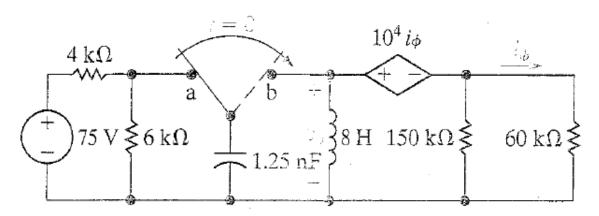

## **CH8 Homework Problems**

8.8 Suppose the capacitor in the circuit shown in Fig. 8.1 has a value of  $0.1 \mu F$  and an initial voltage of 24 V. The initial current in the inductor is zero. The resulting voltage response for  $t \ge 0$  is


$$v(t) = -8e^{-250t} + 32e^{-1000t} V.$$



**Figure 8.1** ▲ A circuit used to illustrate the natural response of a parallel *RLC* circuit.

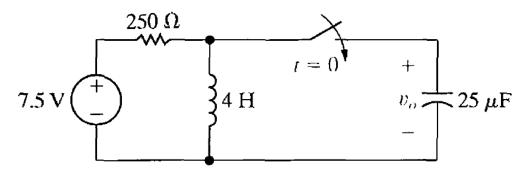
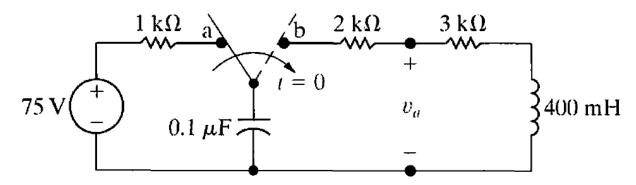

**8.21** The switch in the circuit of Fig. P8.21 has been it position a for a long time. At t = 0 the switch moves instantaneously to position b. Find  $v_o(t)$  for  $t \ge 0$ .

Figure P8.21



8.36 The switch in the circuit in Fig. P8.36 has been open a long time before closing at t = 0. At the time the switch closes, the capacitor has no stored energy. Find  $v_o$  for  $t \ge 0$ .


Figure P8.36



8.46 The switch in the circuit in Fig. P8.46 on the next page has been in position a for a long time. At t = 0, the switch moves instantaneously to position b.

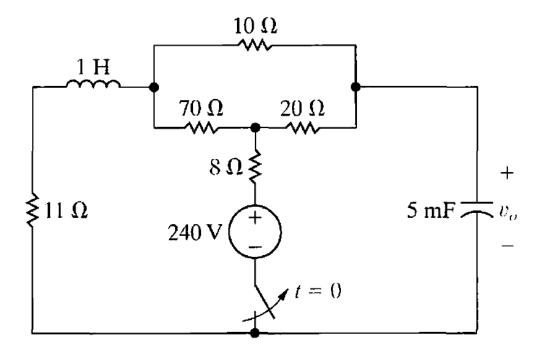

- a) What is the initial value of  $v_a$ ?
- b) What is the initial value of  $dv_a/dt$ ?
- c) What is the numerical expression for  $v_a(t)$  for  $t \ge 0$ ?

Figure P8.46



**8.48** The switch in the circuit shown in Fig. P8.48 has been closed for a long time. The switch opens at t = 0. Find  $v_o(t)$  for  $t \ge 0$ .

Figure P8.48

