Computer Organization

Computer Arithmetic

Chapter 9

Arithmetic -- The heart of instruction execution
|

Instruction
Fetch

l

Instruction
Decode

l

Operand
Fetch

e

Result
Store

l

Next

Instruction
|

Arithmetic & Logic Unit

e Does the calculations

e Everything else in the computer is there
to service this unit

e Handles integers
e May handle floating point (real) numbers

e May be separate FPU (maths co-
Drocessor)

e May be on chip separate FPU (486DX +)

ALU Inputs and Outputs

Control ’_

Unit Flags

ALU

Registers > Registers

Positional Number Systems

Different Representations of Natural Numbers

XXVII' Roman numerals (not positional)
27 Radix-10 or decimal number (positional)
11011, Radix-2 or binary number (also positional)

Fixed-radix positional representation with k digits

Number Nin radix r=(d,_,d,, ... d,q,),

Value = d,_;xr¥' +d, oxr®2 + ... + d;xr+d,

Examples: (11011), = 1x24%+ 1x23 + 0x22+ 1x2 + 1 = 27
(2103), = 2x43 + 1x42 + 0x4 + 3 = 147

Binary Numbers

*» Each binary digit (called bit) is either 1 or O

» Bits have no inherent meaning, can represent

» Bit Numbering

< Unsigned and signed integers

<~ Characters

Most Least
<% Floating-point numbers Significant Bit Significant Bit
< Images, sound, etc. 7 6 5 4 3 2 1 0

1/0(0/1|1 1|01

27 26 25 24 23 22 21 20

< Least significant bit (LSB) is rightmost (bit 0)
< Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

Hexadecimal Integers
* 16 Hexadecimal Digits: 0 -9, A—-F

** More convenient to use than binary numbers

Binary, Decimal, and Hexadecimal Equivalents

Binary Decimal | Hexadecimal Binary Decimal | Hexadecimal
0000 0 0 1000 8 8

0001 | | 1001 9 9

0010 2 2 1010 10 A

0011 3 3 1011 Il B

0100 4 4 1100 12 C

0101 5 5 1101 13 D

0110 6 6 1110 14 E

0111 7 7 111 15 F

Converting Binary to Hexadecimal

“ Each hexadecimal digit corresponds to 4 binary bits
“ Example:
Convert the 32-bit binary number to hexadecimal

1110 1011 0001 0110 1010 0111 1001 O10O0

%+ Solution:

1110|1011 (0001 | 0110|1010 | 0111|1001 | 0100

Integer Storage Sizes

Byte | 8
Half Word 16 Storage Sizes
Word 32
Double Word 64

Storage Type Unsigned Range Powers of 2
Byte 0 to 255 0to (28— 1)
Half Word 0 to 65,535 0to (216 —1)
Word 0 to 4,294,967,295 0to (2%2—1)
Double Word 0 to 18,446,744,073,709,551,615 0to (264 —1)

What is the largest 20-bit unsigned integer?

Answer: 220 — 1 = 1,048,575

Sighed Integers

% Several ways to represent a signed number
< Sign-Magnitude
< Biased
< 1's complement
< 2's complement

“ Divide the range of values into 2 equal parts
< First part corresponds to the positive numbers (= 0)
< Second part correspond to the negative numbers (< 0)

“* Focus will be on the 2's complement representation
< Has many advantages over other representations
< Used widely in processors to represent signed integers

Sign Bit

*» Highest bit indicates the sign

“ 1 =negative Sigrl\ bit

“ 0 = positive ot t]o Negative
|
cjojfo 0| 1]0]1]0 Positive

*For Hexadecimal Numbers, check most significant digit
oIf highest digit is > 7, then value is negative
Examples: 8A and C5 are negative bytes

*B1C42A00 is a negative word (32-bit signed integer)
*Problems
*Need to consider both sign and magnitude in arithmetic
*Two representations of zero (+0 and -0)

Two's Complement Representation

“* Positive numbers
< Signed value = Unsigned value

“* Negative numbers
< Signed value = Unsigned value — 2"
< n=number of bits

“ Negative weight for MSB

< Another way to obtain the signed
value is to assign a negative weight
to most-significant bit

1101110, 1]0]0

-128 64 32 16 8 4 2 1

=-128+32+16+4 =-76

8-bit Binary | Unsigned | Signed
value value value
00000000 0 0
00000001 1 +1
00000010 2 +2
01111110 126 +126
01111111 127 +127
10000000 128 -128
10000001 129 -127
11111110 254 -2
11111111 255 -1

Forming the Two's Complement

starting value

00100100 = +36

step1: reverse the bits (1's complement) 11011011
step 2: add 1 to the value from step 1 + 1
sum = 2's complement representation 11011100 = -36

Sum of an integer and its 2's complement must be zero:
00100100 + 11011100 = 00000000 (8-bit sum) = Ignore Carry

Another way to obtain the 2's complement:

Start at the least significant 1
Leave all the Os to its right unchanged
Complement all the bits to its left

Binary Value

2

00100

,—|east

i]o O significant 1

's Complement

11011

1Jo0

Sign Extension

Step 1: Move the number into the lower-significant bits
Step 2: Fill all the remaining higher bits with the sign bit
“ This will ensure that both magnitude and sign are correct
“ Examples
< Sign-Extend 10110011 to 16 bits
10110011 = -77 = [11111111](0o110011

< Sign-Extend 01100010 to 16 bits
01100010 = +98 [[oooooomllooow = 498

=77

“ Infinite Os can be added to the left of a positive number
“ Infinite 1s can be added to the left of a negative number

Ranges of Signed Integers

For n-bit signed integers: Range is -2 to (2™1 — 1)

Positive range: 0 to 2™ — 1

Negative range: -2™1 to -1

Storage Type Signed Range Powers of 2

Byte —128 to +127 -27to (27— 1)

Half Word —32,768 to +32,767 —215to0 (21° - 1)

Word —2,147,483,648 to +2,147,483,647 —231to (231 - 1)
—9,223,372,036,854,775,808 to

Double Word —263 10 (263 - 1)

+9,223,372,036,854,775,807

Practice: What is the range of signed values that may be stored in 20 bits?

Geometric Depiction of Twos
Complement Integers

subtraction addition

of positive of positive

numbers 0000 numbers
1111 0001

0010

1101 0011

0100

0101

0110

9-8-T7-6-5-4-3-2-1012345678Y9Y

(a) 4-bit numbers

addition
of positive
numbers

subtraction
of positive
numbers

000...0

010...0

=1 1

(b) n-bit numbers

Two's Complement Special Cases

% Case 1

» 0= 00000000
Bitwise not 11111111
Add 1 to LSB +1
Result 1 00000000
Overflow is ignored, so:
» -0=0V

% =128 = 10000000

% bitwisenot 01111111
Add 1 to LSB +1
Result 10000000
Monitor MSB (sign bit)

It should change during negation

.0

e

*

e

*

e

*

e

*

e

L)

e

*

e

*

e

*

e

*

Two's Compliment - Summery

Range

-2 through 2! - 1

Number of Representations
of Zero

One

Negation

Take the Boolean complement of each bit of the corresponding
positive number, then add 1 to the resulting bat pattern viewed as
an unsigned integer.

Expansion of Bit Length

Add additional bat positions to the left and fill in with the value
of the original sign bit.

Overflow Rule

If two numbers with the same sign (both positive or both
negative) are added, then overflow occurs if and only if the result
has the opposite sign.

Subtraction Rule

To subtract B from A, take the twos complement of B and add 1t
to A.

Benefits:

e One representation of zero
» Arithmetic works easily (see later)

Character Storage

% Character sets
< Standard ASCII: 7-bit character codes (0 — 127)
< Extended ASCII: 8-bit character codes (0 — 255)
< Unicode: 16-bit character codes (0 — 65,535)

< Unicode standard represents a universal character set
= Defines codes for characters used in all major languages
» Used in Windows-XP: each character is encoded as 16 bits

< UTF-8: variable-length encoding used in HTML
= Encodes all Unicode characters
= Uses 1 byte for ASCII, but multiple bytes for other characters

“* Null-terminated String
< Array of characters followed by a NULL character

Binary Addition

% Start with the least significant bit (rightmost bit)
“ Add each pair of bits

“ Include the carry in the addition, if present

carry 1 1 1 1

B

bit position: 7 6 5 4 3 2 1 0 (83)

Binary Subtraction

“* When subtracting A — B, convert B to its 2's complement
“ Add A to (-B)

borrow: 1 1 1 carry: 1 1 1 1
01001101 01001101
- > +
00111010 11000110 (2'scomplement)
0O001001 1 00010011 (same result)

“ Final carry is ignored, because
< Negative number is sign-extended with 1's
< You can imagine infinite 1's to the left of a negative number
< Adding the carry to the extended 1's produces extended zeros

Hardware for Addition and Subtraction

B Register | A Register I

Complementer

O = overflow bit
SW = Switch (select addition or subtraction)

Carry and Overflow

% Carry is important when ...
< Adding or subtracting unsigned integers
< Indicates that the unsigned sum is out of range
< Either < 0 or >maximum unsigned n-bit value

% Overflow is important when ...
< Adding or subtracting signed integers
< Indicates that the signed sum is out of range

“ Overflow occurs when
< Adding two positive numbers and the sum is negative
< Adding two negative numbers and the sum is positive
< Can happen because of the fixed number of sum bits

Carry and Overflow Examples

“* We can have carry without overflow and vice-versa
“+ Four cases are possible (Examples are 8-bit numbers)

1 1 1 1 1 1

Ojo0of{o0|O0O 1|1 |1 1 15 O/o0jO0o |01]|1]1 1 15
+ +
o000} 1T]0]0]O0 8 111717171000 | 248(-8)
O/ 0|01 |O0O|1T[1]1 23 o, 000|001 /|1 1 7
Carry =0 Overflow =0 Carry =1 Overflow =0
1 1 1 1
o|1{0j0 1T 1 1 1 79 111]0]1]1]0/|1]|0218(-38)
+ +
O/|1,0]0[0]0]00 64 110011101157 (-99)
1/0[{0(O0O 1T [1T]1]1 143 o111]0]1T 11 119

(-113)
Carry =0 Overflow = 1 Carry =1 Overflow = 1

Addition of Numbers in Twos Complement
Representation

1001 = =7 1100 = —4
+0101 = 5 +0100 = 4
1110 = =2 10000 = O
(@) (7)) + (+5) (b) (-4) + (+4)
0011 = 3 1100 = —4
+0100 = 4 +1111 = =1
0111 = 7 11011 = =5
(c) (+3) + (+4) (d) (—4) + (-1)
0101 = 5 1001 = =7
+0100 = 4 +1010 = —6
1001 = Overflow 10011 = Overflow
(e) (+5) + (+4) & 7))+ (-6)

Subtraction of Numbers in Twos Complement
Representation (M - S)

— 0010 = 2 0101 = 5 —

+1001 = =7 +1110 = =2
1011 = =5 10011 = 3

(a) M = 2 = 0010 (by M = 5 = 0101
S =7 = 0111 S =2 = 0010

—8 = 1001 —S = 1110
1011 = =5 0101 = 5

+1110 = =2 +0010 = 2

11001 = =7 0111 = 7

(c) M ==5 = 1011 (dy M = 5 = 0101
S = 2 = 0010 S =—2 = 1110

—S = 1110 —-S = 0010
0111 = 7 1010 = —6

+0111 = 7 +1100 = —4

1110 = Overflow 10110 = Overflow

(e) M = 7 = 0111 (f) M = —6 = 1010
S = =7 = 1001 S = 4 = 0100
—S = 0111 —-S = 1100

Unsigned Multiplication

“* Paper and Pencil Example:

Multiplicand 1100, = 12
Multiplier X 1101, = 13
1100 . oo
0000 Binary rnglhp ication Is easy
1100 0 x muIt!pI!cand =0 N
1100 1 x multiplicand = multiplicand
Product 10011100, = 156

“* m-bit multiplicand x n-bit multiplier = (m+n)-bit product
% Accomplished via shifting and addition

% Consumes more time and more chip area

Unsigned Binary Multiplication

Multiplicand
Mpg| »= = My
L o7
. Add Shift and Add
1-Bit Adder g
! Control Logic
Shift Right
-
" Ay ——->PQ,..; = = = Q
g Multiplier

(a) Block

Diagram

Flowchart for Unsigned Binary

Multiplication

C,A 0

M Multiplicand
Q Multiplier
Count n

C A

Shift C, A, Q

Count Count -1

A+M

Product
inA,Q

Execution of Example

o N

A
0000

LEld
0101

0010

1101
0110

0001
1000

Q
1101

LU
1110

1111

1111
1111

1111
1111

M
1011

i Kol B
1041

1011

1011
1011

1011
1011

Initial Values

Add }_ First
shift Cycle
Second
Cycle

§
Add }_ Third
§

Shift

shift Cycle

Fourth
Cycle

Add
Shift

Multiplying Negative Numbers

e This does not work!

e Solution 1
—Convert to positive if required
—Multiply as above
—If signs were different, negate answer

e Solution 2
—Booth’s algorithm

Booth’s Algorithm

A 0Q, 0

M Multiplicand
Q Multiplier
Count n

Arithmetic Shift

Right: A, Q, Q-l
Count Count-1

Example of Booth’s Algorithm

A
0000

1001
1100

1110

0101
0010

0001

Q
0011

0011
1001

0100

0100
1010

0101

Q-1
0

M
1 B |

0111
0111

0111

0111
0111

0111

Initial Values

A A - M}_ First
Shift Cycle

. Second
Shaift }' Cycle
A A+ M }_ Third
shift Cycle
Shi £t }_ Fourth

Cycle

Examples Using Booth's Algorithm

0111 0111

x0011 (0) x1101 (0)
11111001 1—-0 11111001 1-0
0000000 1-1 0000111 0—1
000111 0-1 111001 1-0
00010101 (21) 11101011 (=21)

(@) (7) x (3)=(21) (b) (7) x (=3) = (-21)

1001 1001

x0011 (0) x1101 (0)
00000111 1-0 00000111 1-0
0000000 =1 1111001 0—-1
111001 0—1 000111 1-0
11101011 (=21) 00010101 (21)

(¢) (<7) x (3) =(-21) (d) (-7) x (-3)=(21)

How it works

e Consider a positive multiplier consisting of a block
of 1s surrounded by 0s. For example, 00111110.
The product is given by :

Mx"00111110"=Mx (2 +2"+2°+2°+2") = M x 62
e where M is the multiplicand.

e The number of operations can be reduced
to two by rewriting the same as

Mx"01000000-10"= M x (2°-2") = M x 62.

e Note that:
2" + 201 4,420k = 2n+1 — 2Nk

How it works

e S0, the product can be generated by one
addition and one subtraction

e In Booth’s algorithm

—perform subtraction when the first 1 of the
block is encountered (1 - 0)

—perform addition when the last 1 of the block
iIs encountered (0 - 1)

e (1-0)and (0 -1) are observed from
Qo — Q.1 (see previous example)

Division
e More complex than multiplication

e Negative numbers are really bad!
e Based on long division

Division of Unsigned Binary Integers

00001101 ° Quotient

Divisor—>1011‘10010011 ‘ Dividend
1011
001110

Partlaq < 1011,)
Remainders —

001111

1011 .
100 ° Remainder

Real Numbers

e Numbers with fractions

e Could be done in pure binary
—1001.1010 = 23 + 20 +2°1 + 2-3=9,625
e Where is the binary point?
e Fixed?
—Very limited
e Moving?
—How do you show where it is?

Exponential Notation

e The following are equivalent

representations pf 1 ,2|34
123,400,0 x 1072
_ %
12,340 0 x 107 The representations differ
1,234.0 x 100 [in that the decimal place —
1234 < 102 the “point” -- “floats” to
the left or right (with the
12:34 x 1072 : : .
appropriate adjustment 1n
1.234 x 10° \the exponent).
0,1234 x 10°

p. 122

Parts of a Floating Point Number

Exponent

-0.9876 x 1O >

1 -I- | Sign of

Sign of Location of exponent

mantissa| | decimal point Significand

/
/

or Mantissa

Base

In binary, the significand is represented by 1s and 0’s, and the

Base =2.E.g.-1.1111011 x 23

Biased Representation

e Other type of binary number representations

e A fixed value called Bias is added for the
binary value

e Typically, the bias equals (2%1-1), where K is
the number of bits in the binary number.

e E.g for 4 bit representation,
-The bias value= 241-1=7
- Representation of +8 = 1111
- Representation of -7 = 0000

Representation Format

32 bits

% Significand (23 bits)

1 Exponent (8 bits)

1 Sign of Sinificand(1 bit)

Floating Point

sign of
significand 8 bits > < 23 bits
\T biased exponent significand

(a) Format

e +/- .significand x 2&xponent
e Misnomer

e Point is actually fixed between sign bit and body
of mantissa

e Exponent indicates place value (point position)

Floating Point Examples

sign of
significand , _
44— 8 bils > 23 bits »
\ biased exponent significand
(a) Format
1.1010001 x 2*°*°" = 0 10010011 10100010000000000000000 = 1.638125 X 2°°
-1.1010001 X 2":"'?" = 1 10010011 10100010000000000000000 = -1.638125 x 22°
1.1010001 X 2‘_‘”_‘”“ = 0 01101011 10100010000000000000000 = 1.638125 x 2~ 2¢
-1.1010001 x 2-*0100 - 3 01101011 10100010000000000000000 = -1.638125 x 2~30

(b) Examples

Signs for Floating Point

e Mantissa is stored in 2s compliment

e Exponent is in excess or biased notation
—e.g. Excess (bias) 128 means
—8 bit exponent field
—Pure value range 0-255 (8-bit)
—Subtract 127 to get correct value
- Bias= 28%-1-1= 127
—Range of exponent values: -127 to +128

— For representation: bias must be added for any value

- Exponent value -127 is represented as -127+127 =
0 (00000000:Min value)

— Exponent value +128 is represented as 128+127 =
255 (11111111:Max value)

Normalization

e FP numbers are usually normalized

e i.e. exponent is adjusted so that leading
bit (MSB) of Significand is 1

e Since it is always 1 there is no need to
store it

e (c.f. Scientific notation where numbers
are normalized to give a single digit
before the decimal point

e E.q.,
—Significand —» 10100000000000000000000

—Represents... 1.101, = 1.625,,

Converting from Floating Point

e E.g., What decimal value is represented
by the following 32-bit floating point
number?

C17B0000,,

e Step 1
—EXxpress in binary and find S, E, and M

C17B0000,, =
1 10000010 11110110000000000000000,
S E M

1 = negative
0 = positive

o Step 2

—Find “real” exponent, n
—n =E-127
= 10000010, - 127
= 130 - 127

=3

e Step 3
—Put S, M, and n together to form binary result

—(Don’t forget the implied “1.” on the left of the
mantissa.)

-1.1111011, x 2" =
-1.1111011, x 2° =

~1111.1011,

e Step 4
—EXxpress result in decimal

~1111.1011,
15 L i gs
23 =0.125
24 =0.0625

0.6875

/
Answer: -15.6875

Converting to Floating Point

e E.g., Express 36.5625,, as a 32-bit
floating point number (in hexadecimal)

e Step 1
—EXxpress original value in binary

36.5625,, =

100100.1001,

o Step 2

—Normalize

100100.1001, =

1.001001001, x 2°

e Step 3
—Determine S, E, and M

_+1.OOlOO1OOl2 X 2=
S M n — \E =n+127
=5+ 127
=132
=10000100,

S = 0 (because the value 1s positive)

e Step 4

—Put S, E, and M together to form 32-bit binary
result

10000100 00100100100000000000000,

2
S E M

e Step 5

—EXxpress in hexadecimal

0 10000100 00100100100000000000000, =
0100 0010 0001 0010 0100 0O0OOO 0OOOO 0000, =

4 2 1 2 4 0 0 0.,

Answer: 42124000,

FP Ranges

e For a 32 bit number
—8 bit exponent
—+/- 2256~ 1.5 x 1077

e Accuracy

—The effect of changing Isb of mantissa
—23 bit mantissa 243= 1.2 x 10/
—About 6 decimal places

Expressible Numbers

Expressible Integers

A

| | | Number
. - .
=2 1 0 2.“ -1 Line
(a) Twos Complement Integers
Negative Positive
Underflow Underflow
Negative Expressible Negative Expressible Positive Positive
Overflow Numbers Numbers Overflow

Ay A A Ay A A
— el | v

_ 24y I8 —05 27 05 277 (1-22) 2128 Line

(b) Floating-Point Numbers

Density of Floating Point Numbers

-n 0 n 2n

4n

IEEE 754

e Standard for floating point storage
e 32 and 64 bit standards
e 8 and 11 bit exponent respectively

o Extended formats (both mantissa and
exponent) for intermediate results

IEEE 754 Formats

sign

bit 48 bils—pg 23 bits >
\T biased _
fraction
exponent
(a) Single format
it <— 11 bils—p= 52 bits
biased .
exponent fraction

(b) Double format

FP Arithmetic +/-

e Check for zeros

e Align significands (adjusting exponents)
e Add or subtract significands

e Normalize result

FP Addition & Subtraction Flowchart

SUBTRACT

Change
signol Y

normalized?

significand
left

Decrement
exponent

Report
underflow

RETURN

Results \\Yes | poung

result

FP Arithmetic x/=

e Check for zero

o Add/subtract exponents

o Multiply/divide significands (watch sign)
e Normalize

e Round

e All intermediate results should be in
double length storage

Floating Point Multiplication

MULTIPLY

Add
Exponents

Subtract Bias

Report
Underflow

Multiply
Significands

/=XXY

Normalize

Round RETURN

Subtract
Exponents

Add Bias

RETURN

Report
Underflow

Significands

/=X/Y

Normalize

Round RETURN

