

Computer Organization

Computer Arithmetic

Chapter 9

Arithmetic -- The heart of instruction execution

32

32

32

operation

result

a

b

ALU

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction

Arithmetic & Logic Unit

• Does the calculations

• Everything else in the computer is there
to service this unit

• Handles integers

• May handle floating point (real) numbers

• May be separate FPU (maths co-
processor)

• May be on chip separate FPU (486DX +)

ALU Inputs and Outputs

Different Representations of Natural Numbers

 XXVII Roman numerals (not positional)

 27 Radix-10 or decimal number (positional)

110112 Radix-2 or binary number (also positional)

Fixed-radix positional representation with k digits

Number N in radix r = (d
k–1dk–2 . . . d1d0)r

Value = dk–1×r k–1 + dk–2×r k–2 + … + d1×r + d0

Examples: (11011)2 = 1×24 + 1×23 + 0×22 + 1×2 + 1 = 27

 (2103)4 = 2×43 + 1×42 + 0×4 + 3 = 147

Positional Number Systems

Binary Numbers

� Each binary digit (called bit) is either 1 or 0

� Bits have no inherent meaning, can represent

� Unsigned and signed integers

� Characters

� Floating-point numbers

� Images, sound, etc.

� Bit Numbering

� Least significant bit (LSB) is rightmost (bit 0)

� Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

1 0 0 1 1 1 0 1

2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0

0 1 2 3 4 5 6 7

Most

Significant Bit
Least

Significant Bit

Hexadecimal Integers

� 16 Hexadecimal Digits: 0 – 9, A – F

� More convenient to use than binary numbers

Binary, Decimal, and Hexadecimal Equivalents

Converting Binary to Hexadecimal

� Each hexadecimal digit corresponds to 4 binary bits

� Example:

 Convert the 32-bit binary number to hexadecimal

 1110 1011 0001 0110 1010 0111 1001 0100

� Solution:

0100

4

1001

9

0111

7

1010

A

0110

6

0001

1

1011

B

1110

E

Integer Storage Sizes

What is the largest 20-bit unsigned integer?

Answer: 220 – 1 = 1,048,575

Storage Type Unsigned Range Powers of 2

Byte 0 to 255 0 to (28 – 1)

Half Word 0 to 65,535 0 to (216 – 1)

Word 0 to 4,294,967,295 0 to (232 – 1)

Double Word 0 to 18,446,744,073,709,551,615 0 to (264 – 1)

Byte 8

16

32

64

Half Word

Word

Double Word

Storage Sizes

Signed Integers

� Several ways to represent a signed number

� Sign-Magnitude

� Biased

� 1's complement

� 2's complement

� Divide the range of values into 2 equal parts

� First part corresponds to the positive numbers (≥ 0)

� Second part correspond to the negative numbers (< 0)

� Focus will be on the 2's complement representation

� Has many advantages over other representations

� Used widely in processors to represent signed integers

Sign Bit

� Highest bit indicates the sign

� 1 = negative

� 0 = positive

•For Hexadecimal Numbers, check most significant digit

•If highest digit is > 7, then value is negative

•Examples: 8A and C5 are negative bytes

•B1C42A00 is a negative word (32-bit signed integer)
•Problems

•Need to consider both sign and magnitude in arithmetic
•Two representations of zero (+0 and -0)

1 1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

Sign bit

Negative

Positive

Two's Complement Representation

8-bit Binary

value

Unsigned

value

Signed

value

00000000 0 0

00000001 1 +1

00000010 2 +2

.

01111110 126 +126

01111111 127 +127

10000000 128 -128

10000001 129 -127

.

11111110 254 -2

11111111 255 -1

� Positive numbers

� Signed value = Unsigned value

� Negative numbers

� Signed value = Unsigned value – 2n

� n = number of bits

� Negative weight for MSB

� Another way to obtain the signed
value is to assign a negative weight
to most-significant bit

= -128 + 32 + 16 + 4 = -76

1 0 1 1 0 1 0 0

-128 64 32 16 8 4 2 1

Forming the Two's Complement

Sum of an integer and its 2's complement must be zero:

00100100 + 11011100 = 00000000 (8-bit sum) ⇒ Ignore Carry

Another way to obtain the 2's complement:

Start at the least significant 1

Leave all the 0s to its right unchanged

Complement all the bits to its left

starting value 00100100 = +36

step1: reverse the bits (1's complement) 11011011

step 2: add 1 to the value from step 1 + 1

sum = 2's complement representation 11011100 = -36

Binary Value

= 00100 1 00

2's Complement

= 11011 1 00

least
significant 1

Sign Extension

Step 1: Move the number into the lower-significant bits

Step 2: Fill all the remaining higher bits with the sign bit

� This will ensure that both magnitude and sign are correct

� Examples

� Sign-Extend 10110011 to 16 bits

� Sign-Extend 01100010 to 16 bits

� Infinite 0s can be added to the left of a positive number

� Infinite 1s can be added to the left of a negative number

10110011 = -77 11111111 10110011 = -77

01100010 = +98 00000000 01100010 = +98

Ranges of Signed Integers

For n-bit signed integers: Range is -2n–1 to (2n–1 – 1)

Positive range: 0 to 2n–1 – 1

Negative range: -2n–1 to -1

Practice: What is the range of signed values that may be stored in 20 bits?

Storage Type Signed Range Powers of 2

Byte –128 to +127 –27 to (27 – 1)

Half Word –32,768 to +32,767 –215 to (215 – 1)

Word –2,147,483,648 to +2,147,483,647 –231 to (231 – 1)

Double Word
–9,223,372,036,854,775,808 to

+9,223,372,036,854,775,807
–263 to (263 – 1)

Geometric Depiction of Twos
Complement Integers

Two's Complement Special Cases
� Case 1

� 0 = 00000000

� Bitwise not 11111111

� Add 1 to LSB +1

� Result 1 00000000

� Overflow is ignored, so:

� - 0 = 0 √

� -128 = 10000000

� bitwise not 01111111

� Add 1 to LSB +1

� Result 10000000

� Monitor MSB (sign bit)

� It should change during negation

Two’s Compliment - Summery

Benefits:

• One representation of zero

• Arithmetic works easily (see later)

Character Storage

� Character sets

� Standard ASCII: 7-bit character codes (0 – 127)

� Extended ASCII: 8-bit character codes (0 – 255)

� Unicode: 16-bit character codes (0 – 65,535)

� Unicode standard represents a universal character set

� Defines codes for characters used in all major languages

� Used in Windows-XP: each character is encoded as 16 bits

� UTF-8: variable-length encoding used in HTML

� Encodes all Unicode characters

� Uses 1 byte for ASCII, but multiple bytes for other characters

� Null-terminated String

� Array of characters followed by a NULL character

Binary Addition

� Start with the least significant bit (rightmost bit)

� Add each pair of bits

� Include the carry in the addition, if present

0 0 0 1 1 1 0 1

0 0 1 1 0 1 1 0

+
(54)
(29)

(83)

1 carry

0 1 2 3 4 bit position: 5 6 7

1 1 1

0 1 0 1 0 0 1 1

Binary Subtraction

� When subtracting A – B, convert B to its 2's complement

� Add A to (–B)

 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1

 0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0 (2's complement)

 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 (same result)

� Final carry is ignored, because

� Negative number is sign-extended with 1's

� You can imagine infinite 1's to the left of a negative number

� Adding the carry to the extended 1's produces extended zeros

– +

borrow: carry: 1 1 1 1 1 1 1

Hardware for Addition and Subtraction

Carry and Overflow

� Carry is important when …

� Adding or subtracting unsigned integers

� Indicates that the unsigned sum is out of range

� Either < 0 or >maximum unsigned n-bit value

� Overflow is important when …

� Adding or subtracting signed integers

� Indicates that the signed sum is out of range

� Overflow occurs when

� Adding two positive numbers and the sum is negative

� Adding two negative numbers and the sum is positive

� Can happen because of the fixed number of sum bits

0 1 0 0 0 0 0 0

0 1 0 0 1 1 1 1
+

1 0 0 0 1 1 1 1

79

64

143

(-113)
Carry = 0 Overflow = 1

1

1 0 0 1 1 1 0 1

1 1 0 1 1 0 1 0
+

0 1 1 1 0 1 1 1

218 (-38)

157 (-99)

119

Carry = 1 Overflow = 1

1 1 1

Carry and Overflow Examples
� We can have carry without overflow and vice-versa

� Four cases are possible (Examples are 8-bit numbers)

1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 0 0 1 1 1

15

248 (-8)

7

Carry = 1 Overflow = 0

1 1 1 1 1

0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 1 0 1 1 1

15

8

23

Carry = 0 Overflow = 0

1

Addition of Numbers in Twos Complement

Representation

Subtraction of Numbers in Twos Complement

Representation (M – S)

� Paper and Pencil Example:

 Multiplicand 11002 = 12
 Multiplier × 11012 = 13

 1100

 0000

 1100

 1100

 Product 100111002 = 156

� m-bit multiplicand × n-bit multiplier = (m+n)-bit product

� Accomplished via shifting and addition

� Consumes more time and more chip area

Unsigned Multiplication

Binary multiplication is easy

0 × multiplicand = 0

1 × multiplicand = multiplicand

Unsigned Binary Multiplication

Flowchart for Unsigned Binary

Multiplication

Execution of Example

Multiplying Negative Numbers

• This does not work!

• Solution 1

—Convert to positive if required

—Multiply as above

—If signs were different, negate answer

• Solution 2

—Booth’s algorithm

Booth’s Algorithm

Example of Booth’s Algorithm

Examples Using Booth's Algorithm

How it works

• Consider a positive multiplier consisting of a block
of 1s surrounded by 0s. For example, 00111110.
The product is given by :

• where M is the multiplicand.

• The number of operations can be reduced
to two by rewriting the same as

• Note that:

 2n + 2n-1 +…+2n-k = 2n+1 – 2n-k

How it works

• So, the product can be generated by one
addition and one subtraction

• In Booth’s algorithm

—perform subtraction when the first 1 of the
block is encountered (1 - 0)

—perform addition when the last 1 of the block
is encountered (0 - 1)

• (1 - 0) and (0 - 1) are observed from

 Q0 – Q-1 (see previous example)

Division

• More complex than multiplication

• Negative numbers are really bad!

• Based on long division

001111

Division of Unsigned Binary Integers

1011

00001101

10010011

1011

001110

1011

1011

100

Quotient

Dividend

Remainder

Partial

Remainders

Divisor

Real Numbers

• Numbers with fractions

• Could be done in pure binary

—1001.1010 = 23 + 20 +2-1 + 2-3 =9.625

• Where is the binary point?

• Fixed?

—Very limited

• Moving?

—How do you show where it is?

Exponential Notation

The representations differ

in that the decimal place –

the “point” -- “floats” to

the left or right (with the

appropriate adjustment in

the exponent).

p. 122

• The following are equivalent
representations of 1,234

123,400.0 x 10-2

 12,340.0 x 10-1

 1,234.0 x 100

 123.4 x 101

 12.34 x 102

 1.234 x 103

 0.1234 x 104

Parts of a Floating Point Number

Sign of

mantissa

Location of

decimal point
Significand

Exponent

Sign of

exponent

Base or Mantissa

-0.9876 x 10-3

In binary, the significand is represented by 1s and 0’s, and the

Base = 2. E.g. -1.1111011 x 23

Biased Representation

• Other type of binary number representations

• A fixed value called Bias is added for the
binary value

• Typically, the bias equals (2k-1-1), where K is
the number of bits in the binary number.

• E.g for 4 bit representation,

–The bias value= 24-1-1= 7

–Representation of +8 = 1111

–Representation of -7 = 0000

Representation Format

32 bits

Significand (23 bits)

Exponent (8 bits)

Sign of Sinificand(1 bit)

Floating Point

• +/- .significand x 2exponent

• Misnomer

• Point is actually fixed between sign bit and body
of mantissa

• Exponent indicates place value (point position)

Floating Point Examples

Signs for Floating Point

• Mantissa is stored in 2s compliment

• Exponent is in excess or biased notation

—e.g. Excess (bias) 128 means

—8 bit exponent field

—Pure value range 0-255 (8-bit)

—Subtract 127 to get correct value

– Bias= 28-1-1= 127

—Range of exponent values: -127 to +128

– For representation: bias must be added for any value

– Exponent value -127 is represented as -127+127 =
0 (00000000:Min value)

– Exponent value +128 is represented as 128+127 =
255 (11111111:Max value)

Normalization

• FP numbers are usually normalized

• i.e. exponent is adjusted so that leading
bit (MSB) of Significand is 1

• Since it is always 1 there is no need to
store it

• (c.f. Scientific notation where numbers
are normalized to give a single digit
before the decimal point

• E.g.,

—Significand →

—Represents…

 10100000000000000000000

1.1012 = 1.62510

Converting from Floating Point

• E.g., What decimal value is represented
by the following 32-bit floating point
number?

C17B000016

• Step 1

—Express in binary and find S, E, and M

C17B000016 =

1 10000010 111101100000000000000002

S E M

1 = negative

0 = positive

• Step 2

—Find “real” exponent, n

—n = E – 127

 = 100000102 – 127

 = 130 – 127

 = 3

• Step 3

—Put S, M, and n together to form binary result

—(Don’t forget the implied “1.” on the left of the
mantissa.)

-1.11110112 x 2
n =

-1.11110112 x 2
3 =

-1111.10112

• Step 4

—Express result in decimal

-1111.10112

-15
2-1 = 0.5

2-3 = 0.125

2-4 = 0.0625

 0.6875

Answer: -15.6875

Converting to Floating Point

• E.g., Express 36.562510 as a 32-bit
floating point number (in hexadecimal)

• Step 1

—Express original value in binary

36.562510 =

100100.10012

• Step 2

—Normalize

100100.10012 =

1.0010010012 x 2
5

• Step 3

—Determine S, E, and M

+1.0010010012 x 2
5

S = 0 (because the value is positive)

M S
n E = n + 127

 = 5 + 127

 = 132

 = 100001002

• Step 4

—Put S, E, and M together to form 32-bit binary
result

0 10000100 001001001000000000000002

S E M

• Step 5

—Express in hexadecimal

0 10000100 001001001000000000000002 =

0100 0010 0001 0010 0100 0000 0000 00002 =

 4 2 1 2 4 0 0 016

Answer: 4212400016

FP Ranges

• For a 32 bit number

—8 bit exponent

—+/- 2256 ≈ 1.5 x 1077

• Accuracy

—The effect of changing lsb of mantissa

—23 bit mantissa 2-23 ≈ 1.2 x 10-7

—About 6 decimal places

Expressible Numbers

Density of Floating Point Numbers

IEEE 754

• Standard for floating point storage

• 32 and 64 bit standards

• 8 and 11 bit exponent respectively

• Extended formats (both mantissa and
exponent) for intermediate results

IEEE 754 Formats

FP Arithmetic +/-

• Check for zeros

• Align significands (adjusting exponents)

• Add or subtract significands

• Normalize result

FP Addition & Subtraction Flowchart

Z=X±Y

FP Arithmetic x/÷÷÷÷

• Check for zero

• Add/subtract exponents

• Multiply/divide significands (watch sign)

• Normalize

• Round

• All intermediate results should be in
double length storage

Floating Point Multiplication

Z=X x Y

Floating Point Division

Z=X/Y

