Welcome to ENEE2301 Network Analysis 1

Instructor Qadri Mayyala (Office Masri216)

Text Book: *Electric Circuits, 10th Edition* by Nilsson/Riedel

Course Objectives

- Analysis of DC circuits with different techniques.
- Analysis of transient circuits using: 1st, 2nd order DE.
- Analysis of AC circuits using phasors.
- Sinusoidal Steady state Power analysis.
- Analysis of three phase circuits.
- Analysis of linear and ideal transformer circuits
- Using software tools (Pspice) to analyze various types of circuits.

Chapters	Topic	Sections								
1	Circuit Variables (self reading)	1.1 – 1.6								
2	Circuit Elements	2.1 – 2.5								
3	Simple resistive circuits	3.1 – 3.7								
4	Techniques of circuit analysis.	4.1 – 4.13								
6	Inductance , Capacitance (self reading) and Mutual inductance	6.1 - 6.3								
7	Response of first order RL and RC circuits	7.1 – 7.6								
8	Natural and step responses of RLC circuits	8.1 - 8.4								
9	Sinusoidal steady-state analysis	9.1 – 9.12								
10	Sinusoidal steady state power calculations	10.1 – 10.6								
11	Balance three-phase circuits	11.1 – 11.6								
Ch A	Magnetically coupled networks	6.4, 6.5, 9.10, 9.11								

Grading Policy

Quizzes, PSPICE Simulation, and Participation:	25%
Midterm Exam:	30%
Final Exam:	45%

•					•			•			• •															•	•	•		•	•
•																															•
				·																				•		•					•
															•				•									•			•
		ie.								R	1		75			1	0.0	0A	R2	, ¹		05	0 0		2				•		•
		Ľ	.05	OUK	v		1	25 (00A	L.			10	0.00			0.0	<u>, , , , , , , , , , , , , , , , , , , </u>					0.0	00							•
										۷	٧V	_			T			_	vv	V-		7									
										1	2	15	.00	A					50				1	0 ()0/	4		•			•
							ID	С						30	2	R4															
Ľ															\$		00	001	n.		205 - 205 -	≳_	RG	5							
Ľ					1	$\widehat{\wedge}$	N.							-			00.				25	Ş₽	3								
					7	4	/2	5A																							
					11	25	5.00)A			. 20	1	0.0	0A			<u> </u>	5.00)0A												
												3		· .		. 0	° ŝ	5.	۳.												
												~	• .				. 3	> .													
						L						-			•		_														
									U																						
															Ϋ́,																
	-														ХO																
	-																														
Ļ																															

<u>Reading Assignment:</u> Chapter 2 in *<u>Electric Circuits, 10th Edition</u>* by Nilsson

Chapter 2: Circuit Elements

Several types of electrical devices are introduced in this chapter, including independent sources, dependent sources, and resistors.

<u>Reading Assignment:</u> Chapter 2 in <u>*Electric Circuits, 9th Edition*</u> by Nilsson <u>Chapter 2: Circuit Elements</u>

- Network : the interconnection of two or more simple circuit element is called electrical network.
- Circuit : if the network contains at least one closed path ,it is called electric circuit .
- Circuit analysis : given a circuit in which all the components are specified , analysis involves finding such things as the voltage across some elements or the current through another. The solution is unique.
- Circuit design involves determining the circuit configuration that will meet certain specifications. The solution is not unique.

Circuit Elements

1) Active element : capable of delivering power to some external elements (sources).

2)Passive element : capable only of receiving power (R,L,C,...).

Circuit element can be classified according to the relationship of the current through the element to the voltage a cross the element .

Chapter 2: Circuit Elements

- \blacktriangleright R is called the resistance of the the component and is measured in units of ohm (Ω)
- G is called the conductance of the component and is measured in units of Siemens (σ)

** two special resistor values First : short circuit

$$R=0 \Omega$$

$$V(t)=0 V i(t)=???$$

$$G=\infty v$$

Second: Open Circuit

$$R = \infty \Omega$$

$$i(t) = 0 A \qquad V(t) = ???$$

$$G = 0 \upsilon$$

Resistors and electric Power

Resistors are passive elements that can only absorb energy

$$P(t) = V(t).i(t)$$
$$V(t) = R.i(t)$$
$$P(t) = \frac{V^{2}(t)}{R}$$
$$P(t) = R.i^{2}(t)$$

2. Capacitors

٦

$$V_{C}(t) = \frac{1}{C} \int_{-\infty}^{t} i_{C}(t) dt$$
$$V_{C}(t) = V_{C}(0^{-}) + \frac{1}{C} \int_{0^{-}}^{t} i_{C}(t) dt \text{ for } t \ge 0$$
$$i_{C}(t) = C \frac{dV_{C}(t)}{dt}$$

C is called the capacitance of the capacitor and is measured in units of farad (F)

<u>3. Inductors</u>

$$V_{L}(t) = L \frac{di_{L}(t)}{dt}$$
$$i_{L}(t) = i_{L}(0^{-}) + \frac{1}{L} \int_{0^{-}}^{t} V_{L}(t) dt \text{ for } t \ge 0$$

L is called the inductance of the coil and is measured in units of the henry (H)

Independent voltage source - A circuit element in which the voltage across its terminals is completely independent of the current through it .

- The symbols shown above are from PSPICE. The boxes on the ends of the wires are simply for connecting wires or other components to the sources.
- Voltages sources have a specified voltage, but the current depends on the circuit and is determined through analysis.

Example: The current provided by the 12V source below varies in each case.

Voltage Source

Vs1(t) = 10 V (DC) $Vs2(t) = 5 \sin \omega t V (ac)$ $Vs3(t) = 10 e^{-t} V$

Independent voltage source characteristics

The "characteristics" of a device typically refers to a graph of I versus V which illustrates the behavior of the device.

The characteristics of an <u>ideal</u> independent 12 V voltage source are shown below.

Real versus ideal independent voltage sources

The voltage delivered by an <u>real voltage source</u> (or practical voltage source) will typically drop as the current required by the source increases. For example:

- The 1.5V across a D-cell in a flashlight drops when the light is turned on.
- The 12V across a car battery drops when the car is started.
- The voltage from a power company drops during peak load hours (the voltage typically ranges from 115V 130V in North America).

<u>Note</u>: Any voltage source shown in the text is assumed to be ideal.

ls(t)

Symbol:

Independent current source – A circuit element in which the current through it is completely independent of the voltage a cross its terminals. (This device is not as common in everyday use as the independent voltage source.)

 $is(t) = 10 \sin wt A$

is(t) = 20 A

20

• Current sources have a specified current, but the voltage depends on the circuit and is determined through analysis.

Example: The voltage provided by the 2A source below varies in each case.

V = (1 A). (1 ohm) = 1 V V = (1 A). (5 ohm) = 5 V

Real versus ideal independent current sources

(depends on the circuit)

The current delivered by an <u>real current source</u> (or practical current source) will typically drop as the voltage required by the source increases.

Note: Any current source shown in the text is assumed to be ideal.

Dependent Sources

• Are sources in which the source voltage (or current) depend upon a current or voltage else where in the circuit .

Transistor Model example

Power and Energy

- Why Power & Energy are important in circuit analysis?
 - Although current and voltage are useful in analysis & design of electrical systems, the useful **output of the system often is non-electric**, & this output is usually expressed in terms of power & Energy.
 - Also, all practical devices have limitations on the amount of power that they can handle.

p(t) = +v(t)i(t) absorbing

p(t) = -v(t)i(t) supplying

Power: is defined as the time rate of supplying or absorbing energy.

"a water pump rated 75 kW can deliver more litters per second than one rated 7.5 kW"

Conservation of Energy

- The law of conservation of energy must be obeyed in any electric circuit .
- The algebraic sum of power in a circuit at any instant of time ,must be zero.

$$\sum p(t) = 0$$

Calculate power supplied or absorbed by each element

- p1 = (20)(-5) = -100 w supplied power
- p2 = (12)(5) = 60w absorbed power
- p3 = (8)(+6) = 48w absorbed power
- $p4 = (8)(-0.2 \times 5) = -8w$ supplied power
- p absorbed = p supplied
- 60 + 48 = 100 + 8

Chapter 2 ENEE2301 – Network Analysis 1

Definitions

- Node : A point of connection of two or more circuit elements.
- Loop: Any closed path through the circuit in which no node is crossed more than once.
- Mesh : Any loop that doesn't contain within it another loop.

Series connections

• All of the elements in the circuit shown below carry the same current then said to be connected in series.

Parallel Connection

• Elements in a circuit having a common voltage a cross them are said to be connected in parallel.

Two key laws for analyzing circuits:

Kirchhoff's Voltage Law (KVL) Kirchhoff's Current Law (KCL)

Kirchhoff's Voltage Law (KVL)

Definition: "The algebraic sum of the voltages around any closed path equals zero."

Notes:

- Start at any point in a path
- Go around the loop in either direction until you return to the starting point
- Use a consistent sign convention

Analysis of a single-loop circuit

Find I? $30\Omega + | -30v + | -30$

<u>KVL</u>

- $30 I + 30 + 15 I 120 = 0 \rightarrow$
- 45 I=90 → I=2 A
- $V(30\Omega) = (30 \ \Omega).(2 \ A) = 60 \ V$
- $V(15\Omega) = (15 \Omega) (2 A) = 30 V$

Analysis of a circuit containing a dependent source .

• Find I?

and calculate power absorbed by each circuit element

- 30I + 2VA + 15I 120 = 0
- \rightarrow V_A= -15 I
- → I = 120/15 = 8A

 \rightarrow V_A = -120 V

Analysis of a circuit containing a dependent source

- Find I? and calculate power absorbed by each circuit element
- Answers:
- P(120v) = -960 W
- $P(2V_A) = -1920 W$
- $P(30\Omega) = 1920 W$
- $P(15\Omega) = 960 \text{ W}$

$$I = 120/15 = 8A$$

 $V_A = -120 V$

Applying KVL

- Find Vx and Vy
- KVL for 1-st loop: 4 36 + Vy=0

→
$$Vy = 36 - 4 = 32 V$$

• KVL for second loop: -Vy + 12 + 14 + Vx=0

→
$$V_{x=-14-12+32=6}$$
 V 37

Kirchhoff's current law : KCL

- KCL : the algebraic sum of the current entering any node is zero
- $I_A + I_B I_C I_D = 0$
- KCL: Alternative form
- Sum of Currents In= Sum of Currents out
- $I_A + I_B = I_C + I_D$

KCL Application

- Find I?
- KCL :
- 3 = 2 + I + 5
- \rightarrow I = -4A

Single node-pair circuit

• KCL at node1 : 120 + 30 = I1 + I2120 + 30 = 30Vx + 15Vx

 \rightarrow Vx = 3.33 V

- $I(30\sigma) = 100 \text{ A}$
- $I(15 \sigma) = 50 A$

Analysis of circuit containing dependent sources

- Find Vx KCL ;
- 120 $+I_A = I_1 + 2 I_A$
- $I_A = -15Vx$
- $I_1 = 30Vx$
- \therefore Vx = 8 V

Applying KVL and KCL

5A

4Ω

12

2Ω

Vx

>10Ω

11

- Solve for Vx and ix
- KVL : $-60+(5A.)(8 \Omega)+V1 = 0_{8\Omega}$

$$\Box \rightarrow V1 = 60 - 40 = 20 V$$

- \rightarrow I1= 20/10 = 2 A 60V
- \rightarrow KCL : I2 = 5-2 = 3A
- • KVL : I2 (4 Ω) +Vx V1 = 0
- \rightarrow Vx = 8V
- I3 = 8/2 = 4 A
- KCL : ix = I3-I2 = 4 3 = 1 A
- Answer : Vx = 8v and ix = 1A

Ix

Series and parallel sources

• Voltage sources connected in series can be combined into an Equivalent source :

$$\mathbf{Vs} = \mathbf{V}_1 + \mathbf{V}_2 - \mathbf{V}_3$$

• Current sources connected in parallel can be combined in to an equivalent current source :

$$\mathbf{I}_{\mathbf{S}} = \mathbf{I}_1 - \mathbf{I}_2 + \mathbf{I}_3$$

Impossible Circuit Configurations

