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Arithmetic -- The heart of instruction execution 
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Arithmetic & Logic Unit 

• Does the calculations 

• Everything else in the computer is there 
to service this unit 

• Handles integers 

• May handle floating point (real) numbers 

• May be separate FPU (maths co-
processor) 

• May be on chip separate FPU (486DX +) 



ALU Inputs and Outputs 



Different Representations of Natural Numbers 
 

 XXVII Roman numerals (not positional) 

 27 Radix-10 or decimal number (positional) 

110112 Radix-2 or binary number (also positional) 

Fixed-radix positional representation with k digits 

Number N in radix r = (d
k–1dk–2 . . . d1d0)r

 

Value = dk–1×r k–1 + dk–2×r k–2 + … + d1×r + d0 

Examples: (11011)2 = 1×24 + 1×23 + 0×22 + 1×2 + 1 = 27 

   (2103)4 = 2×43 + 1×42 + 0×4 + 3 = 147 

Positional Number Systems 



Binary Numbers 

� Each binary digit (called bit) is either 1 or 0 

� Bits have no inherent meaning, can represent 

� Unsigned and signed integers 

� Characters 

� Floating-point numbers 

� Images, sound, etc. 

� Bit Numbering 

� Least significant bit (LSB) is rightmost (bit 0) 

� Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number) 

1 0 0 1 1 1 0 1 

2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 

0 1 2 3 4 5 6 7 
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Hexadecimal Integers 

� 16 Hexadecimal Digits: 0 – 9, A – F 

� More convenient to use than binary numbers 

Binary, Decimal, and Hexadecimal Equivalents 



Converting Binary to Hexadecimal 

� Each hexadecimal digit corresponds to 4 binary bits 

� Example: 

 Convert the 32-bit binary number to hexadecimal 

 1110 1011 0001 0110 1010 0111 1001 0100 

� Solution: 
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Integer Storage Sizes 

What is the largest 20-bit unsigned integer? 

Answer: 220 – 1 = 1,048,575 

Storage Type Unsigned Range Powers of 2 

Byte 0 to 255 0 to (28 – 1) 

Half Word 0 to 65,535 0 to (216 – 1) 

Word 0 to 4,294,967,295 0 to (232 – 1) 

Double Word 0 to 18,446,744,073,709,551,615 0 to (264 – 1) 

Byte 8 

16 

32 

64 

Half Word 

Word 

Double Word 

Storage Sizes 



Signed Integers 

� Several ways to represent a signed number 

� Sign-Magnitude 

� Biased 

� 1's complement 

� 2's complement 

� Divide the range of values into 2 equal parts 

� First part corresponds to the positive numbers (≥ 0) 

� Second part correspond to the negative numbers (< 0) 

� Focus will be on the 2's complement representation 

� Has many advantages over other representations 

� Used widely in processors to represent signed integers 



Sign Bit 

� Highest bit indicates the sign 

� 1 = negative 

� 0 = positive 

•For Hexadecimal Numbers, check most significant digit 

•If highest digit is > 7, then value is negative 

•Examples: 8A and C5 are negative bytes 

•B1C42A00 is a negative word (32-bit signed integer) 
•Problems 

•Need to consider both sign and magnitude in arithmetic 
•Two representations of zero (+0 and -0) 

1 1 1 1 0 1 1 0 

0 0 0 0 1 0 1 0 

Sign bit 

Negative 

Positive 



Two's Complement Representation 

8-bit Binary 

value 

Unsigned 

value 

Signed 

value 

00000000 0 0 

00000001 1 +1 

00000010 2 +2 

. . . . . . . . . 

01111110 126 +126 

01111111 127 +127 

10000000 128 -128 

10000001 129 -127 

. . . . . . . . . 

11111110 254 -2 

11111111 255 -1 

� Positive numbers 

� Signed value = Unsigned value 

� Negative numbers 

� Signed value = Unsigned value – 2n 

� n = number of bits 

� Negative weight for MSB 

� Another way to obtain the signed 
value is to assign a negative weight 
to most-significant bit 

 

 

= -128 + 32 + 16 + 4 = -76 

1 0 1 1 0 1 0 0 

-128 64 32 16 8 4 2 1 



Forming the Two's Complement 

Sum of an integer and its 2's complement must be zero: 

00100100 + 11011100 = 00000000 (8-bit sum) ⇒ Ignore Carry 

Another way to obtain the 2's complement: 

Start at the least significant 1 

Leave all the 0s to its right unchanged 

Complement all the bits to its left 

starting value 00100100 = +36 

step1: reverse the bits (1's complement) 11011011 

step 2: add 1 to the value from step 1 +      1 

sum = 2's complement representation 11011100 = -36 

Binary Value 

= 00100 1 00 

2's Complement 

= 11011 1 00 

least 
significant 1 



Sign Extension 

Step 1: Move the number into the lower-significant bits 

Step 2: Fill all the remaining higher bits with the sign bit 

� This will ensure that both magnitude and sign are correct 

� Examples 

� Sign-Extend 10110011 to 16 bits 

 

� Sign-Extend 01100010 to 16 bits 

 

� Infinite 0s can be added to the left of a positive number 

� Infinite 1s can be added to the left of a negative number 

 

10110011 = -77 11111111 10110011 = -77 

01100010 = +98 00000000 01100010 = +98 



Ranges of Signed Integers 

For n-bit signed integers: Range is -2n–1 to (2n–1 – 1) 

Positive range: 0 to 2n–1 – 1 

Negative range: -2n–1 to -1 

Practice: What is the range of signed values that may be stored in 20 bits? 

Storage Type Signed Range Powers of 2 

Byte –128 to +127 –27 to (27 – 1) 

Half Word –32,768 to +32,767 –215 to (215 – 1) 

Word –2,147,483,648 to +2,147,483,647 –231 to (231 – 1) 

Double Word 
–9,223,372,036,854,775,808 to 

+9,223,372,036,854,775,807 
–263 to (263 – 1) 



Geometric Depiction of Twos 
Complement Integers 



Two's Complement Special Cases 
� Case 1 

�  0 =                00000000 

� Bitwise not       11111111 

� Add 1 to LSB              +1 

� Result           1 00000000 

� Overflow is ignored, so: 

� - 0 = 0 √ 

� -128 =           10000000 

� bitwise not     01111111 

� Add 1 to LSB            +1 

� Result            10000000 

� Monitor MSB (sign bit) 

� It should change during negation 



Two’s Compliment - Summery 

Benefits:  

• One representation of zero 

• Arithmetic works easily (see later) 



Character Storage 

� Character sets 

� Standard ASCII: 7-bit character codes (0 – 127) 

� Extended ASCII: 8-bit character codes (0 – 255) 

� Unicode: 16-bit character codes (0 – 65,535) 

� Unicode standard represents a universal character set 

� Defines codes for characters used in all major languages 

� Used in Windows-XP: each character is encoded as 16 bits 

� UTF-8: variable-length encoding used in HTML 

� Encodes all Unicode characters 

� Uses 1 byte for ASCII, but multiple bytes for other characters 

� Null-terminated String 

� Array of characters followed by a NULL character 



Binary Addition 

� Start with the least significant bit (rightmost bit) 

� Add each pair of bits 

� Include the carry in the addition, if present 

0 0 0 1 1 1 0 1 

0 0 1 1 0 1 1 0 

+ 
(54) 
(29) 

(83) 

1 carry 

0 1 2 3 4 bit position: 5 6 7 

1 1 1 

0 1 0 1 0 0 1 1 



Binary Subtraction 

� When subtracting A – B, convert B to its 2's complement 

� Add A to (–B) 

 

   0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 

   0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0  (2's complement) 

  0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1  (same result) 

� Final carry is ignored, because 

� Negative number is sign-extended with 1's 

� You can imagine infinite 1's to the left of a negative number 

� Adding the carry to the extended 1's produces extended zeros 

– + 

borrow: carry: 1 1 1 1 1 1 1 



Hardware for Addition and Subtraction 



Carry and Overflow 

� Carry is important when … 

� Adding or subtracting unsigned integers 

� Indicates that the unsigned sum is out of range 

� Either < 0 or >maximum unsigned n-bit value 

� Overflow is important when … 

� Adding or subtracting signed integers 

� Indicates that the signed sum is out of range 

� Overflow occurs when 

� Adding two positive numbers and the sum is negative 

� Adding two negative numbers and the sum is positive 

� Can happen because of the fixed number of sum bits 



0 1 0 0 0 0 0 0 

0 1 0 0 1 1 1 1 
+ 

1 0 0 0 1 1 1 1 

79 

64 

143 

(-113) 
Carry = 0    Overflow = 1 

1 

1 0 0 1 1 1 0 1 

1 1 0 1 1 0 1 0 
+ 

0 1 1 1 0 1 1 1 

218 (-38) 

157 (-99) 

119 

Carry = 1    Overflow = 1 

1 1 1 

Carry and Overflow Examples 
� We can have carry without overflow and vice-versa 

� Four cases are possible (Examples are 8-bit numbers) 

1 1 1 1 1 0 0 0 

0 0 0 0 1 1 1 1 
+ 

0 0 0 0 0 1 1 1 

15 

248 (-8) 

7 

Carry = 1    Overflow = 0 

1 1 1 1 1 

0 0 0 0 1 0 0 0 

0 0 0 0 1 1 1 1 
+ 

0 0 0 1 0 1 1 1 

15 

8 

23 

Carry = 0    Overflow = 0 

1 



Addition of Numbers in Twos Complement 

Representation 



Subtraction of Numbers in Twos Complement 

Representation (M – S) 



� Paper and Pencil Example: 

 Multiplicand     11002 = 12 
 Multiplier  ×   11012 = 13 

        1100 

       0000 

      1100 

     1100 

 Product  100111002 = 156 

� m-bit multiplicand × n-bit multiplier = (m+n)-bit product 

� Accomplished via shifting and addition 

� Consumes more time and more chip area 

Unsigned Multiplication 

Binary multiplication is easy 

0 × multiplicand = 0 

1 × multiplicand = multiplicand 



Unsigned Binary Multiplication 



Flowchart for Unsigned Binary 

Multiplication 



Execution of Example 



Multiplying Negative Numbers 

• This does not work! 

• Solution 1 

—Convert to positive if required 

—Multiply as above 

—If signs were different, negate answer 

• Solution 2 

—Booth’s algorithm 

 



Booth’s Algorithm 



Example of Booth’s Algorithm 



Examples Using Booth's Algorithm 



How it works 

• Consider a positive multiplier consisting of a block 
of 1s surrounded by 0s. For example, 00111110. 
The product is given by : 

 

• where M is the multiplicand.  

• The number of operations can be reduced 
to two by rewriting the same as  

 

 

• Note that: 

      2n + 2n-1 +…+2n-k = 2n+1 – 2n-k 

 



How it works 

• So, the product can be generated by one 
addition and one subtraction  

 

• In Booth’s algorithm  

—perform subtraction when the first 1 of the 
block is encountered (1 - 0) 

—perform addition when the last 1 of the block 
is encountered (0 - 1) 

 

• (1 - 0) and (0 - 1) are observed from  

  Q0 – Q-1 (see previous example) 
 



Division 

• More complex than multiplication 

• Negative numbers are really bad! 

• Based on long division 



001111 

Division of Unsigned Binary Integers 

1011 

00001101 

10010011 

1011 

001110 

1011 

1011 

100 

Quotient 

Dividend 

Remainder 

Partial 

Remainders 

Divisor 



Real Numbers 

• Numbers with fractions 

• Could be done in pure binary 

—1001.1010 = 23 + 20 +2-1 + 2-3 =9.625 

• Where is the binary point? 

• Fixed? 

—Very limited 

• Moving? 

—How do you show where it is? 



Exponential Notation 

The representations differ 

in that the decimal place – 

the “point” -- “floats” to 

the left or right (with the 

appropriate adjustment in 

the exponent). 

p. 122 

• The following are equivalent 
representations of 1,234 

123,400.0    x 10-2 

 12,340.0    x 10-1 

  1,234.0    x 100 

    123.4    x 101 

     12.34   x 102 

      1.234  x 103 

      0.1234 x 104 



Parts of a Floating Point Number 

Sign of 

mantissa 

Location of 

decimal point 
Significand 

Exponent 

Sign of 

exponent 

Base or Mantissa 

-0.9876 x 10-3 

In binary, the significand is represented by 1s and 0’s, and the 

Base = 2. E.g. -1.1111011 x 23  



Biased Representation 

• Other type of binary number representations 

• A fixed value called Bias is added for the 
binary value 

• Typically, the bias equals (2k-1-1), where K is 
the number of bits in the binary number. 

• E.g for 4 bit representation,  

–The bias value= 24-1-1= 7 

–Representation of +8 = 1111 

–Representation of -7 = 0000 
 

  



Representation Format 

32 bits 

Significand (23 bits) 

Exponent (8 bits) 

Sign of Sinificand(1 bit) 



Floating Point 

• +/- .significand x 2exponent 

• Misnomer 

• Point is actually fixed between sign bit and body 
of mantissa 

• Exponent indicates place value (point position) 



Floating Point Examples 



Signs for Floating Point 

• Mantissa is stored in 2s compliment 

• Exponent is in excess or biased notation 

—e.g. Excess (bias) 128 means 

—8 bit exponent field 

—Pure value range 0-255 (8-bit) 

—Subtract 127 to get correct value 

– Bias= 28-1-1= 127 

—Range of exponent values:  -127 to +128 

– For representation: bias must be added for any value 

– Exponent value -127 is represented as -127+127 = 
0 (00000000:Min value) 

– Exponent value +128 is represented as 128+127 = 
255 (11111111:Max value) 

 



Normalization 

• FP numbers are usually normalized 

• i.e. exponent is adjusted so that leading 
bit (MSB) of Significand is 1 

• Since it is always 1 there is no need to 
store it 

• (c.f. Scientific notation where numbers 
are normalized to give a single digit 
before the decimal point 

• E.g., 

—Significand → 

—Represents… 

  10100000000000000000000 

1.1012 = 1.62510 



Converting from Floating Point 

• E.g., What decimal value is represented 
by the following 32-bit floating point 
number? 

 

 
C17B000016 



• Step 1 

—Express in binary and find S, E, and M 

 

 
C17B000016 =  

 

1 10000010 111101100000000000000002 

S E M 

1 = negative 

0 = positive 



• Step 2 

—Find “real” exponent, n 

—n = E – 127 

  = 100000102 – 127 

  = 130 – 127 

  = 3 



• Step 3 

—Put S, M, and n together to form binary result 

—(Don’t forget the implied “1.” on the left of the 
mantissa.) 

-1.11110112 x 2
n = 

  

-1.11110112 x 2
3 =  

 

-1111.10112 



• Step 4 

—Express result in decimal 

-1111.10112 

-15 
2-1 = 0.5 

2-3 = 0.125 

2-4 = 0.0625  

    0.6875  

Answer: -15.6875 



Converting to Floating Point 

• E.g., Express 36.562510 as a 32-bit 
floating point number (in hexadecimal) 



• Step 1 

—Express original value in binary 

36.562510 = 

 

100100.10012 



• Step 2 

—Normalize 

100100.10012 =  

 

1.0010010012 x 2
5 



• Step 3 

—Determine S, E, and M 

+1.0010010012 x 2
5 

S = 0 (because the value is positive) 

M S 
n E = n + 127 

 = 5 + 127 

 = 132 

 = 100001002 



• Step 4 

—Put S, E, and M together to form 32-bit binary 
result 

0 10000100 001001001000000000000002 

S E M 



• Step 5 

—Express in hexadecimal 

0 10000100 001001001000000000000002 = 

 

0100 0010 0001 0010 0100 0000 0000 00002 = 

 

  4    2    1    2    4    0    0    016  

 

 

Answer: 4212400016 



FP Ranges 

• For a 32 bit number 

—8 bit exponent  

—+/- 2256 ≈ 1.5 x 1077 

• Accuracy 

—The effect of changing lsb of mantissa 

—23 bit mantissa 2-23 ≈ 1.2 x 10-7 

—About 6 decimal places 



Expressible Numbers 



Density of Floating Point Numbers 



IEEE 754 

• Standard for floating point storage 

• 32 and 64 bit standards 

• 8 and 11 bit exponent respectively 

• Extended formats (both mantissa and 
exponent) for intermediate results 

 



IEEE 754 Formats 



FP Arithmetic +/- 

• Check for zeros 

• Align significands (adjusting exponents) 

• Add or subtract significands 

• Normalize result 



FP Addition & Subtraction Flowchart 

Z=X±Y 



FP Arithmetic x/÷÷÷÷ 

• Check for zero 

• Add/subtract exponents  

• Multiply/divide significands (watch sign) 

• Normalize 

• Round 

• All intermediate results should be in 
double length storage 



Floating Point Multiplication 

Z=X x Y 



Floating Point Division 

Z=X/Y  


