
I | P a g e

Faculty of Engineering & Technology

Electrical & Computer Engineering Department

COMPUTER DESIGN LABORATORY

ENCS4110

Report #1

Experiment #6+7

GPIO Interface & External Interrupts

Prepared by:

Islam Jihad - 1191375

Instructor: Dr. Abualseoud Hanani

Assistant: Eng. Raha Zabadi

Section: 1

Date: 14/May/2022

II | P a g e

Abstract

in these two experiments we learn to how to use the chip TM4C123G and how to program it

using assembly and C language in addition to use some functionality's and to modify it to work

on edge or level or to work on rising edge or falling edge or which method to use in interrupts

(Polling based method / Interrupt based method) and to configure the Bush buttons to work on

pull up resistance or pull-down resistance.

III | P a g e

Table of Contents
Theory ... 5

TM4C123G LaunchPad Introduction ... 5

TM4C123G LaunchPad Features ... 5

GPIO (General Purpose Input/Output) ... 5

On Board Push Buttons ... 6

Onboard LEDs .. 7

Activating the Clock .. 7

Configuring the Pin as Output ... 8

How to use Switch as a digital Input? ... 9

Switch Bouncing .. 9

Controlling an LED with a push button using Tiva Launchpad .. 10

GPIO Pins as Digital Input Registers Configuration ... 10

GPIO Interrupts ... 11

Why do we need to use TM4C123 GPIO Interrupts? .. 11

TM4C123GH6PM Microcontroller GPIO Interrupts .. 11

Find GPO Interrupt Number .. 12

Differentiating which GPIO pin causes Interrupt .. 13

Procedure and Discussion ... 15

Exp6 example #1 ... 15

Exp6 example #2 ... 16

Exp6 code #1 ... 17

Exp6 code #2 ... 17

Exp6 program #1 ... 18

Exp6 program #2 ... 19

Exp6 program #3 ... 19

Exp6 program #4 ... 20

Exp6 program #5 ... 22

Conclusion ... 24

References .. 25

IV | P a g e

Figure 1 buttons places ... 6

Figure 2 lid places .. 7

Figure 3 General-Purpose Input/output Run Mode Clock Gating Control (RCGCGPIO) 8

Figure 4 Configuring the Pin as Output 1 .. 8

Figure 5 Configuring the Pin as Output 2 .. 8

Figure 6 Switch Bouncing .. 9

Figure 7 TM4C123GH6PM launch-pad ... 12

Figure 8 GPO Interrupt Number ... 13

Figure 9 Exp6 example #1 pic1.. 15

Figure 10 Exp6 example #1 pic2 ... 16

Figure 11 Exp6 example #2 pic1.. 16

Figure 12 Exp6 code #1 pic1 ... 17

Figure 13 Exp6 code #2 pic1 ... 18

Figure 14 Exp6 program #1 pic1 ... 18

Figure 15 Exp6 program #2 pic1 ... 19

Figure 16 Exp6 program #3 pic1 ... 20

Figure 17 Exp6 program #4 pic1 ... 20

Figure 18 Exp6 program #4 pic2 ... 21

Figure 19 Exp6 program #4 pic3 ... 21

Figure 20 Exp6 program #4 pic4 ... 22

Figure 21 Exp6 program #5 pic1 ... 22

Figure 22 Exp6 program #5 pic2 ... 23

Figure 23 Exp6 program #5 pic3 ... 23

5 | P a g e

Theory
TM4C123G LaunchPad Introduction
The TM4C123G belongs to Texas Instruments' line of high-performance 32-bit ARM cortex M4

microcontrollers with a wide range of peripherals. The Tiva LaunchPad includes a built-in

processor with a floating-point unit that runs at up to 80MHz (FPU). In addition, the Cortex-M4F

processor supports the capability of tail chaining A layered vector interrupt controller is also

included (NVIC). The troubleshooting JTAG and SWD (serial wire debugger) are the

programming and debugging interfaces used.

TM4C123G LaunchPad Features

The TM4C123G can be used in a wide range of situations. It has a number of connectivity

peripherals that can be used to link a variety of electronic devices, including sensors and

actuators like IR sensors and motors. The TM4C123G is a Thumb2 16/32-bit code that uses 26%

less memory and is 25% faster than pure 32-bit code. It also features a configurable clocking

mechanism and access to a real-time clock via the hibernation module.

GPIO (General Purpose Input/Output)
It features 0-43 input-output pins for common use. On the advanced high-performance bus,

each GPIO can be utilized as an external edge or leveltriggered interrupt, commence ADC

sampling, and adjust toggling rate to up to CPU clock speed. In the input arrangement, each

input pin has a 5V tolerance voltage. A weak pull-up, pull-down, and open drain are available on

each GPIO pin.

Each of the aforementioned I/O ports has a number of registers connected with it, each having

its own memory map location. The aforementioned addresses are base addresses, which means

that the registers connected with that port are contained within them.

6 | P a g e

Table 1 ports

On Board Push Buttons
On the LaunchPad, there are two onboard switches (push buttons) that are coupled internally

with the GPIO pins: a toggle switch for power and another push button for resetting or

restarting the program execution that is already loaded on the board. As seen in the diagram

below:

Figure 1 buttons places

The PF0 GPIO pin is linked to the SW1 push-button switch, while the PF4 GPIO pin is connected

to the SW2 push-button switch.

7 | P a g e

Onboard LEDs
One RGB LED is included inside the TIVA LaunchPad. It is connected to the GPIO pins' F port

internally, and when enabled, the LED displays the color of the enabled pin. Furthermore, there

is a green power LED onboard that, when "on," indicates that the board is switched on. In the

diagram below, both LEDs are highlighted.

Figure 2 lid places

Activating the Clock
In Run mode, the RCGCGPIO register gives software the ability to activate and disable GPIO

modules. When a module is activated, it receives a clock and access to the module. When

Access attempts to module registers produce a bus when the clock is deactivated to conserve

power. fault. The figure below depicts this registration. The clock for GPIO port F may be

activated by asserting the RCGGPIO register's 6th bit We may now set any bit (i.e., make it 1) in

a particular register in one of three methods. For instance, We may use the following code to

set the 6th bit of the RCGGPIO register:

RCGGPIO = (16); / direct assign: all other pins are set to 0.

Case 2: RCGGPIO |= 0x20; / direct assign: no effect on other pins RCGGPIO |= (16); /binary –

Case 3 OR and assign: no effect on other pins

8 | P a g e

Figure 3 General-Purpose Input/output Run Mode Clock Gating Control (RCGCGPIO)

Configuring the Pin as Output
After activating the clocks, any relevant pins must be configured. A single pin (PF3) must be

setup as an output in this situation. To utilize the pin as a digital input or output, the relevant

bit in the GPIODEN register must be set, and then the corresponding pin must be configured as

an output by setting a bit in the GPIODIR register.

Figure 4 Configuring the Pin as Output 1

Figure 5 Configuring the Pin as Output 2

9 | P a g e

How to use Switch as a digital Input?
To input any parameters to digital systems, mechanical switches are widely utilized. Digital

inputs may be used to connect the switches to a microcontroller. One of the two techniques for

implementing the software program for switch interfacing is as follows.

→Method based on polling

→Method based on interruptions

This course will cover polling-based switch interfacing. Before we go any further, it's crucial to

understand the physical behavior of switches, and then we'll talk about switch bouncing, which

is one of the most fundamental aspects of that behavior.

Switch Bouncing
Contact bouncing occurs in electrical switches that employ mechanical contacts to shut or open

a circuit. Asynchronous switch inputs are not electrically clean. When a hardware switch is

pushed, the switch's mechanical contact, which completes the electrical connection, begins to

bounce. The program will interpret a single switch push as many presses due to the bouncing

effect.

The program will get perplexed as to how many times the switch has been pushed. This issue

has both software and hardware solutions. A basic RC filter is used as the hardware solution to

this problem. The resistor and capacitor values are selected such that the input is recorded

after the bouncing time has ended. The image below depicts the bouncing effect of a switch.

Figure 6 Switch Bouncing

The bouncing effect of the switch is seen in detail in the diagram above. The switch is initially in

the off (0) position. When the switch is turned on, it will bounce numerous times, as shown in

the diagram, before getting to a constant ON (1) state. When the switch is turned off, the same

thing happens. When dealing exclusively with hardware, this issue may not be a concern, but

when working with the TIVA LaunchPad's GPIO pins, one push may be read as numerous

presses, and the output may not be as expected or necessary.

10 | P a g e

This is one of the most crucial considerations when dealing with switches. If we want to use the

board's built-in switch, we must make the matching pin an input pin.

The pin will read data from the switch and operate the board's built-in LED, which is set as an

output, based on the data collected from the switch.

Controlling an LED with a push button using Tiva Launchpad
Let's start with a basic example of utilizing switch-one, which is attached to the PF4 pin of

PORTF, to operate an LED connected to the PF1 pin. The LED will light on anytime a user hits

the push button linked to the PF0 pin of the TM4C123G6PM microcontroller. Furthermore, the

LED shuts off as soon as the user releases the push button.

GPIO Pins as Digital Input Registers Configuration
Instead of building our own register definition file, we will utilize the register definition header

file supplied in Keil, which provides TM4C123G6PM microcontroller general purpose and

peripheral register definitions. In the last experiment, we demonstrated how direct pointers

dereferencing is used to change the register values of microcontroller peripherals using register

memory addresses.

The memory locations of all peripheral registers are listed in the TM4C123G6PM.h header file.

As a result, rather of developing our own header file, we may utilize this one. You should,

however, be aware of how microcontroller peripheral registers are accessed via pointers and

direct memory dereferencing.

The following four steps are the main configuration steps of switch initialization:

1. Enabling the clock

2. Enabling the data register for pin0 or pin4

3. Enabling the direction register as GPIO input register

4. Enabling the PAD for digital operation and enabling the corresponding pull up register

11 | P a g e

GPIO Interrupts
In embedded systems, general-purpose input-output pins are essential. External components

may be easily integrated with microcontrollers via GPIO pins. Microcontrollers utilize input pins

to receive data from the outside world, while output pins are used to display data or operate

devices such as motors.

Why do we need to use TM4C123 GPIO Interrupts?
We saw an example of controlling an onboard LED of Tiva LaunchPad utilizing onboard

switches, such as SW1 (PF0) and SW2 (PF1), in the previous lesson on controlling an LED with a

push button using TM4C123 Tiva C LaunchPad (PF4). In that lesson, the TM4C123

microcontroller polls the PF0 and PF4 bits of the PORTF of the TM4C123G microcontroller to

verify the condition of the push button. However, one of the major disadvantages of the polling

approach is that the microcontroller will have to verify the state of input switches after each

consecutive execution of the code or monitor continually (polling method). To synchronize

external physical devices with microcontrollers, external or GPIO interrupts are employed.

Instead of continually monitoring the status of input switches, a GPIO pin configured as a digital

input may be set to generate an interrupt whenever the state of the switch changes. Interrupt

triggers may be activated by falling edges, rising edges, or both falling and rising edges, and

they can be level triggered.

In conclusion, using external GPIO interrupts makes the embedded system event driven,

responsive, and efficient in terms of microcontroller processing time and resources.

TM4C123GH6PM Microcontroller GPIO Interrupts
PORTA, PORTB, PORTC, PORD, PORTE, and PORTF are six GPIO ports on the TM4C123GH6PM

microcontroller.

Each GPIO port's pin may be set as an external interrupt source. We'll learn how to use the PF0

and PF4 pins as an external interrupt source in this lesson. The technique for configuring

additional GPIO interrupts, on the other hand, will stay the same.

Two onboard switches, SW1 and SW2, are attached to GPIO pins PF0 and PF4 on the TM4C123

Tiva C LaunchPad. Examples of GPIO interrupt programming will be shown using these input

switches.

12 | P a g e

Figure 7 TM4C123GH6PM launch-pad

Find GPO Interrupt Number
The Nested Vectored Interrupt Controller (NVIC) on the TM4C123 microcontroller controls all

interrupt requests given by the CPU (exceptions) or peripherals (IRQs). The TM4C123GH6PM

microcontroller supports 76 peripheral interrupts (some of which are reserved), each with its

own number. This interrupt number is specified in the TM4C123GH6PM startup and header

files.

Each exception or peripheral interrupt is assigned a number by NVIC. The unique number

allocated to each exception and peripheral interrupt can be found in table 2.9 of the

TM4C123GH6PM MCU datasheet.

The interrupt number of GPIO PORTF is 30, as seen in the second column of the diagram below.

GPIO Interrupt Edge or Level Triggered Setting (GPIOIS)

external GPIO interrupts of TM4C123G microcontroller can be configured in four modes:

13 | P a g e

1-Positive edge triggered

2-Negative edge triggered

3-Positive Level (active high)

4-Negative Level (active low)

The GPIO interrupt sense register is used to set whether a pin is level or edge triggered. Setting

a bit in the GPIOIS register to detect levels configures the associated pin, whereas removing a

bit configures the corresponding pin to detect edges.

Figure 8 GPO Interrupt Number

 Differentiating which GPIO pin causes Interrupt
As previously stated, each GPIO port has just one interrupt service procedure. GPIOF Handler is

one of the interrupt handler functions in PORTF (). The same GPIOF Handler() interrupt service

code is used for all PORTF pin interrupts. The difficulty now is how to tell which of the PORTF

pins causes the GPIOF Handler() function to run.

The TM4C123GH6PM microcontroller includes a GPIO masked interrupt status register, so

that's quite simple (GPIOMIS).

This register keeps track of the state of each pin's interrupt. The first eight bits of this register

correspond to each GPIO interrupt state PIN0 through PIN7.

If the PF0 pin causes the PORTF interrupt service routine to be called, the 0th bit of the

GPIOMIS register will be 1, and if the PF4 pin causes the interrupt service routine to be called,

the 4th bit of the GPIOMIS register will be set automatically. As a result, we can determine

14 | P a g e

which pin generates this specific interrupt by examining the value of each bit of the GPIOMIS

register within the PORTF interrupt handler code.

15 | P a g e

Procedure and Discussion
Exp6 example #1

Here I Enabled the GPIO port that is used for the onboard LED.

And enable the GPIO pin for the LED (PF3), Set the direction as output and enable the GPIO pin

for digital, it will go in an infinite loop to flash the light till R5 register =1,

Figure 9 Exp6 example #1 pic1

16 | P a g e

Figure 10 Exp6 example #1 pic2

Exp6 example #2

Figure 11 Exp6 example #2 pic1

17 | P a g e

As seen it will work as the same of the previous assembly code but it’s written in C language,

the 2 for loops are to make a delay so that the human eye can notice the flashs.

Exp6 code #1
Figure 12 Exp6 code #1 pic1

All the needed action to change the light from red to blue is to change the hexadecimal number

from 08 to 04 For the led from enable and etc. and the last line I used FB with and gate to set

the blue led to zero so it turn off.

And to change the delay all is needed to the DELAY variable only, if the number is greater it will

be slower and the opposite is true too.

Exp6 code #2

I enabled the 3 led ports and the push button, then configure the lids as output and the push

button as input, then in every led inside the loop I turned the previous led off by using AND

gate and turn on the led I wanted but put 1 on the data line

18 | P a g e

Figure 13 Exp6 code #2 pic1

Exp6 program #1

This code enable the clock for F port And unlock the P0 to configure it then enable it then look

it again, next I enable the pull up resistor for button 4, Then I sit button 4 as in input and button

one as output, then I enabled them both, and inside the while loop I made the red lid flash on

and off depending on button 4.

Figure 14 Exp6 program #1 pic1

19 | P a g e

Exp6 program #2

Here next each line there is a comment for it such as put button one and four as input registers

and green button as output register, In line theory and theory 1 I sit the priority of interrupts to

Level 3 so that it can be executed before the code.

The code here works on interrupt method but the previous code works on bolling based

method, the robbed method wouldn't make overhead on the processor so it will execute the

code only if an interrupt is called, so in the function online 40 it says if an interrupt came from

button one then turn the red lid and the other part of the if statement says if button two is

pushed then turn off the red lid. before finishing each statement we have to clear the interrupt

flag that's because the next interrupt can affect the code so if the flag isn't cleared then the

code won't work perfectly.

Figure 15 Exp6 program #2 pic1

Exp6 program #3

I modified program one to toggle the green lid status every time I push the button As seen all I

needed is just to xor the present state with ox02,and put it inside if statement that chick if

button two is clicked or not. The program here works on (bolling based method)

20 | P a g e

Figure 16 Exp6 program #3 pic1

Exp6 program #4

This program will work as the following: win button one is clicked then the three lid colors will

flash red green blue, and if button two is clicked then the order of the lid will be conflict two

green blue red, all the comments from enable to direction etc are commented next to each

line. I wrote in the interrupt function and if statement that change the flag between zero and

one and the etc code is in the while loop in the main function.

Figure 17 Exp6 program #4 pic1

21 | P a g e

Figure 18 Exp6 program #4 pic2

Figure 19 Exp6 program #4 pic3

22 | P a g e

Figure 20 Exp6 program #4 pic4

Exp6 program #5

This program is almost like the previous one the idea here is to turn on the red lid at the

beginning and when the user click the right button the green lid will flash and when the user

click the left button the blue lid will flash. Line 34 &35 are to turn on the red light at the

beginning, the code here work on interrupt method so the while loop is empty and if one

button make an interruption the functionality in the function will work which turn off the lights

then turn on the light depending on which button is clicked. The nested loops are to make some

delay so the flashes won’t affect on each other.

Figure 21 Exp6 program #5 pic1

23 | P a g e

Figure 22 Exp6 program #5 pic2

Figure 23 Exp6 program #5 pic3

24 | P a g e

Conclusion
In this experiment we learn how to use the chip and its functions from output and inputs using

assembly or C language and how to compile and run the code, we also learn how to use the two

methods polling or interrupts, and we noticed that the interrupt method is more efficient than

polling method, and how important to clear the flag after using the interrupt.

25 | P a g e

References
The lab manual

