Computer Organization

Computer Arithmetic

Chapter 9

Positional Number Systems

Different Representations of Natural Numbers

- XXVII Roman numerals (not positional)
	- 27 Radix-10 or <mark>decimal</mark> number (positional)
- 11011₂ Radix-2 or binary number (also positional)

Fixed-radix positional representation with k **digits**

Number *N*in radix
$$
r = (d_{k-1}d_{k-2}'...d_1d_0)_{r}
$$

Value = d_{κ_1}x r^{κ_1} + d $_{\kappa_2}$ x r^{κ_2} + ... + d₁x r + d₀

Examples: $\left(11011\right)_2$ $_{2}$ = 1×2⁴ + 1×2³ + 0×2² + 1×2 + 1 = 27

$$
(2103)4 = 2 \times 43 + 1 \times 42 + 0 \times 4 + 3 = 147
$$

Binary Numbers

❖ Each binary digit (called bit) is either 1 or 0

- ❖ Bits have no inherent meaning, can represent
	- \Leftrightarrow Unsigned and signed integers
	- Characters
	- Floating -point numbers
	- \Leftrightarrow Images, sound, etc.
- ❖ Bit Numbering

- \Leftrightarrow Least significant bit (LSB) is rightmost (bit 0)
- \Leftrightarrow Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

Hexadecimal Integers

- ❖ 16 Hexadecimal Digits: $0 9$, $A F$
- ❖ More convenient to use than binary numbers

Binary, Decimal, and Hexadecimal Equivalents

Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecimal
0000	$\boldsymbol{0}$	Ω	1000	$\,$ 8 $\,$	8
0001			1001	$\overline{9}$	9
0010	\overline{c}	$\overline{2}$	1010	10	A
0011	3 ₁	$\mathbf{3}$	1011	11	В
0100	$\overline{4}$		1100	12	\mathcal{C}
0101	5	5	1101	13	D
0110	6	6	1110	14	Е
0111	7		1111	15	F

Converting Binary to Hexadecimal

- ❖ Each hexadecimal digit corresponds to 4 binary bits
- ❖ Example:

Convert the 32-bit binary number to hexadecimal

1110 1011 0001 0110 1010 0111 1001 0100

❖ Solution:

Integer Storage Sizes

What is the largest 20-bit unsigned integer?

Answer: 2 20 – 1 = 1,048,575

Signed Integers

❖ Several ways to represent a signed number

- Sign-Magnitude
- Biased
- \Leftrightarrow 1's complement
- \Diamond 2's complement
- ❖ Divide the range of values into 2 equal parts
	- \Leftrightarrow First part corresponds to the positive numbers (≥ 0)
	- \Leftrightarrow Second part correspond to the negative numbers (< 0)
- ❖ Focus will be on the 2's complement representation
	- \Leftrightarrow Has many advantages over other representations
	- \Leftrightarrow Used widely in processors to represent signed integers

Sign Bit

- ❖ Highest bit indicates the sign
- $\div 1$ = negative • 0 = positive $1 1 1 1 0 1 1 0$ Ω 0 0 0 0 1 0 1 0 Sign bitNegative**Positive**

•For Hexadecimal Numbers, check most significant digit

- •If highest digit is > 7 , then value is negative
- •Examples: 8A and C5 are negative bytes
- •B1C42A00 is a negative word (32-bit signed integer)•Problems
	- •Need to consider both sign and magnitude in arithmetic
		- •Two representations of zero (+0 and -0)

Two's Complement Representation

❖ Positive numbers

- \Leftrightarrow Signed value = Unsigned value
- **❖ Negative numbers**
	- \diamond Signed value = Unsigned value 2ⁿ
	- \diamondsuit *n* = number of bits

* Negative weight for MSB

A Another way to obtain the signed

value is to assign a nogative weight value is to assign a negative weight to most-significant bit

 $= -128 + 32 + 16 + 4 = -76$

Sign Extension

Step 1: Move the number into the lower-significant bits

- Step 2: Fill all the remaining higher bits with the sign bit
- ❖ This will ensure that both magnitude and sign are correct

❖ Examples

❖ Infinite 0s can be added to the left of a positive number

❖ Infinite 1s can be added to the left of a negative number

Ranges of Signed Integers

For ν -bit signed integers: Range is -2 $^{\prime\prime -1}$ to (2 $^{\prime\prime -1}-1)$

Positive range: 0 to 2 $^{\prime\prime -1}$ – 1

Negative range: -2^{*n*-1} to -1

Practice: What is the range of signed values that may be stored in 20 bits?

Binary Addition

- ❖ Start with the least significant bit (rightmost bit)
- ❖ Add each pair of bits
- ❖ Include the carry in the addition, if present

Binary Subtraction

❖ When subtracting A – B, convert B to its 2's complement ❖ Add A to $(-B)$

❖ Final carry is ignored, because

- \Leftrightarrow Negative number is sign-extended with 1's
- \Diamond You can imagine infinite 1's to the left of a negative number
- \Leftrightarrow Adding the carry to the extended 1's produces extended zeros

Hardware for Addition and Subtraction

 $OF = overflow bit$ $SW = Switch$ (select addition or subtraction)

Carry and Overflow

- ❖ Carry is important when ...
	- \Leftrightarrow Adding or subtracting unsigned integers
	- \Leftrightarrow Indicates that the unsigned sum is out of range
	- \Leftrightarrow Either < 0 or >maximum unsigned *n*-bit value
- ❖ Overflow is important when ...
	- Adding or subtracting signed integers
	- \Leftrightarrow Indicates that the signed sum is out of range
- ❖ Overflow occurs when
	- \Leftrightarrow Adding two positive numbers and the sum is negative
	- \Leftrightarrow Adding two negative numbers and the sum is positive
	- \Leftrightarrow Can happen because of the fixed number of sum bits

Carry and Overflow Examples

❖ We can have carry without overflow and vice-versa

❖ Four cases are possible (Examples are 8-bit numbers)

Addition of Numbers in Twos Complement Representation

Subtraction of Numbers in Twos Complement Representation $(M - S)$

Unsigned Multiplication

❖ Paper and Pencil Example:

- m-bit multiplicand × n-bit multiplier = (m+n)-bit product
- ❖ Accomplished via shifting and addition
- ❖ Consumes more time and more chip area

Unsigned Binary Multiplication

(a) Block Diagram

Flowchart for Unsigned Binary Multiplication

Execution of Example

Multiplying Negative Numbers

- This does not work!
- Solution 1
	- —Convert to positive if required
	- —Multiply as above
	- —If signs were different, negate answer
- Solution 2
	- —Booth's algorithm

Booth's Algorithm

Example of Booth's Algorithm

Examples Using Booth's Algorithm

How it works

• Consider a positive multiplier consisting of a **block of 1s** surrounded by 0s. For example, 00111110.

The product is given by :
 $M \times 0.01111110'' = M \times (2^5 + 2^4 + 2^3 + 2^2 + 2^1) = M \times 62$

- where M is the multiplicand.
- The number of operations can be **reduced** to **two** by rewriting the same as

 $M \times$ "0 1 0 0 0 0 0 0 - 1 0" = $M \times (2^6 - 2^1) = M \times 62$.

• Note that:

2n + 2n-1 +…+2n-k = 2n+1 – ²n-k

How it works

- So, the product can be generated by one addition and one subtraction
- In Booth's algorithm
	- —perform subtraction when the first 1 of the block is encountered (1 - 0)
	- —perform addition when the last 1 of the block is encountered $(0 - 1)$
- $(1 0)$ and $(0 1)$ are observed from Q_{0} – $\mathsf{Q}_{\text{-}1}$ (see previous example)

Division

- More complex than multiplication
- Negative numbers are really bad!
- Based on long division

Division of Unsigned Binary Integers

Real Numbers

- Numbers with fractions
- Could be done in pure binary $-1001.1010 = 2^3 + 2^0 + 2^{\text{-}1} + 2^{\text{-}3} = 9.625$
- Where is the binary point?
- Fixed?
	- —Very limited
- Moving?
	- —How do you show where it is?

Exponential Notation

• The following are equivalent representations of 1,234

The representations differ in that the decimal place –the "point" -- "floats" to the left or right (with the appropriate adjustment in the exponent).

p. 122

Parts of a Floating Point Number

In binary, the significand is represented by 1s and 0's, and the

Base = 2. E.g. -1.1111011×2^3

Biased Representation

- Other type of binary number representations
- A fixed value called Bias is added for the binary value
- \bullet • Typically, the bias equals $(2^{k-1}-1)$, where K is the number of bits in the binary number.
- E.g for 4 bit representation,
	- $-$ The bias value= $2^{4-1}-1=$ 7
	- -Representation of $+8 = 1111$
	- –Representation of -7 = 0000

Representation Format

Floating Point

- +/- .significand x 2^{exponent}
- Misnomer
- Point is actually fixed between sign bit and body of mantissa
- Exponent indicates place value (point position)

Floating Point Examples

(a) Format

(b) Examples

Signs for Floating Point

- Mantissa is stored in 2s compliment
- Exponent is in excess or **biased notation**
	- —e.g. Excess (bias) 128 means
	- —8 bit exponent field
	- —Pure value range 0-255 (8-bit)
	- —Subtract 127 to get correct value

Bias= 28-1-1= 127

- —Range of exponent values: -127 to +128
	- Ear representation: bias must he added for ar - For representation: bias must be added for any value
	- $-$ Exponent value -127 is represented as -127+127 = 0 (00000000:Min value)
	- $-$ Exponent value $+128$ is represented as $128+127=$ 255 (11111111:Max value)

Normalization

- FP numbers are usually normalized
- i.e. exponent is adjusted so that leading **bit (MSB) of Significand is 1**
- Since it is **always 1** there is no need to store it
- (c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point
- E.g.,
	- \rightarrow Significand \rightarrow **¹⁰¹⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰ 1.101² = 1.625¹⁰**
	- —Represents…

Converting <u>from</u> Floating Point

• E.g., What decimal value is represented by the following 32-bit floating point number?

 $C17B0000₁₆$

 $C17B0000_{16} =$

• Step 2
\n–Find "real" exponent, *n*
\n
$$
-n = E - 127
$$

\n $= 10000010_2 - 127$
\n $= 130 - 127$
\n $= 3$

• Step 3

- —Put S, M, and *n* together to form binary result
- —(Don't forget the implied "1." on the left of the mantissa.)

$$
-1.1111011_2 \times 2^n =
$$

$$
-1.1111011_2 \times 2^3 =
$$

$$
-1111.1011_2
$$

• Step 4

—Express result in decimal

Converting <u>to</u> Floating Point

• E.g., Express 36.5625_{10} as a 32-bit floating point number (in hexadecimal)

• Step 1

—Express original value in binary

$$
36.5625_{10}
$$
 =

100100.1001₂

• Step 2—Normalize

 $100100.1001₂ =$

 1.001001001_{2} x 2^{5}

• Step 4

 —Put S, E, and M together to form 32-bit binary result

• Step 5 —Express in hexadecimal

 0 10000100 001001001000000000000000 $_2$ = 0100 0010 0001 0010 0100 0000 0000 00002 ⁼ 4 2 1 2 4 0 0 0_{16}

Answer: 42124000_{16}

FP Ranges

• For a 32 bit number

—8 bit exponent
—+/- 2²⁵⁶ ≈ 1.5 x 10⁷⁷

- Accuracy
	- —The effect of changing lsb of mantissa
	- —23 bit mantissa 2⁻²³ ≈ 1.2 x 10⁻⁷
	- —About 6 decimal places

Expressible Numbers

(b) Floating-Point Numbers

Density of Floating Point Numbers

IEEE 754

- Standard for floating point storage
- 32 and 64 bit standards
- 8 and 11 bit exponent respectively
- Extended formats (both mantissa and exponent) for intermediate results

IEEE 754 Formats

(a) Single format

(b) Double format

FP Arithmetic +/-

- Check for zeros
- Align significands (adjusting exponents)
- Add or subtract significands
- Normalize result

FP Addition & Subtraction Flowchart

FP Arithmetic x/\div

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

Floating Point Multiplication

Floating Point Division

