— M‘\D

BIRZEIT UNIVERSITY

Faculty of Engineering & Technology
Electrical & Computer Engineering Department

COMPUTER DESIGN LABORATORY
ENCS4110
Report #1

Experiment #9
ARM Addressing Modes

Prepared by:
Islam Jihad - 1191375

Instructor: Dr. Abualseoud Hanani

Assistant: Eng. Raha Zabadi

Section: 1
Date: 10/Apr./2022

I|Page

Abstract:

In this experiment we need to know the most important things about addressing
modes and how to iterate them and pass in arrays, and to remember the
functions of previous labs and reuse them.

N|Page

Table of Contents

Table of FigUres......ccccevvviiiiiiiiieeeeeeeee Error! Bookmark not defined.
L =T Y 1
Review of ARM REZISTEIS Stuuuiiiiiiiiiie e e e e e e e e 1
Summary of ARM addressing MOESccoeevviieiiiiieieecceeeeeeeeeeeeeeeeeeee e 2
Literal Addressing MOGEcoevviiiieiieeiiieee e e et e e e e e e e e e eeaans 3
Register Indirect Addressing MoOde.........ceeeveeiiiiieeiiiiiee e e 4
Register Indirect Addressing with an Offset..........ooovviiiiiiiiicee e, 4
ARM's Autoindexing Pre-Indexed Addressing Mode.........cccceeeevvviieeeeeeinineeeennnen. 5
ARM's Autoindexing Post-indexing Addressing Mode..........ccccevvvvieeeeeiiiiieeeeennnen. 5
Program Counter Relative (PC Relative) Addressing Modecccceeeeeeeeeennennns 5
ARM's Load and Store Encoding FOrmatccceeeeeiieriiiiiiiiiccee e 6
Encoding Format of ARM's load and store instructionscccceeeeeevevvieeeeeennne. 6
Procedure and DiSCUSSIONccevviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee et e e e e e e e e e e e e e eeeeees 7
Program #1 add numbers greater than integer:.......ccccceeeeeeiiiiiiriiiiiiccie e, 7
Program #2 Min & MaxX NUMDEIS.......ccuuiiiiieeiieeeeeeeee et e e e eeaaaes 8
Program #3 even and Would @rrayseuuueceeeeeeeeeeeeeeiiiieeee e 10
(60 3 Vol [V 1Y) o IS PP PP UPPPPPPPPPPPTPRR 13
R (=T L= ool TP 14

M|Page

Table of figures

Figure 1 Review of ARM REZIStErs Set......ccvuuiiiiiiiiiie e 1
Figure 2 Summary of ARM addressing Modes examples.......ccccccveeviiieiiieeiieeeeennnn. 2
Figure 3 Literal Addressing MOde........ccuiiiiiiiiiiiiiiiiiiiieiiceceeeeeeeeeeeeeeeee e 3
Figure 4 Literal Addressing Mode eXxamples..........cuuvuieeeieeiiiieeeeiiiiiee e, 3
Figure 5 Register Indirect Addressing Mode examples..........ccuveeeeiveviiiereeeiiiinneennns 4
Figure 6 Register Indirect Addressing with an Offset examples.......ccccceeevvvvvveennnnns 4
Figure 7 ARM's Autoindexing Pre-Indexed Addressing Mode examples................. 5
Figure 8 ARM's Autoindexing Post-indexing Addressing Mode examples 5
Figure 9 Program Counter Relative (PC Relative) Addressing Mode examples....... 5
Figure 10 ARM's Load and Store Encoding Format examples........cccceeeeeevvvvvvnnnnnnen. 6
Figure 11 Encoding Format of ARM's load and store instructions.............cccceeees 6
Figure 12 Program #1 PICtUIe L.....coonniiiiiiiiie et e e e e 7
Figure 13 Program #1 PICTUIE 2. ... it e e e e e 8
Figure 14 Program #2 PICTUIE L.....ooiniiiiiii et e e et e st e e 8
Figure 15 Program H#2 PICTUIE 2...... ittt e e e e e e e aae e 9
Figure 16 Program H#2 PICTUIE 3..... i e e 10
Figure 17 Program #3 PICtUIE L..... it e e 10
Figure 18 Program #3 PICTUIE 2..... et e e 11
Figure 19 Program #3 PICTUIE 3. ... i 12
Figure 20 Program #3 PICTUIE d......oeuniiiieee et e s 12

IV|Page

Theory

Review of ARM Registers Set

ARM contains 16 programmer-accessible registers and a Current Program Status
Register, or CPSR, as discussed in the preceding lab. Here's a diagram of the ARM
register set.

User registers

K

r0
rn '
re
3
r4 \
‘ 5 ‘
‘.__—_r | [rOtori2 are
5] general-purpose
7 registers
B8 The CPSR (current processor status register)
31 30 29 28 27 8 7 6 & 4 0
~ INJ[z[c[v] unwses | F [T| mode |
o
M Condition codes Operaling mode
12 *
tack pointer
o =1 Sﬁ BO_B\ _ The use of r13 as a stack pointer is a programming 1
Link register ~ convention, whereas the use of r14 and r15 as ‘he link :{

; reqgister and program counter is enforced by the hardware i
| Program counter T29'S1er @ d prog y ol

Figure 1 Review of ARM Registers Set

RO to R12 are the general-purpose registers.

R13 is reserved for the programmer to use it as the stack pointer.

R14 is the link register which stores a subroutine return address.

R15 contains the program counter and is accessible by the programmer.
Conditonion code flags in CPSR:

N - Negative or less than flag

Z - Zero flag C - Carry or bowrrow or extendedflag

V - Overflow flag

The least-significant 8-bit of the CPSR are the control bits of the system.

1|Page

The other bits are reserved.

Summary of ARM addressing Modes

For each given operation, such as load, add, or branch, there are several ways to
define the address of the operands. The various methods for identifying the
operands' addresses are referred to as addressing modes. In this lab, we'll look at
the various addressing modes used by the ARM processor and see how all
instructions may be condensed into a single word (32 bits).

Name Alternative Name ARM Examples

Register to register Register direct MOV RO, RL
Apsolute pirect LDR RO, MEM
Literan Immediate MOV RO, #15

Pre-indexed, FRegister indirect LDR RO, [R1, #4]
base with displacement with offset

Pre-indexed, Register indirect LDR RO, [R1, #4]!
autoindexing pre-incrementing

Post-indexing, Register indirect LDE RO, [R1], #4
autoindexed post-increment

Double Reg indirect Register indirect LDR RO, [R1, RZ]

Register indexed

Double Reg indirect Register indirect LDR RO, [R1, RZ, LSL #2]
with scaling indexed with scaling
Program counter relative LDR RO, FC, #offset]

Figure 2 Summary of ARM addressing Modes examples

2|Page

Literal Addressing Mode

An addressing mode specifies how to calculate the effective memory address of an
operand by using information held in registers and/or constants contained within
a machine instruction or elsewhere.

31 2027 26 25 24 21 2019 1615 1211 0
Condiu‘on g 0 Op-Oodo S Tsaurcet | Tdestination Operandz
11 87 0 “
> Alignment | 8-bit immediate value | 3

Figure 3 Literal Addressing Mode

some examples on Literal Addressing Mode:

Examples Meaning

CMPGT SP, R7, LSL #2 ; update the N, Z, C and V flags

Figure 4 Literal Addressing Mode examples

3|Page

Register Indirect Addressing Mode

In register indirect addressing mode, the address of operand is placed in any one
of the registers. The instruction specifies a register that contains the address of the
operand.

The position of an operand is maintained in a register in register indirect
addressing. It's also known as base addressing or indexed addressing.

To access an operand in register indirect addressing mode, three read operations
are required. It's critical because the content of the register carrying the operand's
reference might be changed at runtime. As a result, the address is a variable that
permits access to data structures such as arrays.

To locate the pointer register, read the instruction.

To find the operand address, read the pointer register. To determine the operand
address, read memory at the operand address.

Some examples of using register indirect addressing mode:

I3 Py Py

LDR RZ2, [RO] ; Load RZ with the word pointed by RO

STR B2, [R3] ; Store the word in RZ in the locaticon peinted by R3

Figure 5 Register Indirect Addressing Mode examples

Register Indirect Addressing with an Offset

Register indirect is the simplest addressing mode. The address is provided entirely
by the base register. The offset is added to or subtracted from base register, and
the result is the address to be accessed

The effective address of an operand is derived by adding the contents of a register
and a literal offset programmed into a load/store instruction in ARM's memory-
addressing mode. As an example,

Instruction Effective Address

LDE RO, [R1, #20] R1 + 20 ; loads RO with the word pointed at by R1+20

Figure 6 Register Indirect Addressing with an Offset examples

4|Page

ARM's Autoindexing Pre-Indexed Addressing Mode

This is used to make sequential data in structures like arrays, tables, and vectors
easier to read. The base address is stored in a pointer register. To get the effective
address, an offset might be applied. As an example,

Instruction Effective Address
LDR RO, [R1l, #41! Rl + 4 ; loads RO with the word pointed at by R1+4
; then update the pointer by adding 4 to R1

Figure 7 ARM's Autoindexing Pre-Indexed Addressing Mode examples

ARM's Autoindexing Post-indexing Addressing Mode

This is identical to the previous example, except that it first reads the operand at
the address indicated by the base register before incrementing the base register.
As an example,

Instruction Effective Address
LDR RO, [R1], #4 R1 ;7 loads RO with the word pointed at by Rl
; then update the pointer by adding 4 to R1

Figure 8 ARM's Autoindexing Post-indexing Addressing Mode examples

Program Counter Relative (PC Relative) Addressing Mode

The program counter is located in register R15. PC relative addressing is the
addressing method that results from using R15 as a pointer register to access
operand. With regard to the present code position, the operand is provided. Take
a look at this illustration.

Instruction Effective Rddress

Figure 9 Program Counter Relative (PC Relative) Addressing Mode examples

5|Page

ARM's Load and Store Encoding Format

The encoding format of the ARM's load and store instructions is shown in the
accompanying diagram, which is included in the lab material for your reference. In
bits 31, 03, 29, and 28, there is a conditional execution field for memory access
operations. Conditionally execute load and store instructions based on a condition
stated in the instruction. Take a look at the samples below:

Figure 10 ARM's Load and Store Encoding Format examples

Encoding Format of ARM's load and store instructions

31 282726 25 24 23 22 21 20 19 1615 1211 0
| Condition | 0 1 [T P [U | B W[L[i | Ao | Operand 2
i s

| # I ~—» Source/destination reqister

l———> Base register

0 L — Data direction (Load/store)
0= 12-hit Literal 0 = store in memory

° : 1 = load into register
1 = shifted register

» Pointer update (Write-back)
0 = don't write back adjusted pointer
1 = write back adjusted pointer

Operand size (Byte/Word)
0 = word access
1 = byle access

* Pointer direction (Up/down)
| 0 = decrement pointer
‘ 1 = Increment pointer

* Pointer adjust (Pra/post-increment
0 = post-index operation: use pointer then adjus!
1 = pre-index operation: adjust pointer then use pointer

1" 0
12-bit immediate value]

> o]
]

Immediate offset [
1

11 76 543 0
Register-based offset
~——~[I]» =2 PS5 shintengtn [Type[o[Register]

Figure 11 Encoding Format of ARM's load and store instructions

6|Page

Procedure and Discussion

Program #1 add numbers greater than integer:

This code have to add any number greater than 5 to a summation value initialized
with O, first | created a summation value with 0, then give the N a value =7 to
iterate the loop with it, then initialized an array with positive and negative
numbers.

20

21 Your
22 sAEER
23 ; LRER MYRRAM, DATA, READWEITE
24

25

26 S5UM DCD 0O

27 S5UMP DCD STM

28 N DCD 7

2% NOM1 DCD 3, -7, 2, -2, 10, 20, 30
30

21

Figure 12 Program #1 picture 1

Then | put a value by the number of the array length to iterate the loop by it, then
| put a zero value in another register to branch the loop when it finishes. inside
the loop | put the value of every element in the array and updated the address by
4 bytes after getting the index value as i++ in C language. and after getting the
value from each index | compared it with number 5 and check if the value is list or
equal to this number so if it's list or equal to number 5 it will branch to skip label
there it will subtract 1 from the #7 which it's the array length end continue to
compare if it's three each the number 0 which means the end of the array or not
on the other hand if the number is greater than #5 it will skip the branch and add
the number into a register | called it register #3 and after finishing the loop | put
the value in the saved memory called Sum.

7|Page

39 rrrrrriiisUser Code Start from the next linep;rrisisssis
40

a1 MOV RO, $7

42 MOV B3, #0

43 LDR R1, =NUM1
44

45 LOOP

46

a7 LDR R2, [R1], #4
48

49 CMP ER2, $5

50 ELE SKIP

L | ADD R3, R3, R2
52

53 SKIP

54 SUB RO, RO, #1
55

56 CMP RO, §0

57 BNE LOOP

58

50

&0

6l

62 STOP

63 B STOP

64 END

Figure 13 Program #1 picture 2

Program #2 Min & Max numbers

In the area | defined it a Max label and the min label and label called N have the
number of elements and the label called num1 have 12 numbers as an array
negative and positive numbers and old labels are defined as wards of four bytes.

26
27
28
29
30
31
32
33
34

Max DCD O

MaxP DCD Max

Min DCD O

MinP DCD Min

H DCD 12

WOM1 DCD 3, -7, 2, -2, 1o, 20, 30, 15, 32, 8, €4, &6

POINTEE DCD NUOM1

Figure 14 Program #2 picture 1

From line 43 to 48 | loaded the labels of array and number of elements and put
them in registers and define the three registers of #0 one to know the minimum
and one to know the maximum and one to compare the loop if it reached the
end. Inside the loop | loaded the first element from the array and put the value in

8|Page

register 2 then added four bytes to address so | can move to the next element
now after loading the first element | compared it with the minimum value which
is stored before as #0 so if the number is greater then the previous stored value
then skip to check the number with the Max value but if the number is less or
equal to the previous saved value then move the value to the minimum register
Then when skip to the Max register converter it will compare the value with the
previous saved value in register 9 as a maximum value and compare if it's greater
then the previous value so if it's greater it will replace the value and put the
biggest value in the maximum register and if not it will skip two label SKIP2 Here it
will subtract one from the 12 elements and compare the new value with #0 so if it
reached zero it will break from the loop and if not it will continue iterative the
loop.

41 srrrrrrrrUser Code Start from the next lime;rrrrrrrnrzi
42z

43 LDE E&, =N

44 LDE RO, [R9]
45 MOV E3, #0

46 MOV RE, #0 ;MIN
47 MOV RS, #0 MAX
48 LDE El1, =NUM1
449

S0 LOOP

51

52 LDE EZ, [ER1], #4
S3

sS4 CMP E2, RE

S5 BGT SEIP

Se MOV RE, ERZ

57

]

£S5 ESEIP

&0

6l CMP E2, E9

62 BLE SKIPZ

63 MOV RS, ERZ

Figure 15 Program #2 picture 2

9|Page

65 SKEIP2

66 SUB RO, RO, #1
67

68 CMP RO, #0
€9 ENE LOOP
70

71

72

73

74 STOP

75 B STOP

76 END

Figure 16 Program #2 picture 3

Program #3 even and would arrays
| defined the array of numbers and a label called N in the read only area so | can
read them freely because there is no need to change the values

o I Wb bl B AR e LRl ted R SR e i W R R R e

12 ; Linker regquires Vectors to be exported

13 REER ERESET, DATA, RELADOHLY

14 EXPORT _ Vectors

15 Vectors

lée DCD O0x20001000 ; stack pointer wvalue when stack is empty
17 DCD Reset Handler ; resst veCcLor

13

19 ALIGH

20

21

22 H DCD 12

23 HNWOM1 DCD 3, -7, 2, -2, 10, 20, 30, 15, 32, 8, 64, &6
24

-~

Figure 17 Program #3 picture 1

And define the two arrays in the read write area so | can change the values later |
defined it two arrays even and odd each of them is made of 100 bites as empty
elements, | had to do this because if | did not, the program will overwrite the even
over the odd or the opposite because the 2 arrays are saved in the same
addresses

10| Page

F10Ur Data sSeCtlion

-1 o

AREA DATDH

AREL MYRAM, DATA, EREADWRITE

(R % T 6 Y % [%
(=]

= T« R =

even
31
32 odd

BRCE LO0O

L

L
5]
[y}

BRCE LO0O

Figure 18 Program #3 picture 2

From line 44 -50 all | did is to define registers for every label the even the odd the
array and the number of elements in the array and the register with initialized
number zero to compare the loop if it end or not, Inside the loop | grabbed the
first value from the array then added four bytes to the address so | can move to
the next element in the array then | made an AND operation with the value
0x00000001 in hexadecimal this trick will check if the number ends with one or
zero byte so if the answer was one this means the number is odd and if the
answer was zero this means the number is even and based on this trick | can spirit
the even numbers of the odd numbers in different arrays. There is still the code
branch to the even or told based on the answer above and store the value in the
even or odd array. at the end of the code, it's subtract 1 from the register that |
have the number of elements in the array and compare if it reaches the zero or
not so it breaks the loop or iterative it.

11| Page

42 prrrrrrrrrUser Code Start from the next linerrrrrrrrrlr:
43

44 LDER RS, =N

45 LDR El10, =even

46 LDE E11, =odd

47 LDR RO, [RS

48 MOV R3, #C

449

50 LDE El, =NUM1

51

52 LOOP

53

S4 LDR EZ, [R1], #4

55

Se BND ERE, RZ, #0=x00000001 ; check
57 CHMP EE, #0=00000000

L}

5o BHE SKIFP FOR ODD

&0 STR E2, [R10], #4 : STORE EVEN
&l B SKIP

62

Figure 19 Program #3 picture 3

63

€4 SKIF FOR ODD

65

66 STR R2, [R11], #4 ; STCRE ODD
67 SKIP

68 SUB RO, RO, #1
69 CMP RO, #0

70 ENE LOOP

71

72

73

74

75 STOP

76 B STOP

77 END

Figure 20 Program #3 picture 4

12| Page

Conclusion

We can conclude That we can use some functions that make it easier to iterative
some programs such as ARM's Autoindexing Post-Indexing Addressing Mode and
have much less code and less pressure on CPU as we limited the number of
operations specially in loops.

we can conclude that we have to focus on the operations when we are using the
signed or unsigned numbers in sighed numbers, we can use bigger or less to
compare, but in unsigned numbers we use high and low, we must focus on this
because the update of flags will change in a way that we cannot follow it

13| Page

References
The lab manual

14| Page

