

Computer Organization and Assembly Language – ENCS336

Midterm – Summer 2022

Mark
perform arithmetical or logic operation sequences
in the form of 0s & 1s
rieves, and processes the data
struction set closest to the machine language of
age D) C/C++
he data received from the user into a computer
Init

5. The Stack machine uses instruction of

(A) Two-addressing

CPU

(B) One-addressing

(B) Memory

(C) Logical gates

(D) Index addressing

(D) Transistor

6. The instructions register set or in the			ocation to anothe	r either in the processor's in	nternal
(A) Data transfer	instructions.	(B) Progr	am control instru	ctions.	
(C) Input-output	instructions.	(D) Logi	cal instructions		
7. A computer's me address if the small				many bits are required for	memory
A)13	B) 8	C) 10	D) 6		
8. If a register conta of the register after		1100)2 is subjecte	ed to arithmetic s	nift right operation, then the	content
(A) 01100110		(B) 11	100110		
(C) 10011001		(D) 10	0011000		
9. If an 8-bit registeright 2 bits become		e of -12 (using 2's	s complement), th	ne register value after apply	ing rotate
(A) -61	(B)+61	(C) -4	(D) +4		
10. The addressing	mode in which the	ne address of an in	nstruction's opera	nd is stored into a register	
A. Register direc	t B Reg	ister indirect	C. Direct	D. Indirect	
11. There can be m	ultiple computer	organizations for	the same comput	er architecture	
A. True		B. Fals	e		
12. Which of the fo	ollowing compute	r memory is faste	st?		
A) Register	B) Hard disk	C) RAM	D) None of the	above	
13. Computer addre	ess bus is				
A) Multidirectional	B) Bidirection	al CUnidirection	onal D) None	of the above	
14. Where is the de	coded instruction	stored?		ě	
A) MAR	B) MDR	C) F	PC (D) IR	
15. In order to rese	t (make zero) the	least significant b	oit of a 8-bit regis	ter R without changing the	other bits,

B) AND R, R, 0x1 C) OR R, R, 0x1 D AND R, R, 0xFE A) XOR R, R, 0x1

we use:

Ouestion 1 answers:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	C	B	A	C	A	A	B	B	B	A	A	C	D	D

Ouestion 2: [15 marks]

A computer has the following instruction and integer format. The instruction consists of 3 bits opcode, 1 bit (M) that indicate the addressing mode, and the remaining bits are used either for immediate or address. When M=0 => immediate, when M=1 => memory direct. The memory is 2-bytes addressable, i.e., each memory location is 16 bits. Assume that the programs (instructions) should be stored in the memory starting from address 0, while data should be stored starting from address 80H. Unless otherwise stated, assume that the initial content of all registers and memory is 0. All numbers are in hexadecimal.

			· · · · · · · · · · · · · · · · · · ·		
	Opcode (3bits)	M (1bit)	Immediate/Address (12	bits) Main M	emory
		Instr	uction format	Address	Content
	Sign 1 bit		Magnitude (15 bits)	0	0x8064
	Integer		Widginitude (20 2105)	1	0x7080
	2	0x5082			
The computer supports the following operations:					0xA000
					,
011: Add immediate /fr	om memory to AC			0x80	0x0046
100: Load immediate/from memory to AC					0x0064
100. Load Illilliediate/Il	om memory to he			0x82	0x0000
001: Subtract immediat	e /from memory fro	om AC			

010: Store AC to Memory

Load [80]

101: Jump to Memory address

1. Starting with zero's initial values in all register	rs, fill in the fo	ollowing table	by executing	four instruc	tions. [5pts]
Instruction	PC	AC	IR	MAR	MBR
Initial values	0	0	0	0	0
After executing first instruction	1	064	8064	0	8064
After executing second instruction	2	OAA	4080	80	0046
After executing third instruction	3	DAA	5082	82	ODAA
After executing fourth instruction	0	DAA	A 000	3	A000

Write assembly code to add memory location 0x80 to memory location 0x81 and store the result in memory location 0x82. [3pts]

the machine code for the instruction that jumps to the instruction at address 8.[4pts]

1010000000000000000 => 0xA008

4. What is the range of the signed integer values that can be stored in one memory cell? [3pts]

 $-2-1 \longrightarrow +2-1$

2.

Question 2: [20 marks]

A) What is interrupt? Mention three sources that make interrupt? [4pts]

A mechanism by which other Modules (e.g. I/6) may Interrupt normal sequence of processing to improve process efficiency.

D Sw program e.g. divide by zers.

3 HW 7/0

9) Hw Failure -

B) Assume we have four devices D1, D2, D3 and D4. Device D4 has the highest priority, then device D2 followed by device D1 and then D3 has the lowest priority. A user program begins at time t = 0 sec.

- at t = 10 sec D2 interrupt occurs and it needs 20 sec to be handled

- at t = 15 sec D4 interrupt occurs and it needs 15 sec to be handled

- at t = 20 sec D1 interrupt occurs and it needs 10 sec to be handled

- at t = 25 sec D3 interrupt occurs and it needs 25 sec to be handled

1. Assume using sequential multiple interrupts, complete the table below: (8 pts)

Device	Interrupt handling start time	Interrupt handling end time
D1	45	55
D2	10	30
D3	55	80
D4	30	45

2. Now Assume using nested multiple interrupts, complete the table below: (8 pts)

Device	Interrupt handling start time	Interrupt handling end time
D1	45	55
D2	10	45
D3	55	80
D4	15	30