s. For example, 00111110.
 The product is given by :

$$M \times "0\ 0\ 1\ 1\ 1\ 1\ 0" = M \times (2^5 + 2^4 + 2^3 + 2^2 + 2^1) = M \times 62$$

- where M is the multiplicand.
- The number of operations can be reduced to two by rewriting the same as

$$M \times "0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0" = M \times (2^6 - 2^1) = M \times 62.$$

• Note that:

$$2^{n} + 2^{n-1} + ... + 2^{n-k} = 2^{n+1} - 2^{n-k}$$

How it works

- So, the product can be generated by one addition and one subtraction
- In Booth's algorithm
 - —perform subtraction when the first 1 of the block is encountered (1 - 0)
 - —perform addition when the last 1 of the block is encountered (0 - 1)
- (1 0) and (0 1) are observed from
 Q₀ Q₋₁ (see previous example)

Division

- More complex than multiplication
- Negative numbers are really bad!
- Based on long division

Division of Unsigned Binary Integers

Real Numbers

- Numbers with fractions
- Could be done in pure binary

$$-1001.1010 = 2^3 + 2^0 + 2^{-1} + 2^{-3} = 9.625$$

- Where is the binary point?
- Fixed?
 - –Very limited
- Moving?
 - —How do you show where it is?

Exponential Notation

 The following are equivalent representations of 1,234

The representations differ in that the decimal place – the "point" -- "floats" to the left or right (with the appropriate adjustment in the exponent).

Parts of a Floating Point Number

In binary, the significand is represented by 1s and 0's, and the

Base = 2. E.g. -1.1111011 x 2^3

Biased Representation

- Other type of binary number representations
- A fixed value called Bias is added for the binary value
- Typically, the bias equals (2^{k-1}-1), where K is the number of bits in the binary number.
- E.g for 4 bit representation,
 - -The bias value= $2^{4-1}-1=7$
 - -Representation of +8 = 1111
 - -Representation of -7 = 0000

Representation Format

Floating Point

- +/- .significand x 2^{exponent}
- Misnomer
- Point is actually fixed between sign bit and body of mantissa
- Exponent indicates place value (point position)

Floating Point Examples

(a) Format

(b) Examples

Signs for Floating Point

- Mantissa is stored in 2s compliment
- Exponent is in excess or biased notation
 - -e.g. Excess (bias) 128 means
 - -8 bit exponent field
 - —Pure value range 0-255 (8-bit)
 - —Subtract 127 to get correct value
 - Bias= 2^{8-1} -1= 127
 - —Range of exponent values: -127 to +128
 - For representation: bias must be added for any value
 - Exponent value -127 is represented as -127+127 = 0 (00000000:Min value)
 - Exponent value +128 is represented as 128+127 = 255 (11111111:Max value)

Normalization

- FP numbers are usually normalized
- i.e. exponent is adjusted so that leading bit (MSB) of Significand is 1
- Since it is always 1 there is no need to store it
- (c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point
- E.g.,

 - -Represents... $1.101_2 = 1.625_{10}$

Converting <u>from</u> Floating Point

 E.g., What decimal value is represented by the following 32-bit floating point number?

C17B0000₁₆

- Step 1
 - —Express in binary and find S, E, and M

• Step 2

—Find "real" exponent, n

$$-n = E - 127$$

= $10000010_2 - 127$
= $130 - 127$
= 3

- Step 3
 - —Put S, M, and *n* together to form binary result
 - —(Don't forget the implied "1." on the left of the mantissa.)

$$-1.1111011_2 \times 2^n =$$

$$-1.1111011_2 \times 2^3 =$$

$$-1111.1011_2$$

- Step 4
 - —Express result in decimal

Answer: -15.6875

Converting to Floating Point

 E.g., Express 36.5625₁₀ as a 32-bit floating point number (in hexadecimal)

- Step 1
 - —Express original value in binary

$$36.5625_{10} =$$

100100.10012

• Step 2

—Normalize

$$1.001001001_2 \times 2^5$$

Step 3

—Determine S, E, and M

- Step 4
 - —Put S, E, and M together to form 32-bit binary result

- Step 5
 - —Express in hexadecimal

```
0\ 10000100\ 001001001000000000000000_2 = 0100\ 0010\ 0001\ 0010\ 0100\ 0000\ 0000\ 0000_2 = 4\ 2\ 1\ 2\ 4\ 0\ 0\ 0_{16}
```

Answer: 42124000₁₆

FP Ranges

- For a 32 bit number
 - —8 bit exponent
 - $-+/-2^{256} \approx 1.5 \times 10^{77}$
- Accuracy
 - —The effect of changing lsb of mantissa
 - -23 bit mantissa $2^{-23} \approx 1.2 \times 10^{-7}$
 - —About 6 decimal places

Expressible Numbers

(a) Twos Complement Integers

(b) Floating-Point Numbers

Density of Floating Point Numbers

IEEE 754

- Standard for floating point storage
- 32 and 64 bit standards
- 8 and 11 bit exponent respectively
- Extended formats (both mantissa and exponent) for intermediate results

IEEE 754 Formats

(a) Single format

(b) Double format

FP Arithmetic +/-

- Check for zeros
- Align significands (adjusting exponents)
- Add or subtract significands
- Normalize result

FP Addition & Subtraction Flowchart

FP Arithmetic x/÷

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

Floating Point Multiplication

Floating Point Division

