

ENCS336 – 1st Exam

2nd Semester 07/08 Date: 20/4/2008

ID :_____

Name :_____

Section 1Dr. Emad HamadehSection 2Eng. Mamoun Nawahdah

Instructions:

- You have 100 minutes, so budget your time carefully!
- Turn OFF your mobile.
- To make sure you receive credit, please <u>write clearly</u> and show your work.
- We will not answer questions regarding course material.

Question	Maximum	Your Score
1	15	
2	15	
3	15	
4	15	
5	20	
6	20	
Total	100%	

Question 1 (15 marks) :

a) TRUE or FALSE :

TRUE	FALSE	
* *	0	Design of common bus for 16 registers of 32-bits each requires 32 multiplexers
0	* *	Performance of x machine is better than y machine if x has more execution time than y
0	* *	Extended PCI bus has 32-bit data/address lines and twice the speed of standard PCI
0	€ [™]	Number of address lines for a 512K x 16 memory organization is 16
0	* *	The clock rate for a clock with a period of 250 nanosecond is 4 GHz
0	*	MIPS stands for Multi Instructions Per Second
* *	0	In Booth's Algorithm, the number of Shift Arithmetic Right operations is equal to the number of bits in M or Q
* *	0	The ASCII code for the character '7' is 55 in decimal
0	* *	All Intel x86 family share the same basic organization in order to maintain code backwards compatibility
0	*	ENIAC was a binary machine programmed manually by switches

Question 2 (15 marks) :

a) State whether the following none related register transfer statements are legal or not?

If not, why?

1. D.T: $AR \leftarrow AR'$, $AR \leftarrow 0$

Illegal, can't assign to operations to AR at once

2. $X : PC \leftarrow AR$

Legal

b) Use register transfer statements with required control to represent the following pseudo code:

If (x = 1) then R1 gets R2 else If (y = 1) then R1 gets R3

> X: $R1 \leftarrow R2$ X'Y: $R1 \leftarrow R3$

c) If operand **A** is **01001**_b, and operand **B** is unknown, what logic operation and **B** value would you use to obtain a **10001**_b result? Draw any needed logic blocks.

A XOR B with B = 11000b, Draw an XOR gate

Question 3 (15 marks):

a) A system with three I/O devices: printer, disk, and communication line. The devices have interrupt priority of **3** for printer, **6** for disk, and **8** for communication line such that the higher the number the higher the priority, and vv. It takes any ISR **10** time-units to process its interrupt. A User Program starts executing at t = 0. If a disk interrupt occurs at t = 20, and a communication line interrupt occurs at t = 28, and a printer interrupt occurs at t = 35, when will each ISR completes its execution of its interrupt?

Communication Line Interrupt completes at t = 38 Disk Interrupt completes at t = 40 Printer Interrupt completes at t = 50

- b) Computer A, running at **500 MHz**, has a program with the following instruction classes, CPI budget, and number of instructions distribution.
 - 1. Find the Average CPI for running the above program?

Ave CPI = 3x(50/100) + 2x(20/100) + 4x(40/100)= 3.1

Instruction Class	CPI	Number of Instructions
А	3	50
В	2	20
С	4	30

2. Find the CPU execution time for computer A?

```
CPU Time = (# of Instructions) x (Ave. CPI) x (Clock Cycle Time)
= 100 \times 3.1 \times (1/(500 \times 10^6)) = 620 \text{ ns}
```

Question 4 (15 marks):

A **2K x 16** memory, shown below, is used to store instructions set and data for a basic computer architecture based machine. If first instruction is stored at memory address location **400h**, fill in the table below with the values for **PC**, **IR**, and **AC**? Initial values mean the values of the registers prior to fetching the first instruction from memory.

Opcode **1h** is to load AC from memory

Opcode **3h** is to store AC to memory, while

Opcode 5h is to add to AC from memory.

(All numbers are in hex representation)

Instruction Phase	РС	IR	AC
Initial Values	400		
After 1 st Instruction Fetch Cycle	401	1 F F 0	
After 1 st Instruction Execution Cycle	401	1 F F 0	0100
After 2 nd Instruction Fetch Cycle	402	5 F F 3	0100
After 2 nd Instruction Execution Cycle	402	5 F F 3	0 F 0 F

Memory Address	Instructions & Data
:	:
400	1 F F 0
401	5 F F 3
402	3 F F 2
••	:
FF0	0100
FF1	5000
FF2	3100
FF3	0 E 0 F
•	:

Question 5 (20 marks):

a) What is the range of two's complement integers that can be represented using **12 bits**? Give your answers in decimal.

 $-2^{11} \leftrightarrow +2^{11}-1$ -2048 ←→ +2047

b) Given the bit pattern:

 $1011 \ 1111 \ 1110 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000$

What is the value (in *decimal*) that this pattern represent, assuming that it is: 1. A two's complement integer?

$$\begin{array}{rcl} -2^{30} + 2^{21} &=& -(2^9 + 1) \times 2^{21} \\ &=& -(513 \times 2 \times 1024 \times 1024) \\ &=& -1.075 \times 10^9 \end{array}$$

2. A single format floating-point number?

1 0111 1111 110 0000 0000 0000 0000 0000

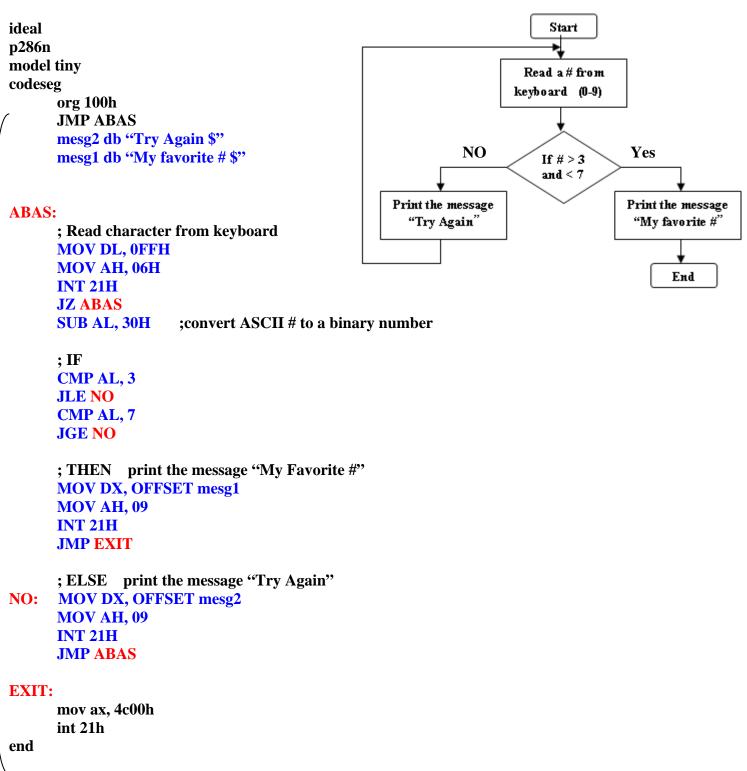
$$\begin{array}{rclrcl} S &=& 1\\ exponent &=& 2^7-1=128-1=127\\ fraction &=& 2^{-1}+2^{-2}=0.5+0.25=0.75\\ N &=& (-1)^1\times 1.75\times 2^{127-127}=-1\times 1.75\times 1=-1.75 \end{array}$$

d) Consider the division of a **dividend X=8** and a **Divisor D=3** using unsigned algorithm. Show your work step by step in the following table?

Q ← Dividend (8d → 1000b) M ← Divisor (3d → 0011b) -M ← (-3d → 1101b)

	Α	Q	Μ	Comments
	0000	1000	0011	Initial value
· ·				
N=4	0001	0000		Shift left A,Q
	1110	0000		A ← A - M
	0001	000 0		A < 0 ? YES Restore
NL Q	0010	0000		
N=3	0010	0000		Shift left A,Q
	1111	0000		A ← A - M
	0010	00 00		A < 0 ? YES Restore
NL Q	0100	0000		
N=2	0100	0000		Shift left A,Q
	0001	0000		A ← A - M
	0001	0001		A < 0 ? NO Restore
N=1	0010	0010		Shift left A,Q
-	1111	0010		A ← A - M
F	0010	0010		A < 0 ? YES Restore
I	Reminder	Quotient		1

Question 6 (20 marks):


a) Write an assembly code to find the average of two numbers stored in **AL** and **DL** using <u>ONLY</u> the following assembly instructions:

- **MOV** \rightarrow move
- **ADD** → add
- **ADC** \rightarrow add with carry
- **SAR** \rightarrow shift arithmetic right

MOV AH, 00H ADD AL, DL ADC AH, 00H SAR AX, 1

Result in AL is the average of AL and DL

b) Convert the following flow chart to an assembly program

c) Show the absolute addresses formed by SP contains 0040h and SS contains B42Ah

SS:SP → B42A:0040 →

B42Ah * 16d + 0040h → B42E0h B42Ah * 10h + 0040h → B42E0h