

Faculty of Engineering & Technology Electrical & Computer Engineering Department

ENEE2103

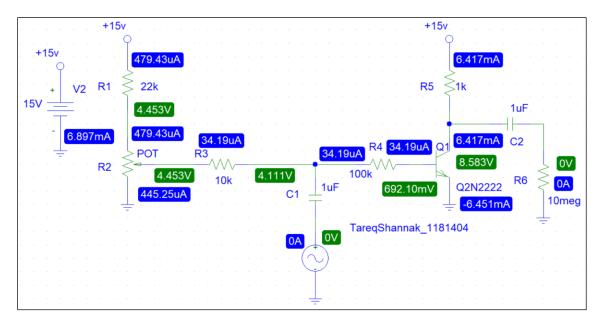
PreLab#06

BJT Transistor As an Amplifier, CE, CC, CB Connection

Prepared by : Tareq Shannak

ID Number : 1181404

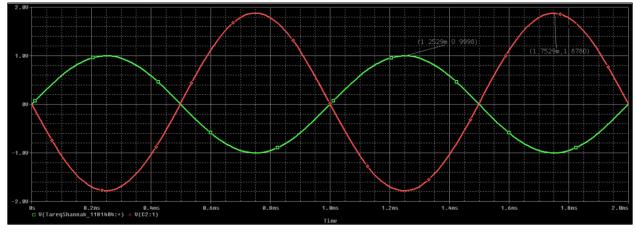
Instructor : Dr. Alhareth Zyoud


Teaching Assistant : Mahdi Salem

Section : 5

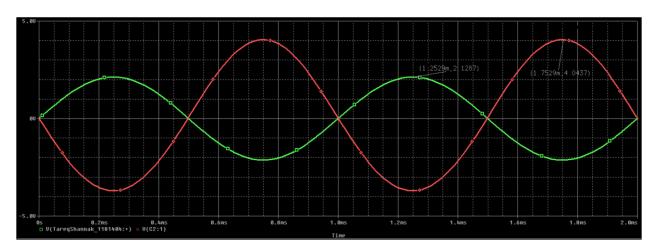
Date : 7/4/2021

Part One


Initially set $V_i(t)$ amplitude to 0, set the potentiometer value to 10 k and its set value to 0. Set sinusoidal source to 1 kHz and amplitude to zero.

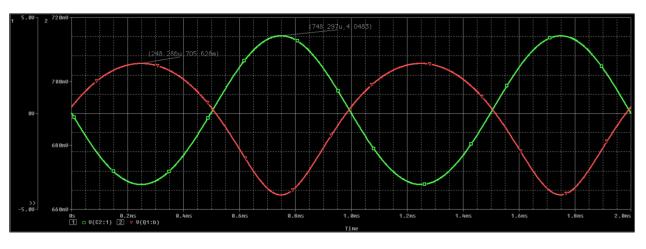
Measure V_c, V_{be}, V_{ce}, I_c, I_b

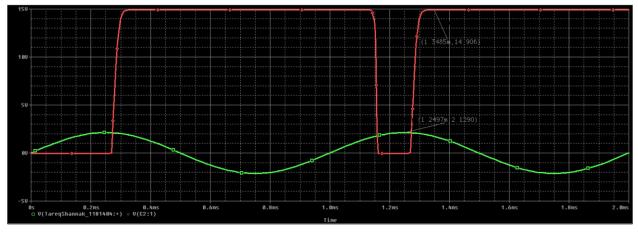
Vc	8.583 V
V_{BE}	692.1 mV
V _{CE}	8.583 V
Ic	6.417 mA
IB	34.19 μ Α


Adjust amplitude of $V_i(t)$ to 1 V and measure $V_{\text{o}}(t)$

 $V_O(t) = 1.878 V, Voltage Gain A_V = \frac{1.878}{0.9998} = 1.8784$

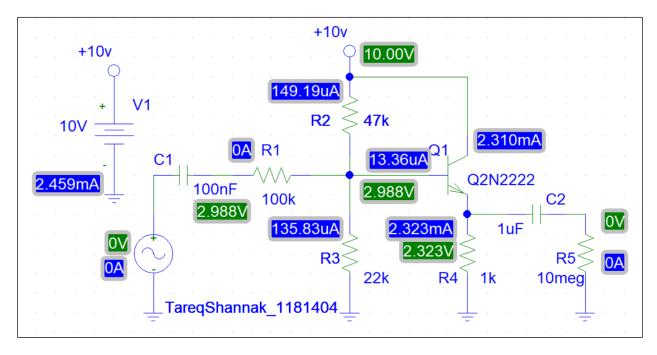
Change peak of $V_i(t)$ such that $V_0(t) = 4V$


Voltage Gain
$$A_V$$
 = 1.8784 → 1.8784 = $\frac{V_O(t)}{V_i(t)}$
→ $V_i(t) = \frac{4}{1.8784} V = 2.129 V$


Calculate the voltage gain of the transistor

Voltage Gain
$$A_V = \frac{1.878}{0.9998} = 1.8784$$

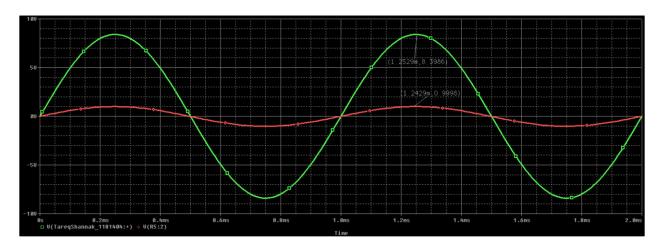
Calculate
$$A_{v1} = V_0(t) / V_B(t)$$

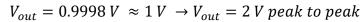

<u> </u>	$V_0(t)$	4.0483	= 5.737
$A_{V1} =$	$\overline{V_B(t)}$ –	705.628m	- 3.737

Remove the 100k resistor and see what happens to voltage gain

$$A_V = \frac{V_O}{V_i} = \frac{14.906}{2.129} \approx 7$$

Part Two: Common Collector Transistor Amplifier

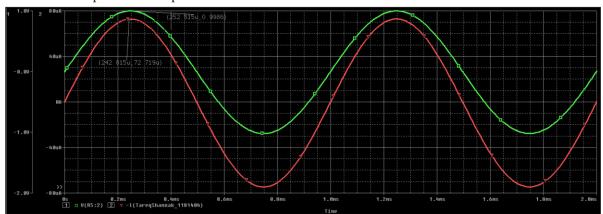

Measure V_B, V_C, I_B, I_C


V_{B}	2.988 V
Vc	10 V
IB	13.36 µA
I _C	2.31 mA

Adjust the amplitude of the sine wave generator until an output amplitude from the amplifier is about 2 volts peak-to-peak. (Make sure the waveform is undistorted). Let $V_{in} = 5 V \rightarrow V_{out} = 594.77 mV$

$$I_{V} = \frac{4.9992}{4.9992} = 0.125$$

$$A_V = \frac{594.77 \ m}{4.9992} = 0.119$$



Measure the ac input voltage needed to achieve this output

 $V_{in} \approx 8.4 V$

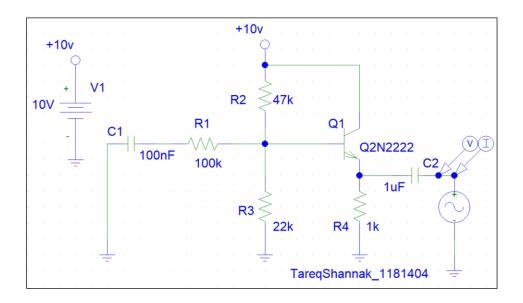
Calculate the voltage gain $A_{\boldsymbol{v}}$

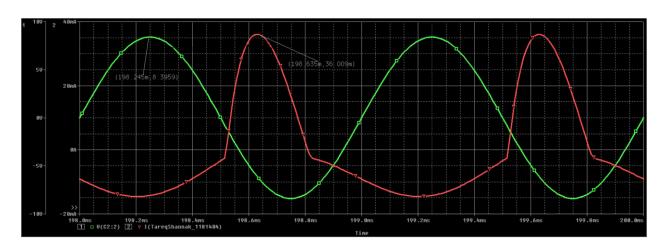
$$A_V = 0.119$$

Measure the input and output currents and calculate $A_{\rm i}$

$$I_{in} = 72.719 \ uA, V_{out} = 0.9986 \ V \rightarrow I_{out} = 0.9986 \ mA$$

$$A_i = \frac{I_{out}}{I_{in}} = \frac{0.9986 \, mA}{72.719 \, uA} = 13.732$$


Calculate the current gain $A_{\rm i}\,$


$$A_i = \frac{I_{out}}{I_{in}} = 13.732$$

Estimate Z_i from I_i and V_i values

$$Z_i = \frac{V_i}{I_i} = \frac{8.4 V}{72.719 uA} = 115.513 k\Omega$$

To find the output impedance of the amplifier, you should take off the input sine wave generator and replace it with a short circuit, then you have to connect the generator to the output (emitter) via a capacitor, and measure its output voltage and current.

 $V_o = 8.3959 V$

 $I_o = 36.009 \, mA$

$$Z_o = \frac{V_o}{I_o} = \frac{8.3959 \, V}{36.009 \, mA} = 233.16 \, \Omega$$

Quantity	Measured Values
V _{in}	8.4 V
V _{out}	0.9986 V
I _{in}	72.719 μA
Iout	0.9986 mA
	Calculated Values
A _V	Calculated Values 0.119 (< 1)
A _V	0.119 (< 1)