
1

Electrical and Computer Engineering

Computer Design LAB – ENCS4110

Experiment No. 6: GPIO (General Purpose Input/Output) Interface

Using TM4C123G Boards

Objectives

The main objective of tis lab is to give students a first foot in the door exposure

to the programming of I/O, which when executed by the microcontroller (TM4C123G, an

ARM Cortex-M4) simply blinks LED located on the development board.

Tiva C Series TM4C123G LaunchPad Introduction

The TM4C123G is a member of the class of high performance 32-bit ARM cortex M4 microcontroller with a

broad set of peripherals developed by Texas Instrumentals. The Tiva LaunchPad has a built-in processor

clock frequency of up to 80MHz with a floating-point unit (FPU). The Cortex-M4F processor also supports

the tail chaining functionality. It also includes a nested vector interrupt controller (NVIC). The debugging

interface used is JTAG and SWD (serial wire debugger) for programming and debugging purposes.

2

TM4C123G LaunchPad Features

The TM4C123G has a vast variety of applications. It hosts a variety of communication peripherals, which can be

used to connect all sorts of electronics devices; both sensors and actuators, for example, IR sensors, motors,

etc. The TM4C123G is basically a Thumb2 16/32-bit code, which is 26% less memory and 25% faster than pure

32-bit. Moreover, it has a flexible clocking system, and can also access real time clock through hibernation

module.

3

4

5

6

TM4C123G LaunchPad Pinout Diagram

The figure below shows the front end pinout diagram:

The figure below shows the pin configuration for back end connector:

7

GPIO (General Purpose Input/Output)

It has 0-43 general purpose input-output pins. Any GPIO can be used as an external edge or level-

triggered interrupt, it can initiate ADC sampling, can change toggle rate to up to CPU clock speed on

the advanced high-performance bus. Each input pin has a tolerance voltage of 5V in the input

configuration. Every GPIO pin also has a weak pull-up, pull-down, and open drain.

There are many registers associated with each of the above I/O ports, and they have designated

addresses in the memory map. The above addresses are the base addresses meaning that within that

base address we have the registers associated with that port.

Port Name Lower Address Upper Address

GPIO port A 0x40004000 0x40004FFF

GPIO port B 0x40005000 0x40005FFF

GPIO port C 0x40006000 0x40006FFF

GPIO port D 0x40007000 0x40007FFF

GPIO port E 0x40024000 0x40024FFF

GPIO port F 0x40025000 0x40025FFF

On Board Push Buttons

There are two onboard switches (push button) on the LaunchPad that are connected internally with the

GPIO pins, a toggle switch that is used as a power switch, and another push button that is used to reset

or restart the program execution that is already loaded on the board. As shown in the figure below:

8

SW1 push-button switch is connected to the PF0 GPIO pin and the SW2 push-button switch is

connected to the PF4 GPIO pin.

Onboard LEDs

TIVA LaunchPad has one tri-color (RGB) LED onboard. It is internally connected to the F port of the

GPIO pins, and when enabled, the LED shows the color of the enabled pin. Moreover, there is a power

LED of color green onboard, when it is “on”, it tells the user that the board is turned on. Both LEDs are

highlighted in the figure below.

LED Flashing

A GPIO pin is a pin that can be configured through software to be either a digital input or a digital output.

GPIO outputs let you translate logical values within your program to voltage values on output pins.

These are the voltage outputs that help your microcontroller exert control over the system into which it

is embedded.

Configuring Peripherals

The fundamental initialization steps required to utilize any of the peripherals are:

1. Enable clocks to the peripheral

2. Configure pins required by the peripheral

3. Configure peripheral hardware

9

LED flashing code is implemented using an infinite loop which toggles bit 28 of the address

0x2009C020 after certain delay. The delay is implemented using the loop that just increments the loop

counter until the condition is satisfied, as shown in the following flow-chart.

#include " lm4f120h5qr.h"

int main (void)
 {
//Enable peripheral
. . . (1) . . .
// Conf igure pins
. . . (2) . . .
while (1) {
//Turn ON LED
. . . (3) . . .
//Delay for a bit
. . . (4) . . .
//Turn OFF LED
. . . (5) . . .
}
}

10

Where is LED?

The Stellaris LaunchPad comes with an RGB LED. The LED can be configured for use in any custom

application. The following table shows how the LED is connected to the pins on the microcontroller.

The following figure shows the physical connection of the LED.

LED Configuration

We will follow the steps stated above to configure the on-board LED.

Enabling the Clock

The RCGCGPIO register provides the software with the capability to enable and disable GPIO modules

in Run mode. When enabled, a module is provided with a clock and access to the module. When

disabled, the clock is disabled to save power and access attempts to module registers generate a bus

fault. This register is shown in the figure below. The clock can be enabled for the GPIO port F by

asserting the 6th bit of RCGGPIO register.

Now, to set any bit (i.e., make it 1) in a given register, we can do it in three different ways. For example,

to set the 6th bit of RCGGPIO register, we can use:

Case 1: RCGGPIO = (1<<6); // direct assign: other pins set to 0.

Case 2: RCGGPIO |= 0x20; // direct assign: other pins not affected

Case 3: RCGGPIO |= (1<<6); //binary – OR and assign: other pins not affected.

The following command can be used to enable clock signal for GPIO port F

11

SYSCTL_RCGCGPIO_R = 0x20 ; // (1)

General-Purpose Input/output Run Mode Clock Gating Control (RCGCGPIO)

Configuring the Pin as Output

After enabling the clocks, it is necessary to configure any required pins. In this case, a single pin (PF3)

must be configured as an output. To use the pin as a digital input or output, the corresponding bit in the

GPIODEN register must be set, and then setting a bit in the GPIODIR register configures the

corresponding pin to be an output

GPIO Digital Enable (GPIODEN)

GPIO Direction (GPIODIR)

The commands used to set the corresponding bits in GPIODEN and GPIODIR registers are given as

follows

GPIO PORTF DIR R = 0x08; // (2)
GPIO PORTF DEN R = 0x08 ;

12

Toggle the LED

After configuring the LED as an output, we want to toggle it after regular intervals. LED can be turned

ON and OFF by setting and resetting the corresponding bits in the GPIODATA register.

GPIO Data (GPIODATA)

The commands for toggling LED are as follows

GPIO PORTF DATA R = 0x08; // (3)
GPIO PORTF DATA R = 0x00 ; // (5)

Introducing a Delay

We cannot observe the toggling of LED because of very high frequency. We introduce a delay loop in

order to observe the toggle sequence of the LED. The syntax for the loop is shown in the following

figure

int counter = 0 ;
while (count e r < 200000) { // (4)
++counter ;
}

Source Code

The complete assembly and C language code for the program is given as follows

Assembly Language Code

; Directives
 PRESERVE8
 THUMB ; Marks the THUMB mode of operation
 ;Data variables are declared in DATA AREA;
 AREA const_data , DATA, READONLY
 ; Initialing some constants
SYSCTL_RCGCGPIO_R EQU 0x400FE608
GPIO_PORTF_AFSEL_R EQU 0x40025420

13

GPIO_PORTF_DIR_R EQU 0x40025400
GPIO_PORTF_DEN_R EQU 0x4002551C
GPIO_PORTF_DATA_R EQU 0x400253FC

DELAY EQU 200000

;The user code (program) is placed in CODE AREA;
 AREA |.text| , CODE, READONLY, ALIGN=2
 ENTRY ; ENTRY marks the starting point of the code execution
 EXPORT __main
__main
; User Code starts from the next line
; Enable clock for PORT F
 LDR R1 , =SYSCTL_RCGCGPIO_R
 LDR R0 , [R1]
 ORR R0 ,R0, #0x20
 STR R0 , [R1]
 NOP ; No operations for 3 cycles
 NOP
 NOP
; Set the direction for PORT F
 LDR R1 , =GPIO_PORTF_DIR_R
 LDR R0 , [R1]
 ORR R0 , #0x08
 STR R0 , [R1]
 ; Digital enable for PORT F
 LDR R1 , =GPIO_PORTF_DEN_R
 LDR R0 , [R1]
 ORR R0 , #0x08
 STR R0 , [R1]
; Infinite loop LED flash
LED_flash
; Set the data for PORT F to turn LED on
 LDR R1 , =GPIO_PORTF_DATA_R
 LDR R0 , [R1]
 ORR R0 , R0 , #0x08
 STR R0 , [R1]

; Delay loop
 LDR R5 , =DELAY
delay1
 SUBS R5,#1
 BNE delay1

; Set the data for PORT F to turn LED off
 LDR R1 , =GPIO_PORTF_DATA_R
 LDR R0 , [R1]
 AND R0 , R0 , #0xF7
 STR R0 , [R1]
; Delay loop
 LDR R5 , =DELAY
delay2
 SUBS R5,#1
 BNE delay2

14

 B LED_flash

 ALIGN
 END ; End of the program , matched with ENTRY keyword

C language Code

 #define SYSCTL_RCGCGPIO_R (*((volatile unsigned long *)0x400FE608))

 #define GPIO_PORTF_DATA_R (*((volatile unsigned long *)0x400253FC))
 #define GPIO_PORTF_DIR_R (*((volatile unsigned long *)0x40025400))
 #define GPIO_PORTF_DEN_R (*((volatile unsigned long *)0x4002551C))

 #define DELAY 200000

int main (void)
{
 volatile unsigned long ulLoop ;

// Enable the GPIO port that is used for the onboard LED.

 SYSCTL_RCGCGPIO_R = 0x20;

// Do a dummy read to insert a few cycles after enabling the peripheral.

 ulLoop = SYSCTL_RCGCGPIO_R;

//_ Enable the GPIO pin for the LED (PF3). Set the direction as output and enable the GPIO pin for digital //function. _/

 GPIO_PORTF_DIR_R = 0x08;
 GPIO_PORTF_DEN_R = 0x08;

 // Loop for ever.

while (1) {
 // Toggle the LED.

 GPIO_PORTF_DATA_R ^= 0x08; // ^ means XOR in c

// Delay for a bit.

for (ulLoop = 0; ulLoop < DELAY; ulLoop++)
 {

 for (ulLoop = 0; ulLoop < DELAY; ulLoop++)
 {
 }

}
 }
}

15

In-Lab Exercises:

1- Modify the assembly program so that the Blue LED is flashing instead of the Green one.

-Increase delay amount to 2000000 and observe the response.

-Decrease the delay amount to 2000 and observe the response. Explain?

2- Modify the c code so the three LED’s light in this sequence R->B->G. Choose a reasonable delay

so the three LED’s can be observed.

