— M‘\D

BIRZEIT UNIVERSITY

Faculty of Engineering & Technology
Electrical & Computer Engineering Department

COMPUTER DESIGN LABORATORY
ENCS4110
Report #1

Experiment #6+7
GPIO Interface & External Interrupts

Prepared by:
Islam Jihad - 1191375

Instructor: Dr. Abualseoud Hanani

Assistant: Eng. Raha Zabadi

Section: 1
Date: 14/May/2022

I|Page

Abstract

in these two experiments we learn to how to use the chip TM4C123G and how to program it
using assembly and C language in addition to use some functionality's and to modify it to work
on edge or level or to work on rising edge or falling edge or which method to use in interrupts
(Polling based method / Interrupt based method) and to configure the Bush buttons to work on
pull up resistance or pull-down resistance.

N|Page

Table of Contents

LI =Yoo 5
TMA4C123G LaunchPad INTroTUCIONc.eiiiieiieieeteerte ettt st sree s 5
TMAC123G LauNChPad FEATUIESeeuiieiieeetieieeteet sttt ettt ettt et st esbeesbeesaneeas 5
GPIO (General PUrpose INPUE/OULPUL) ...ocueeciicieeieeeeiee sttt ere e e teestaestaesreebeebe e ba e baessaessaesaseensens 5
ON BOArd PUSH BUELEONS ...ceiiiiiiiietee ettt sttt ettt st s bt e st e s be e e sabe e sabeeesabeesabeeesnseesaneeesanes 6
ONDOAIT LEDS....cueeetieieeiiee ittt ettt st sttt et e b e s bt e sae e s a e et e et e e bt e s bt e saeesaeesabe e bt e bt e be e beesne e et e enrean 7
Yot Y= [T o o TN 1o Yol PSP 7
Configuring the Pin @S OULPUL.....cciicuiiii ettt e s st e e s sara e e e s satae e e snbeeeesanseeeesnnnseeesnn 8
How to use Switch as a digital INPUL?cooiiiii i s e ee e e 9
Vel T 2 T YU ol T o = RSP 9
Controlling an LED with a push button using Tiva Launchpad.........cccceeeciiiiicciiee e, 10
GPIO Pins as Digital Input Registers Configurationcccceeeecuieieeiiiee e 10
€1 (O [0} =] ¢ U] o] £ T T T T T T T T T T P TP PP T PP 11
Why do we need to use TMAC123 GPIO INtEITUPLS?..ciiiuiiieeeiriee et eriee e csree e esree e e e e s sree e e e 11
TMA4C123GHBEPM Microcontroller GPIO INTEITUPLSuuvieiccrieeecciiee e et eitee e e ecvte e e e eire e e e e rre e e e earaeeeeanes 11
FINA GPO INTEITUPT NUMDEccieiiiie ettt e e e e tte e e e et e e e e ebteeeeesaeeeeesteeesessaeeesssenaesnnes 12
Differentiating which GPIO pin CausSes INTEIMTUPTccccuiieiieiiiie e e et e et e et e e e eabe e e e eareeeeeanes 13

Procedure and DiSCUSSIONciiiirtiriietete ettt sttt ettt sttt et e s b saee st e et e e b e e sbeesanesanesneeneenes 15
EXPE EXAMPIE HL ..oeiiiiiiiie ettt et e e e et e e e et e e e st e e e e e b te e e e eabte e e e e bteeeeabtaeeeabtaeeearreeeeanes 15
EXPE EXAMPIE H2 ..ottt ettt e e e et e e e e bt e e e e e bte e e e e bteeeeebtaeeeabtaeeeatteeeeabtaeeeatreeeeanrreeaeanes 16
oo T SR ole o [T 31 PR UURRRt 17
oo oo o [IE 2PNt 17
EXPO PrOZram H1 .oooiiiiiiiiiiiiiiiiiiiiiieieieeeeeteee ettt teeetetetetetetetetetetete sttt t ettt et ettt ettt et e aeae sttt et teeeteeeteaeeeeeseaearaae 18
EXPO PrOZram H2 .ocooiiiiiiiiiiiiiiiiiiieieieieeeee ettt eeteee et teteteteteteteteteteteteteteteaetetetete et teteteaetetesteeeeeeeeaeeeseeeeeaesreees 19
(Lo T ge =4 =T 4 I 2 PNt 19
(LT T e =4 =T o 4 I - 72 N 20
(ol o] fo =4 =10 4 I - 25 TP PPPPPPPPPPPPPPPPRE 22

(600} 3Tl (D11 To o DS PPO PP PP PRPTURPOPRRPRNS 24

2 (=T =T Lol TP PSP P PP 25

M|Page

= U T A oYU T o o Y o] =Tl U 6

= U R [T W o] =T ol PP 7
Figure 3 General-Purpose Input/output Run Mode Clock Gating Control (RCGCGPIO).......cccceeecvereerveennenn. 8
Figure 4 Configuring the Pin @s OULPUL L.......ooiiiiiiiiieieie ettt etee e e s sata e e e e aaa e e e esaeaeeeenneaeeeean 8
Figure 5 Configuring the Pin @s OULPUL 2.....euiiiiiiiiii ettt ettt e e s e e e s aaa e e e e saraeeessnneeeeeas 8
= U I VY1 o I = o 1 U] o ol o V- SR 9
Figure 7 TMAC123GHOPM 1aUNCR-PAA ...ooiiiiiiiiiiiieeeeee ettt e s s ree e s s e e e s s areeas 12
Figure 8 GPO INtErrUPt NUMDET ...oiiiieiee ettt et e e e st e e s bbe e e s s abe e e s enbeeesenareeas 13
Figure 9 EXP6 €XampPle #L PICL.....uuiiiieiiie ettt erte e e et e et e e et e e e e et e e e e s ab e e e e enabaeeseabaeeeenneeeeennreeas 15
Figure 10 EXP6 @XaMPIE HL PIC2...uiiiiiiiiieeeiiiiee sttt e ettt e s siee e e s stte e e ssbeeeessabeeeessbaeesssbeeesssaseeesenssenessnnsens 16
Figure 11 EXp6 eXamPle H2 PICL......ciiiiiiieeciiiee ettt ettt e et e et e e e e tte e e e st e e e s e abe e e e eabaeesearaeeeenseeeeennsenas 16
= U N W o q oo oo e 1IR3 A o o3t TP 17
=V I I B S q oL oo o IR 27 o ot PP 18
Figure 14 EXp6 program #1 PICL ...ooviiiiiiiiiiiiiieieeeieeeeeee e e eeeeeeeeeeeeeeeeeeeeeeeeeeseseeeaeeeeeeeeeeseeeraereeeeeseseeeeeeeeeneeee 18
Figure 15 EXPO Program H2 PICL ...ttt ettt e s sttt e e e e s s sttt e e e e e e e s sssanreaeeeeesssnnsnnreseeeeas 19
Figure 16 EXPO Program H#3 PICL ...ttt ettt e e sttt e e e e s s st e e e e e e e s sssanreaeeeeesssnnnnrenaeeeas 20
Figure 17 EXP6 program H#4 PICLcoeeiiiiiiiiiiiieieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeeseseesaeeereeeseeeseeeseeeeeeesseeeeeeeeeenenens 20
Figure 18 EXPO Program H4 PIC2 ...ueueiiiieiiiieiiiiteee e ettt e e e e s sttt e e e e s s s s saabteeeeeeessassnreaaeeeesssnsssseneeeeas 21
Figure 19 EXP6 pProgram H#4 PIC3 ...ttt eeee e eeeeee e e e eeeeeeeeeeeeseeese e e e e e e e e eeeeeeee e et eseseeeeeeeeeeeeeeeennnenes 21
Figure 20 EXP6 Program H4 PICAoeeeeeieiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeeseseteseeraeeereeeeeeseeeeseeereeeereeeeeeeeeeneeee 22
Figure 21 EXPO Program H5 PICL ...ttt ettt ettt e e e e s s st e e e e e e e s sssanraaeeeeesssannnranaaeeas 22
Figure 22 EXP6 Program #5 PIC2 ..ottt ee et e e e e eeeeeeeeeeeese e e e e e e e e eeeeeeeeeeeeseseeeeeeeeeeeeeeeeeanaees 23
Figure 23 EXPO Program H#5 PIC3 ...ttt ettt e e st e e e e s s st e e e e e e s st eae e e e e e s e ananraaaeeeas 23

IV|Page

Theory

TM4C123G LaunchPad Introduction

The TM4C123G belongs to Texas Instruments' line of high-performance 32-bit ARM cortex M4
microcontrollers with a wide range of peripherals. The Tiva LaunchPad includes a built-in
processor with a floating-point unit that runs at up to 80MHz (FPU). In addition, the Cortex-M4F
processor supports the capability of tail chaining A layered vector interrupt controller is also
included (NVIC). The troubleshooting JTAG and SWD (serial wire debugger) are the
programming and debugging interfaces used.

TMA4C123G LaunchPad Features

The TM4C123G can be used in a wide range of situations. It has a number of connectivity
peripherals that can be used to link a variety of electronic devices, including sensors and
actuators like IR sensors and motors. The TM4C123G is a Thumb2 16/32-bit code that uses 26%
less memory and is 25% faster than pure 32-bit code. It also features a configurable clocking
mechanism and access to a real-time clock via the hibernation module.

GPIO (General Purpose Input/Output)

It features 0-43 input-output pins for common use. On the advanced high-performance bus,
each GPIO can be utilized as an external edge or leveltriggered interrupt, commence ADC
sampling, and adjust toggling rate to up to CPU clock speed. In the input arrangement, each
input pin has a 5V tolerance voltage. A weak pull-up, pull-down, and open drain are available on
each GPIO pin.

Each of the aforementioned I/O ports has a number of registers connected with it, each having
its own memory map location. The aforementioned addresses are base addresses, which means
that the registers connected with that port are contained within them.

5|Page

Port Name Lower Address Upper Address
GPIO port A 0x40004000 0x40004FFF
GPIO port B 0x40005000 0x40005FFF
GPIO port C 0x40006000 0x40006FFF
GPIO port D 0x40007000 0x40007FFF
GPIO port E 0x40024000 0x40024FFF
GPIO port F 0x40025000 0x40025FFF

Table 1 ports

On Board Push Buttons
On the LaunchPad, there are two onboard switches (push buttons) that are coupled internally
with the GPIO pins: a toggle switch for power and another push button for resetting or

restarting the program execution that is already loaded on the board. As seen in the diagram
below:

. Ll:‘_;;ll»u
L L L
NAIGS Ml

units @

R . |
-k

AAMS
g

J¥ 0

[
<
<
=
oS
=~
S
Q

S9laS D .BAlL
113 M) 004 S)
2 Ax
- le

00

Sl T

A LAL R

D o gx)

Figure 1 buttons places

The PFO GPIO pin is linked to the SW1 push-button switch, while the PF4 GPIO pin is connected
to the SW2 push-button switch.

6|Page

Onboard LEDs
One RGB LED is included inside the TIVA LaunchPad. It is connected to the GPIO pins' F port
internally, and when enabled, the LED displays the color of the enabled pin. Furthermore, there

is a green power LED onboard that, when "on," indicates that the board is switched on. In the
diagram below, both LEDs are highlighted.

(2.}

°"

@,

&
-0‘

L\

J

J)

o
3

)=

-’i‘-}'x‘g
- 3

RGE LED

Figure 2 lid places

Activating the Clock

In Run mode, the RCGCGPIO register gives software the ability to activate and disable GPIO
modules. When a module is activated, it receives a clock and access to the module. When
Access attempts to module registers produce a bus when the clock is deactivated to conserve
power. fault. The figure below depicts this registration. The clock for GPIO port F may be
activated by asserting the RCGGPIO register's 6th bit We may now set any bit (i.e., make it 1) in
a particular register in one of three methods. For instance, We may use the following code to
set the 6th bit of the RCGGPIO register:

RCGGPIO = (16); / direct assign: all other pins are set to 0.

Case 2: RCGGPIO |=0x20; / direct assign: no effect on other pins RCGGPIO |= (16); /binary —
Case 3 OR and assign: no effect on other pins

7|Page

3 30] 28 n b] 25 24 b] n | 20 19 18 i 16
T T T T T T T T T T T T T T T
| == |
i 1 1
Type RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO
Reset 0 0 L] L] 0]] o 0 0 0 Q 0 0 (] 0
15 14 13 12 n 10 9] T 1] 5 4 3 2 1 0
Ll L] L] T L L] 1 L] I
| reserved | RS I Re | R3 I R2 l R1 l RO |
L L
Type RO RO RO RO RO RO RO RO RO RO RAW RW RAW RW RAW R
Reset 0 0 o o 0 L]] -] L] '] 0 a 0 L]] 0

General-Purpose Input/output Run Mode Clock Gating Control (RCGCGPIO)

Figure 3 General-Purpose Input/output Run Mode Clock Gating Control (RCGCGPIO)

Configuring the Pin as Output

After activating the clocks, any relevant pins must be configured. A single pin (PF3) must be
setup as an output in this situation. To utilize the pin as a digital input or output, the relevant
bit in the GPIODEN register must be set, and then the corresponding pin must be configured as
an output by setting a bit in the GPIODIR register.

GPI10 Port F (APB) base: 0x4002.5000

n 30] 23 27 28 25 24 3 2 b | 20 18 18 17 16
L L] 1 1 I L] L 1 1 L | L 1 | L]
reserved
L 1 L
Type RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO
Reset 0 0 0 [0 0 0 0 [0 0 0 0 0 0 0
15 14 13 12 1 110] B T] S d 3 2 1 a
L L] Ll T L] L L] L L L] L L) 1 L
reserved DEN
L L
Tﬂl! RO RO RO RO RO RO RO RO RN R R W R R [W
Reset 0 0 0 0 0 0 0 0 - - .

Figure 4 Configuring the Pin as Output 1

GPIO Port F (APB] base: 0x4002.5000 Offsat 0x400

n 30 F-] -} Fi . 25 24 b 2 Fal 20 18 8 7 18
T T T T T T T T T T T T T T T
reserved
i i i
Type RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO
Reset 0 '] 0] o Q 0 0 o 0 0] 0 0 o Q
15 14 13 12 11 10 9 a T L] 5 4 3 2 1 a
L) L] L T L) 1 L] I r] 1 I] I
reserved DR
i 1
Type RO RO RO RO RO RO RO RO RW RAY R W RMW RMW R RAY
Hezet] (] 0 [1] o o a 0 (1] 1] (1]] 0 1] o a

Figure 5 Configuring the Pin as Output 2

8|Page

How to use Switch as a digital Input?

To input any parameters to digital systems, mechanical switches are widely utilized. Digital
inputs may be used to connect the switches to a microcontroller. One of the two techniques for
implementing the software program for switch interfacing is as follows.

->Method based on polling
—>Method based on interruptions

This course will cover polling-based switch interfacing. Before we go any further, it's crucial to
understand the physical behavior of switches, and then we'll talk about switch bouncing, which
is one of the most fundamental aspects of that behavior.

Switch Bouncing

Contact bouncing occurs in electrical switches that employ mechanical contacts to shut or open
a circuit. Asynchronous switch inputs are not electrically clean. When a hardware switch is
pushed, the switch's mechanical contact, which completes the electrical connection, begins to
bounce. The program will interpret a single switch push as many presses due to the bouncing
effect.

The program will get perplexed as to how many times the switch has been pushed. This issue
has both software and hardware solutions. A basic RC filter is used as the hardware solution to
this problem. The resistor and capacitor values are selected such that the input is recorded
after the bouncing time has ended. The image below depicts the bouncing effect of a switch.

CONTACT BOUNCE CONTACT BOUNCE
PERIOD PERICD
1 — — e,
0
SWITCH ACTIVAIED SWITCH DE-ACTIVATED

Figure 6 Switch Bouncing

The bouncing effect of the switch is seen in detail in the diagram above. The switch is initially in
the off (0) position. When the switch is turned on, it will bounce numerous times, as shown in
the diagram, before getting to a constant ON (1) state. When the switch is turned off, the same
thing happens. When dealing exclusively with hardware, this issue may not be a concern, but
when working with the TIVA LaunchPad's GPIO pins, one push may be read as numerous
presses, and the output may not be as expected or necessary.

9|Page

This is one of the most crucial considerations when dealing with switches. If we want to use the
board's built-in switch, we must make the matching pin an input pin.

The pin will read data from the switch and operate the board's built-in LED, which is set as an
output, based on the data collected from the switch.

Controlling an LED with a push button using Tiva Launchpad

Let's start with a basic example of utilizing switch-one, which is attached to the PF4 pin of
PORTF, to operate an LED connected to the PF1 pin. The LED will light on anytime a user hits
the push button linked to the PFO pin of the TM4C123G6PM microcontroller. Furthermore, the
LED shuts off as soon as the user releases the push button.

Pin Function
PF1 LED- Red
PF4 On-Board Switch-2

GPIO Pins as Digital Input Registers Configuration

Instead of building our own register definition file, we will utilize the register definition header
file supplied in Keil, which provides TM4C123G6PM microcontroller general purpose and
peripheral register definitions. In the last experiment, we demonstrated how direct pointers
dereferencing is used to change the register values of microcontroller peripherals using register
memory addresses.

The memory locations of all peripheral registers are listed in the TM4C123G6PM.h header file.
As a result, rather of developing our own header file, we may utilize this one. You should,
however, be aware of how microcontroller peripheral registers are accessed via pointers and
direct memory dereferencing.

The following four steps are the main configuration steps of switch initialization:
1. Enabling the clock

2. Enabling the data register for pin0 or pin4

3. Enabling the direction register as GPIO input register

4. Enabling the PAD for digital operation and enabling the corresponding pull up register

10| Page

GPIO Interrupts

In embedded systems, general-purpose input-output pins are essential. External components
may be easily integrated with microcontrollers via GPIO pins. Microcontrollers utilize input pins
to receive data from the outside world, while output pins are used to display data or operate
devices such as motors.

Why do we need to use TM4C123 GPIO Interrupts?

We saw an example of controlling an onboard LED of Tiva LaunchPad utilizing onboard
switches, such as SW1 (PFO) and SW2 (PF1), in the previous lesson on controlling an LED with a
push button using TM4C123 Tiva C LaunchPad (PF4). In that lesson, the TM4C123
microcontroller polls the PFO and PF4 bits of the PORTF of the TM4C123G microcontroller to
verify the condition of the push button. However, one of the major disadvantages of the polling
approach is that the microcontroller will have to verify the state of input switches after each
consecutive execution of the code or monitor continually (polling method). To synchronize
external physical devices with microcontrollers, external or GPIO interrupts are employed.

Instead of continually monitoring the status of input switches, a GPIO pin configured as a digital
input may be set to generate an interrupt whenever the state of the switch changes. Interrupt
triggers may be activated by falling edges, rising edges, or both falling and rising edges, and
they can be level triggered.

In conclusion, using external GPIO interrupts makes the embedded system event driven,
responsive, and efficient in terms of microcontroller processing time and resources.

TM4C123GH6PM Microcontroller GPIO Interrupts
PORTA, PORTB, PORTC, PORD, PORTE, and PORTF are six GPIO ports on the TM4C123GH6PM
microcontroller.

Each GPIO port's pin may be set as an external interrupt source. We'll learn how to use the PFO
and PF4 pins as an external interrupt source in this lesson. The technique for configuring
additional GPIO interrupts, on the other hand, will stay the same.

Two onboard switches, SW1 and SW2, are attached to GPIO pins PFO and PF4 on the TM4C123
Tiva C LaunchPad. Examples of GPIO interrupt programming will be shown using these input
switches.

11| Page

EK-TM4C123GXL LaunchPad

TNd(i ZéGHGP,“
PAG
S— PF4
a
PDS PF2— -
PD4 PF1
R2S
N PBO PFo
RS o Wi T N7
PDO
® _ pB6 |
R18 PD1 '
e pB7 -

Figure 7 TM4C123GH6PM launch-pad

Find GPO Interrupt Number

The Nested Vectored Interrupt Controller (NVIC) on the TM4C123 microcontroller controls all
interrupt requests given by the CPU (exceptions) or peripherals (IRQs). The TM4C123GH6PM
microcontroller supports 76 peripheral interrupts (some of which are reserved), each with its
own number. This interrupt number is specified in the TM4C123GH6PM startup and header
files.

Each exception or peripheral interrupt is assigned a number by NVIC. The unique number
allocated to each exception and peripheral interrupt can be found in table 2.9 of the
TMA4C123GH6PM MCU datasheet.

The interrupt number of GPIO PORTF is 30, as seen in the second column of the diagram below.

Vector Number | Interrupt Number (Bit| Vector Address or | Description
in Interrupt Registers) Offset
45 29 0x0000.00B4 | Flash Memory Control and EEPROM Control
46 30 0x0000.0088 |GPIO Port F
47-48 31-32 - Reserved
49 33 0x0000.00C4 |UART2
50 | 34 0x0000.00C8 | SSI

GPIO Interrupt Edge or Level Triggered Setting (GPIOIS)

external GPIO interrupts of TM4C123G microcontroller can be configured in four modes:

12| Page

1-Positive edge triggered
2-Negative edge triggered
3-Positive Level (active high)
4-Negative Level (active low)

The GPIO interrupt sense register is used to set whether a pin is level or edge triggered. Setting
a bit in the GPIOIS register to detect levels configures the associated pin, whereas removing a
bit configures the corresponding pin to detect edges.

31 30 20 28 27 20 25 24 23 2 2 2] 8 17 18
Ll Ll 1 L) L L} T L] L) 1 L) 1 L] L} L}
reserved
1 1 1
Type RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO
Reset 0 0 0 0 0 0 0 o 0 0 0 0 0 o 0 0
15 14 12 12 11 10 o g 7 8 5 4 a 2 0
L) L} Ll T Al Ll T L) L) L)] L] L) L)
reserved IS
L 1
Type RO RO RO RO RO RO RO RO e W RW RW RW RW RW RW
Reset 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0
Bit/Field Name Type Reset Description
318 reserved RO 0x0000.00 Software should not rely on the value of a reserved bit. To provide

compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

70 IS RW 0x00 GPIO Interrupt Sense

Value Description
0 The edge on the corresponding pin is detected (edge-sensitive).
1 The level on the corresponding pin is detected (level-sensitive).

Figure 8 GPO Interrupt Number

Differentiating which GPIO pin causes Interrupt
As previously stated, each GPIO port has just one interrupt service procedure. GPIOF Handler is
one of the interrupt handler functions in PORTF (). The same GPIOF Handler() interrupt service
code is used for all PORTF pin interrupts. The difficulty now is how to tell which of the PORTF
pins causes the GPIOF Handler() function to run.

The TM4C123GH6PM microcontroller includes a GPIO masked interrupt status register, so
that's quite simple (GPIOMIS).

This register keeps track of the state of each pin's interrupt. The first eight bits of this register
correspond to each GPIO interrupt state PINO through PIN7.

If the PFO pin causes the PORTF interrupt service routine to be called, the Oth bit of the
GPIOMIS register will be 1, and if the PF4 pin causes the interrupt service routine to be called,
the 4th bit of the GPIOMIS register will be set automatically. As a result, we can determine

13| Page

which pin generates this specific interrupt by examining the value of each bit of the GPIOMIS
register within the PORTF interrupt handler code.

14| Page

Procedure and Discussion

Exp6 example #1
Here | Enabled the GPIO port that is used for the onboard LED.

And enable the GPIO pin for the LED (PF3), Set the direction as output and enable the GPIO pin
for digital, it will go in an infinite loop to flash the light till R5 register =1,

1 ; Directives

2 PRESERVES

3 THUME ; Marks the THUME mode of operation
4 sData variakles are declared in DATA ARER;
= AREL const_data , DATA, READONLY

) ; Initialing some constants

7 SYSCTL RCGCGPIO R EQU Ox400FEEDS

8 GPIO PORTF_AFSEL R EQU 0x40025420

S GPIO _PORTF DIR R EQU 0x40025400

10 GPIO PORTF DEN R EQU 0Ox4002551C

11 GPIOQ_PORTF_DATR R EQU 0Ox400253FC

12 DELAY EQU 700000

13 ;The user code { program) is placed in CCODE AREA;
14 ARER |.text| , CODE, READCHLY, ALIGHN=2

15 ENTRY ; ENTRY marks the starting point of the code execution
16 EXPORT _ main

17

18 main

18 ; User Code starts from the next line

20 ; Enable clock for PCRT F

21 LDR Rl , =S5Y¥5CTL_RCGCGPIO R

22 LDR RO , [R1l]

23 ORE RO RO, #0=20

24 STR RO , [R1l]

25 NCP ; No operations for 3 cycles

26 HOP

27 HOP

Figure 9 Exp6 example #1 picl

15| Page

F) Bog

28 7 Jet the direction foxr POBT F
ped=) LOE Bl , =ZPI0_PORTE DIR R

a0 LIE 20 , [El]

a1 OBR B0 , $#0x08

32 STR B0, [El]

3 : Digital enable for BORT F
23 LR El , =PI0 PCRTE IEN B

a5 LOR B0, [RE1]

26 OBR B0 , #0x03

7 TR B0, [H1]

28 7 Infinice

ac LET_fla=h
a0 7 Jet the data for POBT F to turnm LED on

loop LED flash

41 LOE Bl , =ZPI0_PORTE DATE B
43 LIE 20 , [El]

43 OBR B0 , RO . #0208

43 STR Bl , [Rl]

45 : Delay loop

£ 1] LIOR B , =DELAY

a7 delayl

48 SUEE BRI #1

4c EKE delayl

0 7 Jet the data for POBT F to turn LED off
51 LOE Bl , =ZPI0_PORTE DATE B
52 LIE 20 , [El]

53 AMD B0 , RO . $0uxE7

53 STR Bl , [Rl]

55 : Delay loop

56 LIOR B , =DELAY

57 delagl

58 SUEE BRI #1

L] EME delazZ

&0 B LED flashk

ELl ALIEH

Figure 10 Exp6 example #1 pic2

Exp6 example #2

#define
#define
#define

=]

EE I (T B SO E R

SYSCTL_RCGCGPIC R (* ((volatile unsigned long *)O0x400FEE0E))
GPIC PORTF DATA R (*((volatile unsigned long *)0x400253FC))
GPIO_PORTF DIR R (*((volatile unsigned long *)0Ox40025400))
GPIO_PORTF DEN R (*((volatile unsigned long *)0Ox4002551C))
DELAY 300000

int main { wvoid)

volatile unsigned long ulLoop

4 | // Enable the GPIC port that is used for the onboard LED.

10 SYSCTL_RCGCGPIO R = 0x20; // 02:
11 | // Do a dummy read to insert a few cycles after enabling the peripheral.

12 | ulLoop = SYSCTL RCGCGPIO R:

13 | //_ Enable the GPICO pin

for the LED (PF3).

0000 0010

Set the direction as output and enable the GPIO pin for digital //function.

14 | GPIO_PORTF_DIR R = 0x08;

15 | GPIO_PORTF_DEN R = 0x08;

16 | // Loop for ever.

17 Hwhile (1) {

18 | // Toggle the LED.

19 GPIO_PORTF_DATA R "= 0x08; // " means XOR in c : B&=

20 | /f Delay for a bit.

21 | for (ulLoop = 0; ulLoop < DELAY; ulLoop++)

24 [{
25 |}
26 |}
27 |
28 |

22 [H{
23EEDI (ulLoop = 0; ulLoop < DELAY; ulLoop++)

Figure 11 Exp6 example #2 picl

16 |Page

0000 1000

_f

As seen it will work as the same of the previous assembly code but it’s written in C language,
the 2 for loops are to make a delay so that the human eye can notice the flashs.

Exp6 code #1
Figure 12 Exp6 code #1 picl

All the needed action to change the light from red to blue is to change the hexadecimal number
from 08 to 04 For the led from enable and etc. and the last line | used FB with and gate to set
the blue led to zero so it turn off.

. [21]

22 LDR R0

23 CRR RO R0, #0x20

24 5TR =0, [ER1]

25 NOP ; Ho operations for 3 cycles
26 HoE

27 HoP

28 ; Set the direction for PORT F
29 LDR Rl , =EPI0 PORTF DIR R

30 LDR R0 ~TETT ™,

a1 ORR RO \,._3-_:-:{-:-4.;-

32 STR =m0 , [R®11

33 ; Digital enable for PORT F
34 LDR Rl , =GPI0 PORTF DEN R

35 LDR = ,_x‘l'rl"'a\

3e ORE B ,'-.R#-:-:c-:-q)

37 STR =0, [ExT—

38 7 Infinite loop LED flash

39 LED flash

40 ; Set the data for PORT F to turn LED on
41 LDR Rl , =EPI0 PORTF DATR R

432 LDR RO, [Rll—"

43 ORR 20 , ROf, #0x04)

44 STR 20, [B1™—

45 ;7 Delay loop

4g LDR 25 , =DELAY

47 delayl

45 SUBS RS, #1

45 ENE delayl

50 ; Set the data for PORT F to turn LED off
51 LDR 21 , =EPI0 DORTF DARTR R

52 LDR RO , [R1] _—u

53 END R0 , RO {“#0xFB)

- ——— LR -
——

And to change the delay all is needed to the DELAY variable only, if the number is greater it will
be slower and the opposite is true too.

Exp6 code #2

| enabled the 3 led ports and the push button, then configure the lids as output and the push
button as input, then in every led inside the loop | turned the previous led off by using AND
gate and turn on the led | wanted but put 1 on the data line

17 |Page

14
15
le

17 [
1z
19 [

20
21
22
23 -
24
25

26 [
27
28 [

29
30 -
31
32
33
34
35

36 [
a7
38 [

39 -
40
41
42
43
44

0xJE; //F 0000 1110
0xdF; /F 0000 1111

GPIO_PORTF_DIR R
GPIO_PORTF_DEN_R
/f Loop for ever.
while (1) {
f4 Toggle the LED.

if(GPIO _PORTF DRTR R & 1)

SPIC_PORTF DATA B &= OxFD;
GPIO_PORTF DATA R ~= 0x08; // ~ means HOR in c : &= 0000 1000
Y

ff Delay for a bitc.

for {(ulLoop = 0; ulloop < DELAY; ullooptt)

{

for (ulloop = O; ulLoop < DELAY; ullooptt)
{
1

1

GPIO_PORTF DATA B &= OxF7;

GPIO_PORTF_DATA R ~= 0x04; // ~ means HOR in c : &= 0000 0100

ff Delay for a bitc.
for {(ulLoop = O; ullLoop < DELAY; ulLooptt)

for (ulloop = O; ulLoop < DELAY; ullooptt)
{

1

1

GPIO_DORTF DATA R &= OxFE;
GPIO_PORTF_DATA R ~= 0x02; // ~ means XOR in o : 8= 0000 0010

Figure 13 Exp6 code #2 picl

Exp6 program #1

This

code enable the clock for F port And unlock the PO to configure it then enable it then look

it again, next | enable the pull up resistor for button 4, Then | sit button 4 as in input and button

one

as output, then | enabled them both, and inside the while loop | made the red lid flash on

and off depending on button 4.

1
2
3
4
5
[
7
g
9

10
11
12
13
14
15
1s
17
1z

//Program 1
ginclude "THM4C1l23CHEDM . h™
int main{wvoid)

=
unsigned int state;
SYSCTL->RCOECEFIO |= 0xZd; /% enable clock to GPIOE */
GPIOF->LOCE = 0x4C4F434B; // unlockGPIOCE register
GPIOF->CR = 0x0l; // Enable GPIOPUR register enable to commit
GPIOF->=PUR |= 0xld; // Enabkle Pull Up resistor PF4
GPIOF->DIR |= 0x02; f/set PFl as an output and PF4 as an input pin
GPIOF->DEN |= 0xl2; // Enable PFl and PF4 as a digital GPID pins
while(l)

B
state = GPIOF->DATA & Oxld;
GPIOF->DATE = (~state=*3); /* put it on red LED */

-1
}

Figure 14 Exp6 program #1 picl

18|

Page

Exp6 program #2

Here next each line there is a comment for it such as put button one and four as input registers
and green button as output register, In line theory and theory 1 | sit the priority of interrupts to
Level 3 so that it can be executed before the code.

The code here works on interrupt method but the previous code works on bolling based
method, the robbed method wouldn't make overhead on the processor so it will execute the
code only if an interrupt is called, so in the function online 40 it says if an interrupt came from
button one then turn the red lid and the other part of the if statement says if button two is
pushed then turn off the red lid. before finishing each statement we have to clear the interrupt
flag that's because the next interrupt can affect the code so if the flag isn't cleared then the
code won't work perfectly.

12 GPIOF->LOCE = 0x4C4F434B; /% unlock commit register */

1z GPIOF->CR = 0x0ll; /* make PORTFO configurakle */

14 GPIOF->LOCE = 0; /* lock commit register */

alis

le f*Initialize PF3 as a digital output, PFO0 and PF4 as digital input pins */
17 GPIOF->DIR &= ~{(l<<d) |~(l<<d}; /* Set PF4 and PFI as a digital input pins */
1z GPIOF->DIR |= (l<<3); /* S5et PF3 as digital output to control green LED */
15 GPIOF-=DEN |= (l<<4) | {l<<3) | {l<<0}); /* make PORTF4-0 digital pins */
20 GPIOF-=PUR |= (l<<4) | (l<<d); /* enable pull up for PORTF4, O */

21

22 /% configure PORTF4, 0 for falling edge trigger interrupt */

23 GPIOF->I8 &= ~{l<<4) |~({1<<0); /* make bit 4, 0 edge sensitiwve ¥/

24 GPIOF-*IBE &=~ (l<<4) |~(1l=<«<0); /* trigger is controlled by IEV */

25 GPIOF-=IEV &= ~(l<<d] |~(l<<0); /% falling edge triggexr */

26 GPIOF->ICR |= {(l<<4) | {1<<0); /* clear any prior imnterrupt */

27 GPIOF->IM |= (l<<=4)| (1l<<0); /* unmask interrupt */

2s

25 /% enable interrupt im NVIC and set priority to 3 ¥/

30 NVIC->IP[30] = 3 << 5; /% set interrupt priority to 3 */

31 NVIC-=ISER[D] |= {l=<<30); /* enable IRO30 (D30 of ISERI[O]) */

22

33 while(l)

34 H {

35 £/ do nothing and wait for the interrupt to occcour

35 |}

ST il

38 f% BWl is connected to PF4 pin, 5W2 is connected to PEFO. ¥/

3s /% Both of them trigger PORTF falling edge interrupt */

40 void GPIOF Handler (woid)

41 {

42 if (GPIOF--MIS & 0x10) /% check if interrupt causes by PF4/5W1*/

43 {

44 GPIOF->DRTA |= (l<<3);

45 GPIOF->=ICR |= 0xzld; /* clear the interrupt £flag */

E1 1

47 else if (FPICF-=MIS & 0xdl) /* check if interrupt causes by PFI/SWZ */
43 {

45 GPIOF-»DATA &= ~0x05; 7/ 0000 1000

50 GPIOF-=ICR |= 0x=0l; /% clear the interrupt f£lag */

Figure 15 Exp6 program #2 picl

Expb program #3

| modified program one to toggle the green lid status every time | push the button As seen all |
needed is just to xor the present state with ox02,and put it inside if statement that chick if
button two is clicked or not. The program here works on (bolling based method)

19| Page

2 "TM4C123GHE6PM.h™

3

4 int main(wvoid)

EN=E

6 | volatile unsigned long i;

i) unsigned int state;

8 SYSCTL->RCGCGPIOC |= 0x20; /* enable clock to GPICE */

a GPIOF->LOCK = (Ox4C4F434B; // unlockGPIOCR register // use it with F0O only//no need for it
10 GPIOF->CR = 0x0l; // Enable GPIOPUR register enable to commit // for FO,,

11 GPICF->PUR |= 0x10; // Enable Pull Up resistor PF4// this push button work on pull up risester
1z GPIOF->DIR |= //set PFl as an output and PF4 as an input pin //is it input or output
13 GPICF->DEN |= // Enakble PFl and PF4 as a digital GPIC pins // wihch bkits to enable

14 | while(1)

151 {

16 GPICF->DATA =0;

17 state = GPICF->DATR & 0Ox10;

18 H if(~=tate){

is GPICF->DATA *= 0Ox02 ;

20 - }

21 /{ check if it's on or off by and it with 1 // as the button is pull up, so it's zero, and
22 i 0001 0000 by anding it with 01 that put one on F4 and after shefting it i
23

24 /* put it on red LED #*/

25 174 0001 Q000

26 174 1110 1111

27 174 1111 1101

28 - }

29 -}

Figure 16 Exp6 program #3 picl

Expb program #4

This program will work as the following: win button one is clicked then the three lid colors will
flash red green blue, and if button two is clicked then the order of the lid will be conflict two
green blue red, all the comments from enable to direction etc are commented next to each
line. | wrote in the interrupt function and if statement that change the flag between zero and
one and the etc code is in the while loop in the main function.

1 //Program 4

2 /*PORTF PFO and PF4 fall edge interrupt example*/

3 /*This GPIO interrupt example code controls green LED with switches SW1 and 5W2 external interrupts */
4 = 1 "TM4C123.h" // Device header

3 DELAY 2

€& volatile int flag

7 int main(void)

84

9 volatile unsigned long ulLoop ;

10

11 | SYSCTL->RCGCGPIO |= (1<<5): /* Set kit of RCGCGPIO to enable clock to PORTE*/
1z

13 | /* PORTIFO has special function, need to unlock to modify */
14 GPIOF->LOCK = 0x4C4F434B; /* unlock commit register */

15 GPIOF->CR = 0x01; /* make PORTFO configurable */

16 GPIOF->LOCK = 0; /* lock commit register */

17 /*Initialize PF3 as a digital output, PF0 and PF4 as digital input pins */

18 GPIOF->DIR &= ~(1<<4)|~(l<<0): /* Set PF4 and PFO as a digital input pins */

13 GPIOF->DIR |= (7<<1): /* S5et PF3 as digital output to control green LED */

20 | GPIOF->DEN |= ({1<<4)|(1<<3)|{1<<0)|(1<<1l)|(l<<2); /* make PORTF4-0 digital pins */

21 GPIOF->PUR |= (1<<4)|(1<<0); /* enable pull up for PORTF4, 0 */

22

23 /* configure PORTF4, 0 for falling edge trigger interrupt */

24 | GPIOF->IS &= ~{1<<4) |~{1<<0):; /* make bit 4, 0 edge sensitive */ //to make irt work for edge=0 or level=l

25 GPIOF->IBE (l<<4) |~ (1<<0 /* trigger is controlled by IEV */ // shall GPIO=0 control the interrupt or the both edges=l1
26 GPIOF->IEV ~(1l<<4} |~(1<<0); /* falling edge trigger */ //to mske it work rise=l or falling edge=0
27 | GPIOF->ICR |= (l<<4)|(1<<0); /* clear any prior interrupt */ // this clear the flag to work for anther interrupt (shall be used

28 | GPIOF->IM |= (l<<4)]|(1<<0); /* unmask interrupt */ // they work as enable=l or not=0

Figure 17 Exp6 program #4 picl

20|Page

30 /* enable interrupt in NVIC and set priority to 3 */
31 NVIC->IP[30] = 3 << 5; /* set interrupt priority te 3 */ // 01100000 give the prourity to F port(wich need interrupt number)

32 MVIC->ISER[0] |= (l<<30); /* enable IRQ30 (D30 of ISER[0]) */ //this control the ubove line to be enabeled
33

34 | while(l)

35 {

36 S if (flag==0){

37 GPICF->DATA &= 0Ox00;

38 GPICOF->DATA |= Ox0Z;

39 for (ulLoop = 0; ulLoop < DELAY; ulLoop++)
40 51

41 for (ullLoop = 0; ulLoop < DELAY; ulLoop++)
42 | {}

S5)

44 | GPIOF->DATA &= O0x00;

45 | GPIOF->DATA |= 0x04:

46

47 | for (ulLoop = 0; ulLoop < DELAY; ulLoop++)
48 [H{ for (ulLoop = 0; ulLoop < DELAY; ulLoop++)

49 | { }

50 [}

51 | GPIOF->DATA &= 0x00;
52 | GPIOF->DATA |= 0Ox08;

53 for (ulLoop = 0; ulLoop < DELAY; ulLoop++)
54[?{ for (ulLoop = 0; ulLoop < DELAY; ulLoop++)
55 | {1}

Figure 18 Exp6 program #4 pic2

55 |11}
56 |}
S -
58 } else if(flag==1){
54
&0 GPIOF->DATL &= 0x00;

&1 GPIOF->DRTR |= 0=03;

62 for {ulloop = 0; ulLoop < DELRAY; ulLoop++)
63 H{

64 for (ulloop = 07 ullLoop < DELAY; ulLoopt++t)
65 | {1

66 1}

&7 | GPIOF->DATR &= 0x00;

68 | GPIOF->DATA |= 0x04;

&9
70 | for (ulloop = 0; ulloop < DELAY; ulLoop+t)
711 for (ulloop = 0; ulLoop < LELAY; ulLoop++)
72 | {1}

73 +}

74 | GPIOF->DRTR &= 0x00;

75 | GPIOF->DAIZ |= 0=02;

76 | for (ulLoop = 0; ulloop < DELAY; ulLoop++)
= for (ulloop = 0; ulLoop < LDELAY; ulLoop+dt)

78 ({1
79 1}
80 +}
31 }
82

Figure 19 Exp6 program #4 pic3

21| Page

81 }
82

83 | // do nothing and wait for the interrupt to occur

24 }

85

86 /* 5Wl is connected to PF4 pin, SW2 is connected to PFO. */

87 /¥ Both of them trigger PORIF falling edge interrupt */

88 woid GPIOF_Handler (void)

89 41

S0

g1 if (GPIOF->MIS & 0xl0) /* check if interrupt causes by PF4/5W1*/ //check the P4 gave an interrupt or not as a if statment
924 {

53 flag=0;

94

g5

S GPIOF->ICR |= 0xl0; /% clear the interrupt flag */

97 | 1

g3 elae if (GPIOF->MIS & 0Ox0l) /* check if interrupt causes by PFO/SW2 */
99 [[flag=Ll:

100

101 GPIOF->ICR |= 0x01; /* clear the interrupt flag */

102 k1

102 -]

Figure 20 Exp6 program #4 pic4

Exp6 program #5

This program is almost like the previous one the idea here is to turn on the red lid at the
beginning and when the user click the right button the green lid will flash and when the user
click the left button the blue lid will flash. Line 34 &35 are to turn on the red light at the
beginning, the code here work on interrupt method so the while loop is empty and if one
button make an interruption the functionality in the function will work which turn off the lights
then turn on the light depending on which button is clicked. The nested loops are to make some
delay so the flashes won’t affect on each other.

1 //Program 5

2 /*PORIF PF0 and PF4 fall edge interrupt example?*/

3 /*This GPI0 interrupt example code controls green LED with switches 5SW1 and 5W2 external interrupts */
4 #include "TMAC123.h" // Device header

5 #define DELAY 2000000

& wolatile int flag =0;

7 int main({woid)

8 =1

9

10 | S¥YSCIL->RCGCGPIO |= ({1<<5): /* Set bit5 of RCGCGPIO to enable clock to PORTFY/
11

12 | /% PORTFOD has special function, need to unlock to modify v/

13 GPFIOF->LOCK = 4
14 GPIOF->CR = 0x0l; /* make PORIF0 configurable */

15 GPIOF->LOCK = 0; /* lock commit register */

16 /*Initialize PF3 as a digital output, PF0 and PF4 as digital input pins */

17 GPIOF->DIR &= ~(l<<4) |~({1<<0); /* Set PF4 and PFO as a digital input pins */

18 GPIOF->DIR |= {7<<l): /¥ Set PF3 as digital output toc control green LED */

19 | GPTOF->DEN |= (l<<d4) | (1<<3) | (1<<0) | {1<<1) | {l€<2); /* make PORTF4-0 digital pins */
20 GPIOF->PUR |= (l<<4)|(l<<0); /* enable pull up for PORTF4, 0 */

F434B; /* unlock commit register %/

21
22 /% configure PORTF4, 0 for falling edge trigger interrupt */
23 GPIOF->I5 5= ~{l<<d)|~(l<<O); /% make hit 4, 0 edge sensitive */ //to make irt work for sdge=0 or lewvel=l

COoT,

24 GPIOF->IBE &=~({l<<4)|~(1<<0); /* trigger is controlled by IEV *, shall G

£ rol the interrupt or the both edges=l
//to mske it work rise

25 GPIOF->IEV &= ~(1<<4) |~({1l<<0); /* falling edge triggsr */ =1 or falling edge=0

26 GPIOF->ICR |= (l<<4)|(l<<0); /* clear any prior interrupt */ // this clear the flag tc work for anther interrupt (shall ke used after every use £
27 GPIOF->IM |= (l<<4)|{1<<0); /* unmask interrupt */ // they work as enable=1 or not=0

28

Figure 21 Exp6 program #5 picl

22| Page

29 /% enable interrupt in NVIC and set pricrity to 3 %/
30 RNVIC->IP[30] = 3 << 5; /¥ set interrupt priority to 3 %/ // 01100000 give the prourity to F port(wich need interrupt number)
31 WVIC->ISER[O] |= {l<<30); /* enable IRQ30 (D30 of ISER[O]) */ //this control the ubove line to be enabeled

34 GPIOF->DATA &= Ox00;
35 | GPIOF->DATA |= 0x02;

37 | while(l)
38H |

a0 |}
4 |

43 | // do nothing and wait for the interrupt to occur
a4 |

46 /¥ SW1l is connected to PF4 pin, 5W2 is connected to PFO. %/
47 /* Both of them trigger PORTF falling edge interrupt */

48 woid GPIOF _Handler(void)

45 [{

50 volatile unsigned leong ulloop ;

a if (GPIOF->MIS & 0Ox10) /* check if interrupt causes by PF4/5W1*/ //check the P4 gawe an interrupt or not as a if statment
54 I

Figure 22 Exp6 program #5 pic2

54 {
e | |
56
57 | GPIOF->DATL &= Ox00;
58 | GPIOF->DATZ |= Ox04;
59
60 | for (ullLoop = O; ulloop < DELAY; ulLooptt)

6l H{ for (ulloop = O ulLoop < DELAY; ulLooptt)
62 | { }}

63
64
65 -
(131 GPIOF->ICR |= 0xl0; /* clear the interrupt flag */

67 - 1

68 else if (GPIOF->MIS & 0x0l) /% check if interrupt causes by PFFO/S5W2 */
€69 [{ flag=l;:

70 GPIOF->DATR &= 0x00;

71 GPIOF->DATRA |= 0x=0g;

72 for (ulloop = O; ulloop < DELAY; ulLoop++)

73 H{

74 for (ulleoocp = 0; ulleoocp < DELAY; ulloop++)

75 | {}

76
77 |1
78
79 GPIOF->ICR |= 0x0l; /* clear the interrupt flag */
80 -1

AN -1

Figure 23 Exp6 program #5 pic3

23| Page

Conclusion

In this experiment we learn how to use the chip and its functions from output and inputs using
assembly or C language and how to compile and run the code, we also learn how to use the two
methods polling or interrupts, and we noticed that the interrupt method is more efficient than
polling method, and how important to clear the flag after using the interrupt.

24| Page

References
The lab manual

25| Page

