Computer Organization

Instruction Set Characteristics,
Instruction Formats, Addressing
Modes, RTL & Micro-Operations, CISC,
RISC.

Chapter (10)

Instruction Set Architecture (ISA)

e Complete set of instructions used by a machine

e Abstract interface between the HW and lowest-
level SW.

e An ISA includes the following ...

— Instructions and Instruction Formats
— Data Types, Encodings, and Representations
- Programmable Storage: Registers and Memory
— Addressing Modes: to address Instructions and Data
- Handling Exceptional Conditions (like division by zero)

e Examples (Versions) First Introduced in
— Intel (8086, 80386, Pentium, ...) 1978
— MIPS (MIPS I, II, III, 1V, V) 1986

— PowerPC (601, 604, ...) 1993

The Instruction Set Architecture

e ISA is considered part of the SW
e Must be designed to survive changes in
hardware technology, software

technology, and application characteristic.

—Is the agreed-upon interface between all the
software that runs on the machine and the
hardware that executes it.

e Advantages:

—Different implementations of the same
architecture

—Easier to change than HW

—Standardizes instructions, machine language
bit patterns, etc.

e Disadvantage:
—Sometimes prevents using new innovations

Instruction Set Architecture:
Critical Interface

software

N I N S S I N S S N S O S S S N S O S S S N S O S~ A N A I S A S N A A S A S N A S S S S | A S S A S N S S S S S S S S S A S N S S S S A S N S O B S S S N B B

hardware

e Properties of a good abstraction
— Lasts through many generations (portability)
— Used in many different ways (generality)
— Provides convenient functionality to higher levels
— Permits an efficient implementation at lower levels

Intel 8086 instruction set

e There were 116 instructions in the Intel

8086 instruction set

Complete 8086 instruction set

AAA
AAD
AAM
AAS
ADC
ADD
AND
CALL
CBW
CLC
CLD
CLI
CMC
cMP

CMPSB
CMPSW
CWD
DAA
DAS
DEC
DIV
HLT
IDIY
IMUL
IN

INC
INT
INTO
IRET
JA

JAE
iB
1BE
iCc
JCRI
JE
G
IGE
L
ILE
IMP
INA
INAE
JNB

JNBE
ING
INE
ING
INGE
INL
JNLE
INO
INP
ING
INZ
10
P
JPE

PO

15

1z
LAHF
LDS
LEA
LES
LODSB
LODSW
LOOP
LOOPE
LOOPNE
LOOPNE
LOOPZ

MOY
MOVYSB
MOWVSW
MUL
NEG
NOP
NOT
OR
ouT
POP
POPA
POPF
PUSH
PUSHA
PUSHF
RCL

RCR
REP
REPE
REPNE
REPNZ
REPZ
RET
RETF
ROL
ROR
SAHF
SAL
SAR
SBB

SCASB
SCASW
SHL
SHR.
STC
STD
STI
sTO5B
STOSW
sUB
TEST
ACHG
ALATB
AOR

Elements of an Instruction

e Operation code (Op code)
—Specify the operation (e.g., ADD, I/0)
e Source Operand reference
—QOperands that are input to the operation.

e Result Operand reference
—Put the answer here

e Next Instruction Reference

—Tells the processor where to fetch the next
Instruction

Instruction Representation

e In machine code each instruction has a
unique bit pattern

e For human consumption (well,
programmers anyway) a symbolic
representation is used

—e.g. ADD, SUB, LOAD

e Operands can also be represented in this
way
—ADD A,B

Instruction Cycle State Diagram

Instruction
fetch

F 3

Instruction
address
calculation

Operand
fetch
'y
Multiple
operands
v
Instruction Operand
operation —p address
decoding calculation

Instruction complete,
fetch next instruction

Operand
store

F'y

v

Data

Operation > jidress

Return for string
or vector data

Multiple
results

Operand

calculation

Generic CPU Machine Instruction

Execution Steps
|

Instruction Obtain instruction from program storage
Fetch

Instruction Determine required actions and instruction size
Decode

|

Operand Locate and obtain operand data
Fetch

|

Execute Compute result value or status

Result
Store

|

Next

Instruction
|

Deposit results in storage for later use (if required)

Determine successor instruction

Where have all the Operands Gone?
Where is the next instruction to be fetched?

e Main memory (or virtual memory or
cache)

e CPU regqister

e I/O device

Typical Operations

Data Movement

Load (from memory) Store (to memory)
memory-to-memory move register-to-register move
input (from /O device) output (to I/O device)

push, pop (to/from stack)

Arithmetic Data Types: (signed & unsigned) Integer (binary + decimal)
(signed & unsigned) Floating Point Numbers
Operations: Add, Subtract, Multiply, Divide
Logical Not, and, or, set, clear
Shift Arithmetic (& Logical) shift (left/right), rotate (left/right)

Control (Jump/Branch)

unconditional, conditional

Subroutine Linkage

call, return

Interrupt

trap, return

Synchronisation

test & set (atomic r-m-w)

String

search, compare, translate

Types of Operand

o Addresses
e Numbers
—Integer/floating point

e Characters
—ASCII etc.

e Logical Data
—Bits or flags

Types of Operation

e Data Transfer

e Arithmetic

e Logical

e Conversion

e I/O

e System Control

e Transfer of Control

Data Transfer

e Specify
—Source
—Destination
—Amount of data

e May be different instructions for different
movements
—e.g. IBM 370

e Or one instruction and different addresses
—e.g. VAX

Arithmetic

o Add, Subtract, Multiply, Divide
e Signed Integer
e Floating point ?
e May include
—Increment (a++)

—Decrement (a--)
—Negate (-a)

Types of Operation

Shift and Rotate Operations

i Vi W Wl Wi Wi |
- 8 »

{a) Logical right shifi

R Y W e Y

P N

- = -

b} Logical lefishift

T T
S - - -
{c) Arithmetic right shift
Y e Y i P
= - = =

(d) Arithmetic left shift

P Wl i
i | - s &
(e} Right totate
BT T T T

- = -

{f) Left rotat e

Logical and Conversion

e Bitwise operations
e AND, OR, NOT
e E.g. Binary to Decimal

Types of Operation

e Input/Output
—May be specific instructions

—May be done using data movement
instructions (memory mapped)

—May be done by a separate controller (DMA)

o Systems Control
—For operating systems use

Transfer of Control

e Branch

—e.g. BRZ X branch to x if result of (ADD,SUB,...) is zero
— See next slide

o Skip
—e.g. increment and skip if zero ISZ
301

309 ISZ R1
310 BR 301

311
* eg. R1lis set to -1000, the loop will be executed 1000 times

e Subroutine call
—c.f. interrupt call

Branch Instruction

U ncond it ional
Branch

Memory
Add ress

200
201

» 102
203

210
211

Instruction

SUBX.Y

BRZ 211

Conditional
Branch

Conditonal
Branch

Procedure Calls Instructions

e Computer program that is incorporated
with larger program.

e At any point in the program the procedure
may be invoked, or

e When the procedure is executed, return to
the point at which the call took place.

e Advantages:

—Economy:
+The same piece of Code can be used many times-
efficient use of storage space in the system
—Modularity

+ Allow large programming tasks to be divided into
smaller units which eases the programming
task

Procedure Calls Instructions

e Involves two basic instructions
—Call: branch to the procedure location

—Return: from the procedure to the place from
which it was called

e Stack can be used to store the return
address.

Nested Procedure Calls

Addresses
4000

4100
4101

4500

4600
4nl1

4650
4651

4800

Main Memory

CALL Procl

CALL Proc2

CALL Proc2

RETURN

RETURN

{a) Calls and returns

Main
Program

Procedure
Procl

Procedure
Proc2

W74

{b) Execution sequence

Use of Stack

-

(a) Indokal siack

thlthls

4101

-

(b Alter
CALL Frocl

4001

4101

4101

-

() Initkal

CALL Procl

(d} After
EETUREN

4651

4101

-

4101

-

() Aler

CALL Proc?

-

(M Afler
RETURN

iz Alter
RETUHRN

Number of Addresses (a)

e # of addresses contained in each
Instruction

—May be 1, 2, 3 or 4 addresses

e 3 addresses
—OQOperand 1, Operand 2, Result
—ADD a,b,c (a=b+c;)
e 4 addresses

—Operand 1, Operand 2, Result, and next
Instruction

—Not common
—Needs very long words to hold everything

Number of Addresses (b)

e 2 addresses
—One address doubles as operand and result
— ADD a,c (a=a+b)
—Reduces length of instruction
—Requires some extra work
— Temporary storage to hold some results
e 1 address
—Implicit second address
—Usually a register (accumulator)
—ADD B (AC = AC + B)
—Common on early machines

REVERSE POLISH NOTATION
Arithmetic Expressions: A + B

A + B Infix notation
+ A B Prefix or Polish notation
A B + Postfix or reverse Polish notation

- The reverse Polish notation is very suitable for
stack manipulation

Evaluation of Arithmetic Expressions

Any arithmetic expression can be expressed in parenthesis-free
Polish notation, including reverse Polish notation

(3*4)+(5*%6) = 34*56*+

—>| 6
-1 4 -1 5 5] —1.30
—| 3 3] —12 12 12 12| —|42
3 4 * 5 6 * +

Number of Addresses (d)

e 0 (zero) addresses

—Applicable to a special memory organization
called Stack

—Stack is known location

—Often at least the top two stack elements are
IN processor registers
- ADD
— All addresses implicit

—e.g. push a
— push b
— add

— pop C
—C=a+b

How Many Addresses

e More addresses
—More complex (powerful?) instructions

—More registers
— Inter-register operations are quicker

—Fewer instructions per program
e Fewer addresses
—Less complex (powerful?) instructions

—More instructions per program
—Faster fetch/execution of instructions

e Most processor designs involve a variety
of instruction formats.

Fundamental Issues in Instruction Set Design

e Operation repertoire
—How many ops?
— What can they do?
— How complex are they?

e Data types
—The data type that the processor can deal with

— E.qg., Pentium can deal wit data types of:
- Byte, 8 bits
— Word, 16 bits
— Doubleword, 32 bits
— Quadword, 64 bits
— Other data type...

e Instruction formats
— Length of op code field
— Number of addresses

Fundamental Issues in Instruction Set Design

e Registers
—Number of CPU registers available

—Which operations can be performed on which
registers?

e Addressing modes (later...)

e RISC v CISC

Exercise For Students --- Next Sat. 23/9

e Find out about instruction set for Pentium
and PowerPC
o Start with Stallings

e Visit web sites

Byte Order
(A portion of chips?)

e What order do we read numbers that occupy
more than one byte
e e.g. (numbers in hex to make it easy to read)

e 12345678 can be stored in 4x8bit locations as
follows

Byte Order (example)

o Address Value (1) Value(2)
e 184 12 /8
e 185 34 56
e 186 56 34
e 186 /8 12

* j.e. read top down or bottom up?

Byte Order Names

e The problem is called Endian

e The system on the left has the least significant
byte in the lowest address

e This is called big-endian

e The system on the right has the least
significant byte in the highest address

e This is called little-endian

Example of C Data Structure

struct({
int
int
double b;
char*
char
short
intc
L=

pad;

d[7];

d/00c1112 1314

-III -lll

FA0e2122_ 2334_2526_2728
S/0e3l32_3334
_III_IEPFLP_PBFIFCFI

F 05152

F/0e6lel 6364

Big-endian address mapping

Byl
Address | 11 12 13 14
0 o o1 02 |\ 05 e 07
21 22 23 24 25 26 27 28
s s 09 O0A OB OC O OB OF
31 32 33 M|'AVBCD
L 10 11 12 13 l-I-: 15 : 16 : 17
'E G 51 52
- lEE l‘JE Al IB| IC 1] 1E 1B
61 62 63 64
20 2 21 22 23

worcl

cdoubl eword
word
bvte arravy

hal fword

word

Little-endian add ress mapping

1 12 13 14

v 6 o 03 @2 01 00
21 022 23 24 25 2% 27T 28
0 OB O OC OB O0A 09 O35

D C B A [31 32 33 M
716 150 14|13 12 11 10

51 52 G FE

IE IE| 1D I1C] 1B l."'l..i 19 E 13

61 62 63 &

23 » 21 2

Byie
Address

il

(s

L

Ld

20

Alternative View of Memory Map

] 11 Y 14

12 13
EEE 1z

14 11

[y !

yE] 21 (s i
[~ 22 | — X7 |
— 3% | 25 |

24 25

0oc 35 0c Bt
26 | L
— —
38 | 2 |

10 31 10 £
32 | A
BEL B

LT | k7]

14 ‘A 14 ‘A
—— i

ICI Icl

Iul Iul

1% E 1% E

o F

IGI IGI

Ic o1 Ic]
52 | 51 |

0 6l ol [i"]
62 | B
~ 6% | T 62 |

[| il

@) Biz-chdiah {h) Little-chdian

Standard...What Standard?

e Pentium (80x86), VAX are little-endian

e IBM 370, Moterola 680x0 (Mac), and most RISC
are big-endian

e Internet is big-endian
—Makes writing Internet programs on PC more

awkward!

—WinSock provides htoi and itoh (Host to Internet &
Internet to Host) functions to convert

