
CH9 PROBLEMS

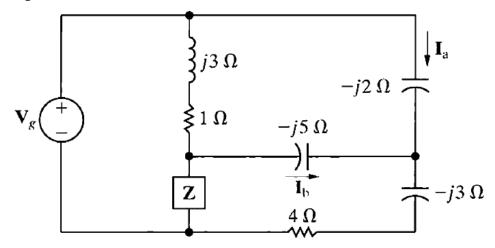

- 9.33 The phasor current I_a in the circuit shown in PSPICE Fig. P9.33 is $2/0^{\circ}$ A.
 - a) Find I_b , I_c , and V_g .
 - b) If $\omega = 800 \text{ rad/s}$, write the expressions for $i_b(t)$, $i_c(t)$, and $v_g(t)$.

Figure P9.33

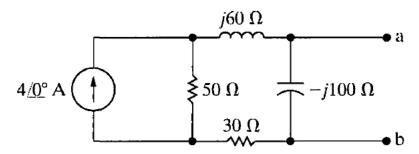

9.36 Find I_b and Z in the circuit shown in Fig. P9.36 if $V_g = 25 \underline{/0^{\circ}} V$ and $I_a = 5 \underline{/90^{\circ}} A$.

Figure P9.36

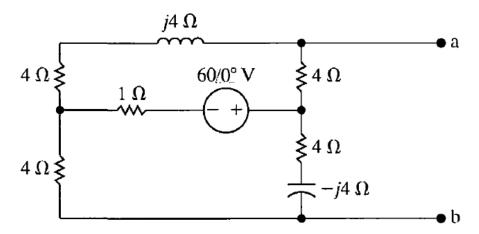

9.46 Use source transformations to find the Norton equivalent circuit with respect to the terminals a,b for the circuit shown in Fig. P9.46.

Figure P9.46

9.47 Find the Thévenin equivalent circuit with respect to the terminals a,b for the circuit shown in Fig. P9.47.

Figure P9.47

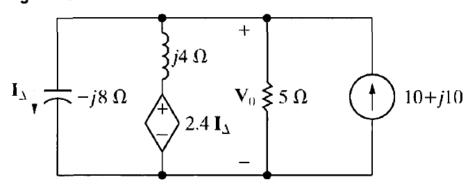

9.48 Find the Thévenin equivalent circuit with respect to the terminals a,b of the circuit shown in Fig. P9.48.

Figure P9.48

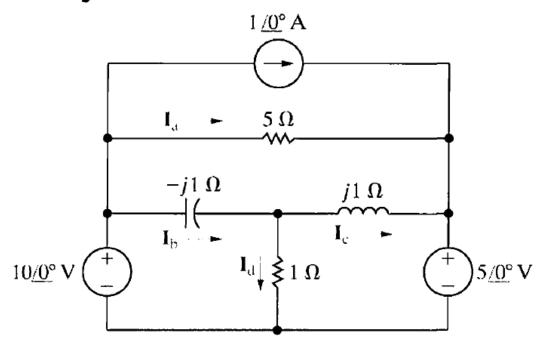

9.59 Use the node-voltage method to find the phasor voltage V_o in the circuit shown in Fig. P9.59. Express the voltage in both polar and rectangular form.

Figure P9.59

9.63 Use the mesh-current method to find the branch currents I_a , I_b , I_c , and I_d in the circuit shown in Fig. P9.63.

Figure P9.63

