
I | P a g e  
 

 

 

Faculty of Engineering & Technology 

Electrical & Computer Engineering Department 

  

COMPUTER DESIGN LABORATORY 

ENCS4110 

Report #1 
 
 

Experiment #9 

ARM Addressing Modes 

  

Prepared by: 

Islam Jihad - 1191375 

  

Instructor: Dr. Abualseoud Hanani 

Assistant: Eng. Raha Zabadi 

  

Section: 1 

Date: 10/Apr./2022 

 



II | P a g e  
 

Abstract:  

In this experiment we need to know the most important things about addressing 

modes and how to iterate them and pass in arrays, and to remember the 

functions of previous labs and reuse them. 

  



III | P a g e  
 

Table of Contents 

Table of Figures......................................................... Error! Bookmark not defined. 

Theory ................................................................................................................... 1 

Review of ARM Registers Set .............................................................................. 1 

Summary of ARM addressing Modes .................................................................. 2 

Literal Addressing Mode ..................................................................................... 3 

Register Indirect Addressing Mode ..................................................................... 4 

Register Indirect Addressing with an Offset ........................................................ 4 

ARM's Autoindexing Pre-Indexed Addressing Mode ........................................... 5 

ARM's Autoindexing Post-indexing Addressing Mode ......................................... 5 

Program Counter Relative (PC Relative) Addressing Mode ................................. 5 

ARM's Load and Store Encoding Format ............................................................. 6 

Encoding Format of ARM's load and store instructions ...................................... 6 

Procedure and Discussion ...................................................................................... 7 

Program #1 add numbers greater than integer:.................................................. 7 

Program #2 Min & Max numbers ........................................................................ 8 

Program #3 even and would arrays .................................................................. 10 

Conclusion ........................................................................................................... 13 

References ........................................................................................................... 14 

 

 

 

 

 



IV | P a g e  
 

 

 

Table of figures 

Figure 1 Review of ARM Registers Set .................................................................... 1 

Figure 2 Summary of ARM addressing Modes examples ........................................ 2 

Figure 3 Literal Addressing Mode........................................................................... 3 

Figure 4 Literal Addressing Mode examples ........................................................... 3 

Figure 5 Register Indirect Addressing Mode examples ........................................... 4 

Figure 6 Register Indirect Addressing with an Offset examples.............................. 4 

Figure 7 ARM's Autoindexing Pre-Indexed Addressing Mode examples................. 5 

Figure 8 ARM's Autoindexing Post-indexing Addressing Mode examples .............. 5 

Figure 9 Program Counter Relative (PC Relative) Addressing Mode examples ....... 5 

Figure 10 ARM's Load and Store Encoding Format examples ................................. 6 

Figure 11 Encoding Format of ARM's load and store instructions .......................... 6 

Figure 12 Program #1 picture 1 .............................................................................. 7 

Figure 13 Program #1 picture 2 .............................................................................. 8 

Figure 14 Program #2 picture 1 .............................................................................. 8 

Figure 15 Program #2 picture 2 .............................................................................. 9 

Figure 16 Program #2 picture 3 ............................................................................ 10 

Figure 17 Program #3 picture 1 ............................................................................ 10 

Figure 18 Program #3 picture 2 ............................................................................ 11 

Figure 19 Program #3 picture 3 ............................................................................ 12 

Figure 20 Program #3 picture 4 ............................................................................ 12 



1 | P a g e  
 

 

Theory 
Review of ARM Registers Set 

ARM contains 16 programmer-accessible registers and a Current Program Status 

Register, or CPSR, as discussed in the preceding lab. Here's a diagram of the ARM 

register set. 

 

Figure 1 Review of ARM Registers Set 

R0 to R12 are the general-purpose registers.  

R13 is reserved for the programmer to use it as the stack pointer.  

R14 is the link register which stores a subroutine return address.  

R15 contains the program counter and is accessible by the programmer.  

Conditonion code flags in CPSR:  

N - Negative or less than flag  

Z - Zero flag C - Carry or bowrrow or extendedflag  

V - Overflow flag  

The least-significant 8-bit of the CPSR are the control bits of the system.  



2 | P a g e  
 

The other bits are reserved. 

Summary of ARM addressing Modes 

For each given operation, such as load, add, or branch, there are several ways to 

define the address of the operands. The various methods for identifying the 

operands' addresses are referred to as addressing modes. In this lab, we'll look at 

the various addressing modes used by the ARM processor and see how all 

instructions may be condensed into a single word (32 bits). 

 

Figure 2 Summary of ARM addressing Modes examples 

 

 

 

 

 

 



3 | P a g e  
 

Literal Addressing Mode 

An addressing mode specifies how to calculate the effective memory address of an 

operand by using information held in registers and/or constants contained within 

a machine instruction or elsewhere. 

 

Figure 3 Literal Addressing Mode 

 

some examples on Literal Addressing Mode: 

 

Figure 4 Literal Addressing Mode examples 

 

 

 

 

 



4 | P a g e  
 

Register Indirect Addressing Mode 

In register indirect addressing mode, the address of operand is placed in any one 

of the registers. The instruction specifies a register that contains the address of the 

operand. 

The position of an operand is maintained in a register in register indirect 

addressing. It's also known as base addressing or indexed addressing. 

To access an operand in register indirect addressing mode, three read operations 

are required. It's critical because the content of the register carrying the operand's 

reference might be changed at runtime. As a result, the address is a variable that 

permits access to data structures such as arrays. 

To locate the pointer register, read the instruction. 

To find the operand address, read the pointer register. To determine the operand 

address, read memory at the operand address. 

Some examples of using register indirect addressing mode: 

 

Figure 5 Register Indirect Addressing Mode examples 

 

Register Indirect Addressing with an Offset 

Register indirect is the simplest addressing mode. The address is provided entirely 

by the base register. The offset is added to or subtracted from base register, and 

the result is the address to be accessed 

The effective address of an operand is derived by adding the contents of a register 

and a literal offset programmed into a load/store instruction in ARM's memory-

addressing mode. As an example, 

 

Figure 6 Register Indirect Addressing with an Offset examples 



5 | P a g e  
 

ARM's Autoindexing Pre-Indexed Addressing Mode 

This is used to make sequential data in structures like arrays, tables, and vectors 

easier to read. The base address is stored in a pointer register. To get the effective 

address, an offset might be applied. As an example, 

 

Figure 7 ARM's Autoindexing Pre-Indexed Addressing Mode examples 

 

ARM's Autoindexing Post-indexing Addressing Mode 

This is identical to the previous example, except that it first reads the operand at 

the address indicated by the base register before incrementing the base register. 

As an example, 

 

Figure 8 ARM's Autoindexing Post-indexing Addressing Mode examples 

Program Counter Relative (PC Relative) Addressing Mode 

The program counter is located in register R15. PC relative addressing is the 

addressing method that results from using R15 as a pointer register to access 

operand. With regard to the present code position, the operand is provided. Take 

a look at this illustration. 

 

Figure 9 Program Counter Relative (PC Relative) Addressing Mode examples 

 



6 | P a g e  
 

ARM's Load and Store Encoding Format 

The encoding format of the ARM's load and store instructions is shown in the 

accompanying diagram, which is included in the lab material for your reference. In 

bits 31, 03, 29, and 28, there is a conditional execution field for memory access 

operations. Conditionally execute load and store instructions based on a condition 

stated in the instruction. Take a look at the samples below: 

 

Figure 10 ARM's Load and Store Encoding Format examples 

 

Encoding Format of ARM's load and store instructions 

 

Figure 11 Encoding Format of ARM's load and store instructions 



7 | P a g e  
 

Procedure and Discussion 
Program #1 add numbers greater than integer: 

This code have to add any number greater than 5 to a summation value initialized 

with 0, first I created a summation value with 0, then give the N a value =7 to 

iterate the loop with it, then initialized an array with positive and negative 

numbers. 

 

Figure 12 Program #1 picture 1 

Then I put a value by the number of the array length to iterate the loop by it, then 

I put a zero value in another register to branch the loop when it finishes. inside 

the loop I put the value of every element in the array and updated the address by 

4 bytes after getting the index value as i++ in C language. and after getting the 

value from each index I compared it with number 5 and check if the value is list or 

equal to this number so if it's list or equal to number 5 it will branch to skip label 

there it will subtract 1 from the #7 which it's the array length end continue to 

compare if it's three each the number 0 which means the end of the array or not 

on the other hand if the number is greater than #5 it will skip the branch and add 

the number into a register I called it register #3 and after finishing the loop I put 

the value in the saved memory called Sum. 



8 | P a g e  
 

 

Figure 13 Program #1 picture 2 

 

Program #2 Min & Max numbers 

In the area I defined it a Max label and the min label and label called N have the 

number of elements and the label called num1 have 12 numbers as an array 

negative and positive numbers and old labels are defined as wards of four bytes. 

 

Figure 14 Program #2 picture 1 

From line 43 to 48 I loaded the labels of array and number of elements and put 

them in registers and define the three registers of #0 one  to know the minimum 

and one to know the maximum and one to compare the loop if it reached the 

end. Inside the loop I loaded the first element from the array and put the value in 



9 | P a g e  
 

register 2 then added four bytes to address so I can move to the next element 

now after loading the first element I compared it with the minimum value which 

is stored before as #0 so if the number is greater then the previous stored value 

then skip to check the number with the Max value but if the number is less or 

equal to the previous saved value then move the value to the minimum register 

Then when skip to the Max register converter it will compare the value with the 

previous saved value in register 9 as a maximum value and compare if it's greater 

then the previous value so if it's greater it will replace the value and put the 

biggest value in the maximum register and if not it will skip two label SKIP2 Here it 

will subtract one from the 12 elements and compare the new value with #0 so if it 

reached zero it will break from the loop and if not it will continue iterative the 

loop. 

 

Figure 15 Program #2 picture 2 



10 | P a g e  
 

 

Figure 16 Program #2 picture 3 

 

Program #3 even and would arrays 
I defined the array of numbers and a label called N in the read only area so I can 

read them freely because there is no need to change the values 

 

Figure 17 Program #3 picture 1 

And define the two arrays in the read write area so I can change the values later I 

defined it two arrays even and odd each of them is made of 100 bites as empty 

elements, I had to do this because if I did not, the program will overwrite the even 

over the odd or the opposite because the 2 arrays are saved in the same 

addresses  



11 | P a g e  
 

 

Figure 18 Program #3 picture 2 

From line 44 -50 all I did is to define registers for every label the even the odd the 

array and the number of elements in the array and the register with initialized 

number zero to compare the loop if it end or not, Inside the loop I grabbed the 

first value from the array then added four bytes to the address so I can move to 

the next element in the array then I made an AND operation with the value 

0x00000001 in hexadecimal this trick will check if the number ends with one or 

zero byte so if the answer was one this means the number is odd and if the 

answer was zero this means the number is even and based on this trick I can spirit 

the even numbers of the odd numbers in different arrays. There is still the code 

branch to the even or told based on the answer above and store the value in the 

even or odd array. at the end of the code, it's subtract 1 from the register that I 

have the number of elements in the array and compare if it reaches the zero or 

not so it breaks the loop or iterative it. 



12 | P a g e  
 

 

Figure 19 Program #3 picture 3 

 

Figure 20 Program #3 picture 4 

 

 

 

 



13 | P a g e  
 

Conclusion 
We can conclude That we can use some functions that make it easier to iterative 

some programs such as ARM's Autoindexing Post-Indexing Addressing Mode and 

have much less code and less pressure on CPU as we limited the number of 

operations specially in loops.  

we can conclude that we have to focus on the operations when we are using the 

signed or unsigned numbers in signed numbers, we can use bigger or less to 

compare, but in unsigned numbers we use high and low, we must focus on this 

because the update of flags will change in a way that we cannot follow it 

  



14 | P a g e  
 

References 
The lab manual 


