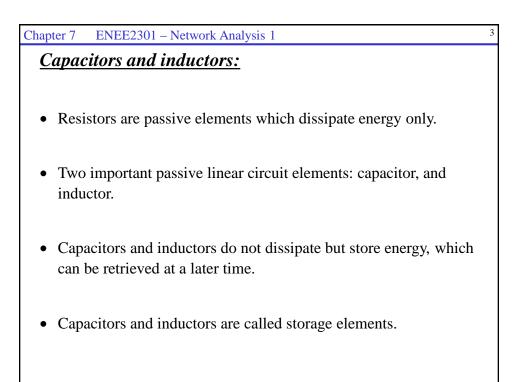
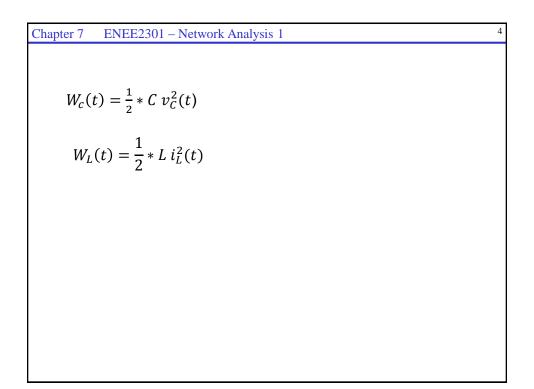
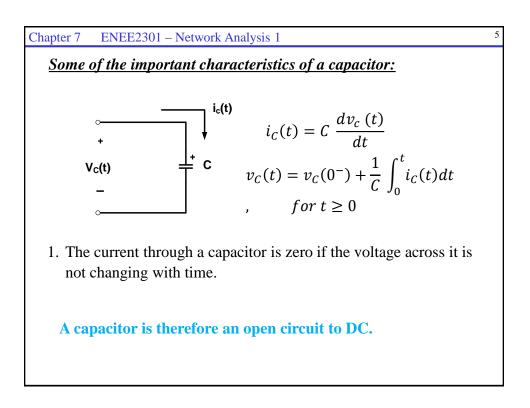


Chapter 7ENEE2301 – Network Analysis 12Reading Assignment:Chapter 7 in Electric Circuits, 10th Ed. by NilssonChapter 7 – Circuit Analysis with Capacitors and InductorsKVL and KCL involving circuits with capacitors and inductors result in
differential equations (D.E.) rather than algebraic equations.The order of a differential equation is equal to highest derivative.1st-order DE: $\frac{dx}{dt} + a_0x(t) = f(t)$ 2nd-order DE: $\frac{d^2x}{dt^2} + a_1\frac{dx}{dt} + a_0x(t) = f(t)$..nth-order DE: $\frac{d^nx}{dt^n} + a_{n-1}\frac{d^{n-1}x}{dt^{n-1}} + \cdots + a_1\frac{dx}{dt} + a_0x(t) = f(t)$

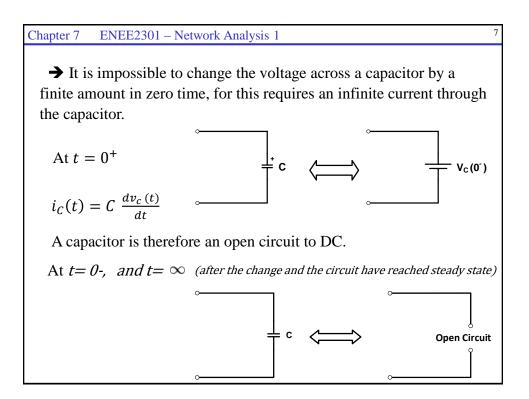
1

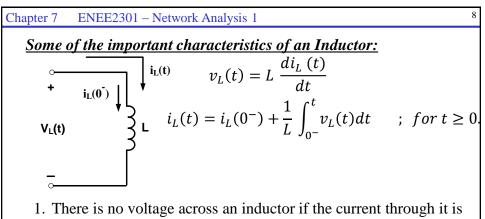






Chapter 7 ENEE2301 – Network Analysis 1 2. A finite amount of energy can be stored in a capacitor even if the current through the capacitor is zero. $W_{c}(t) = \frac{1}{2} * C v_{c}^{2}(t)$ 3. The capacitor never dissipate energy, but only store it. 4. $v_{c}(t) = v_{c}(0^{-}) + \frac{1}{c} \int_{0^{-}}^{t} i_{c}(t) dt$; for $t \ge 0$. $at t = 0^{+}$ $v_{c}(0^{+}) = v_{c}(0^{-}) + \frac{1}{c} \int_{0^{-}}^{0^{+}} i_{c}(t) dt$ $v_{c}(0^{+}) = v_{c}(0^{-})$ The Capacitor is a continuous voltage device





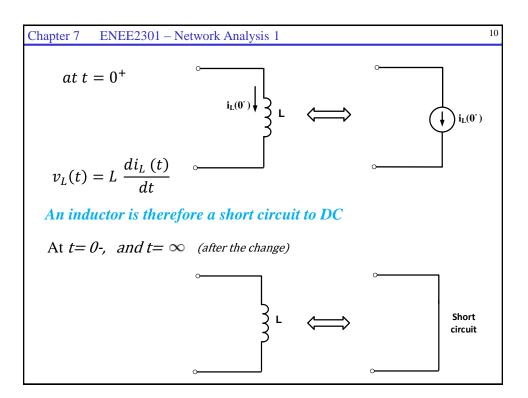
not changing with time.

An inductor is therefore a short circuit to DC.

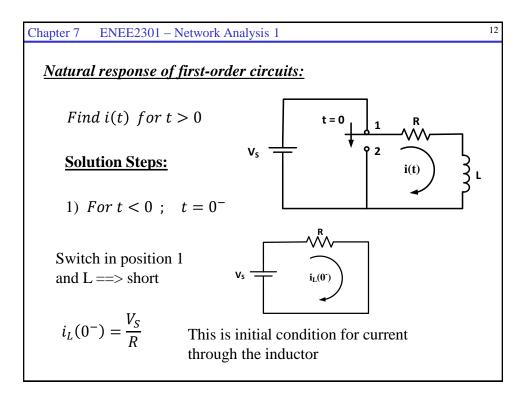
2. A finite amount of energy can be stored in an inductor even if the voltage across inductor is zero.

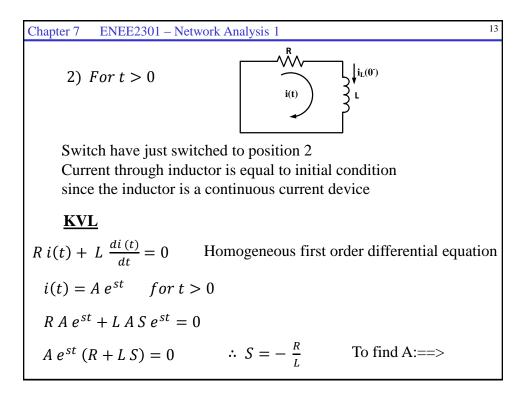
3. The inductor never dissipate energy, but only store it.

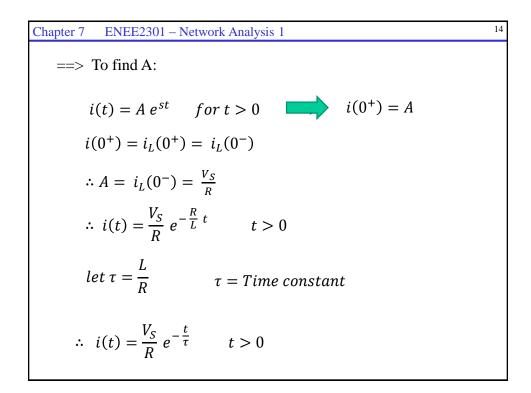
Chapter 7 ENEE2301 – Network Analysis 1 $4. i_L(t) = i_L(0^-) + \frac{1}{L} \int_{0^-}^t v_L(t) dt, \quad \text{for } t \ge 0$ $at \ t = 0^+$ $i_L(0^+) = i_L(0^-) + \frac{1}{L} \int_{0^-}^{0^+} v_L(t) dt$ $\therefore \ i_L \ (0^+) = i_L(0^-)$ It is impossible to change the current through an inductor by a finite amount in zero time, for this requires an infinite voltage across the inductor.

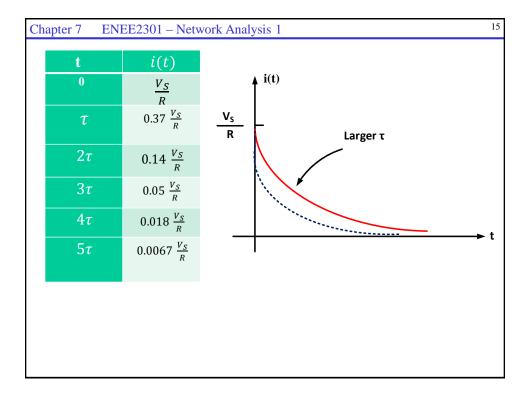


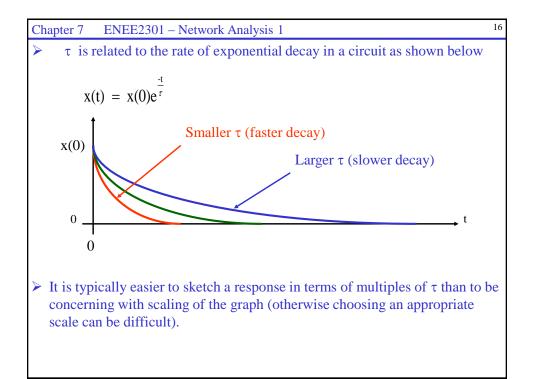


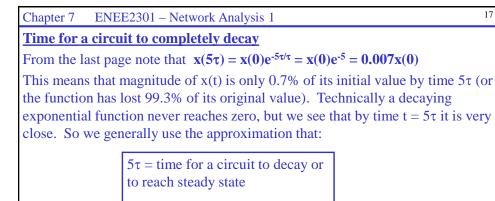


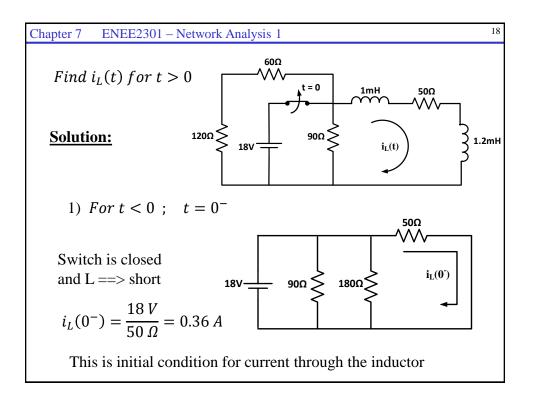


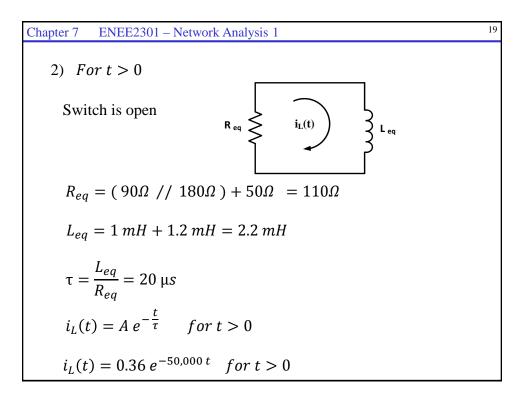


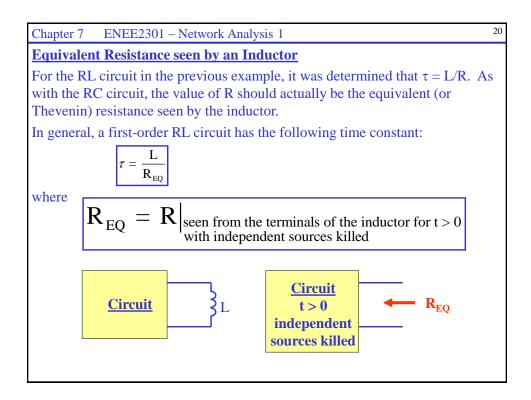


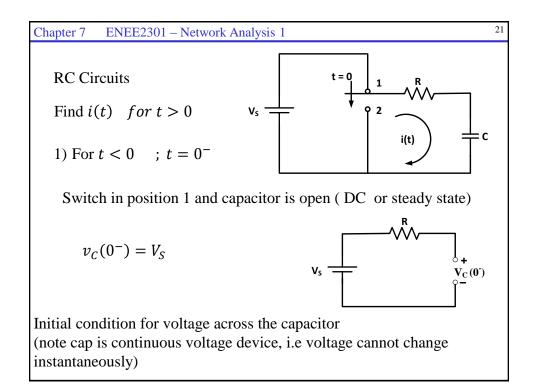


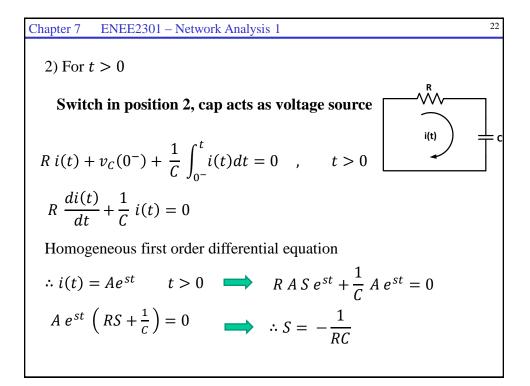


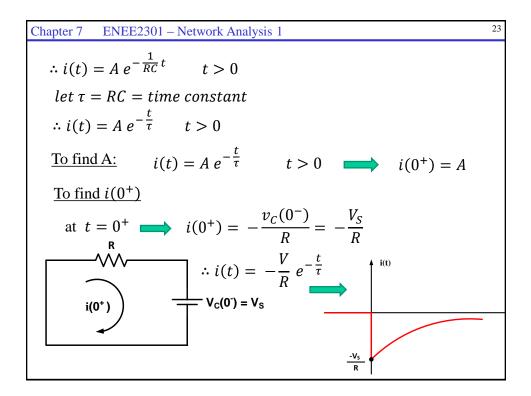


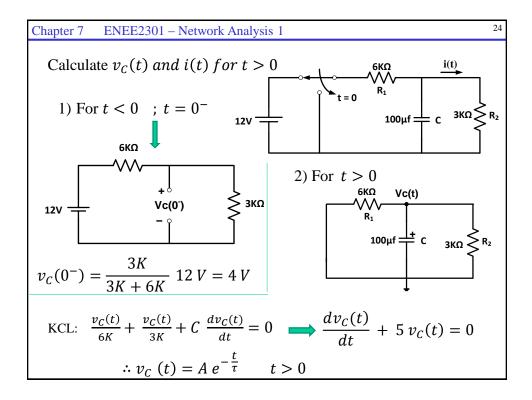




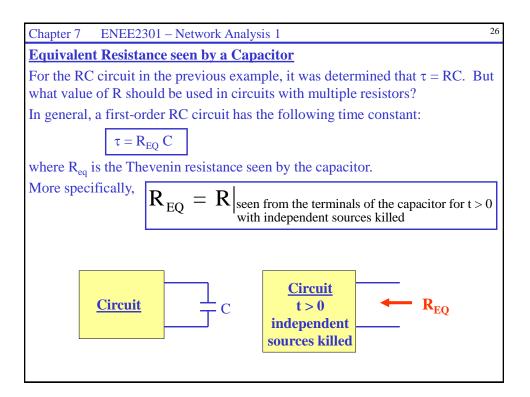


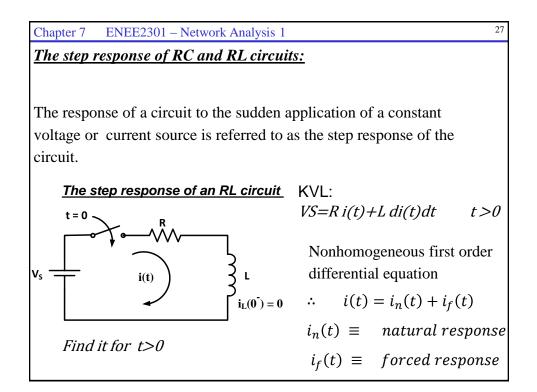




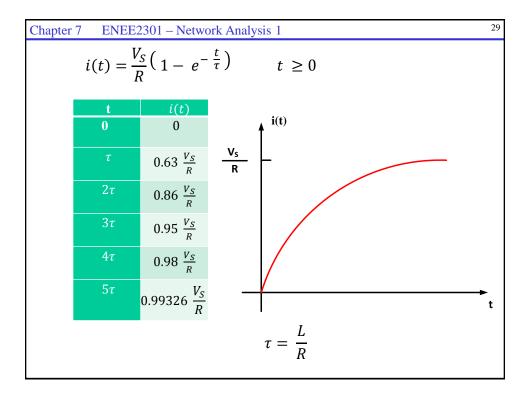


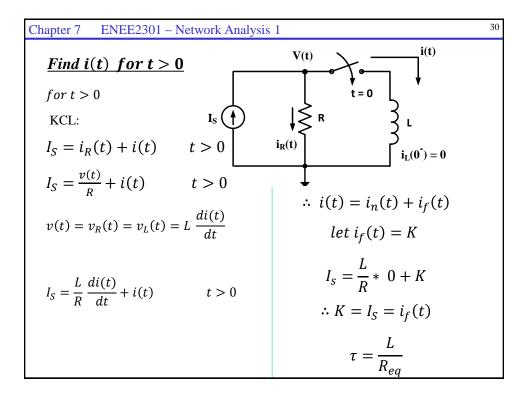
Chapter 7 ENEE2301 – Network Analysis	1	25
$\tau = R_{eq} C$ $R_{eq} = 6K\Omega // 3K\Omega = 2K\Omega$ $C = 100 \mu\text{F}$ $\tau = R_{eq} C = 0.2 s$	$i(t) = \frac{v_C(t)}{R_2}$ $i(t) = \frac{4}{3} e^{-5t} mA \qquad t > 0$	
$v_C(t) = A e^{-\frac{t}{0.2}} t > 0$ $\underline{\text{To find A:}}$ $v_C(0^+) = A = v_C(0^-) = 4 V$ $\therefore v_C(t) = 4 e^{-5t} t > 0$		

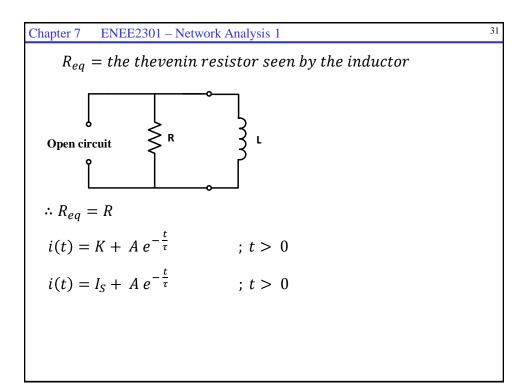




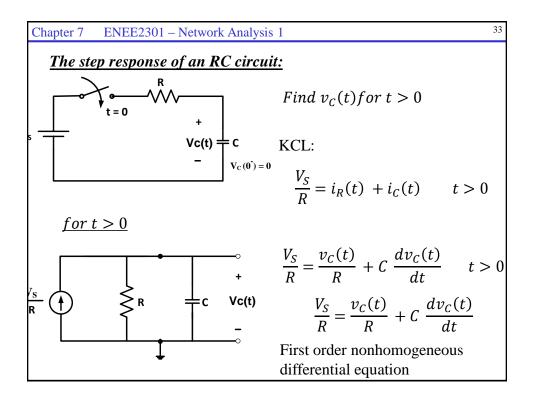
Chapter 7 ENEE2301 – Network Analysi	s 1 28	
To find $i_f(t)$	· ·	
Let $i_f(t) = k$	$\tau = \frac{L}{R}$ $i(t) = A e^{-\frac{t}{\tau}} + \frac{V_S}{R} \qquad t > 0$	
$V_S = R \ i(t) + L \ \frac{di(t)}{dt}$	$i(t) = A e^{-\frac{t}{\tau}} + \frac{V_S}{R} \qquad t > 0$	
$V_S = R K + L (0)$	To find A	
$V_S = R K$	$i(t) = \frac{V_S}{R} + A e^{-\frac{t}{\tau}} \qquad for \ t > 0$	
$\therefore K = \frac{V_S}{R} = i_f(t)$	$i(0^+) = \frac{V_S}{R} + A$	
Now	But $i(0^+) = i_L(0^+) = i_L(0^-) = 0$	
$i(t) = i_n(t) + i_f(t)$ $t > 0$	$\therefore A = -\frac{V_S}{R}$	
$i(t) = A e^{-\frac{t}{\tau}} + K \qquad t > 0$	$\therefore i(t) = \frac{V_S}{R} - \frac{V_S}{R} e^{-\frac{t}{\tau}} \qquad t \ge 0$	

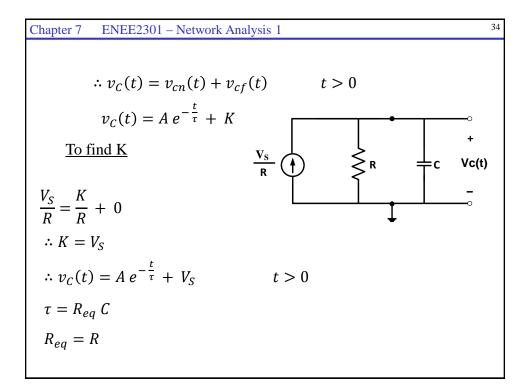


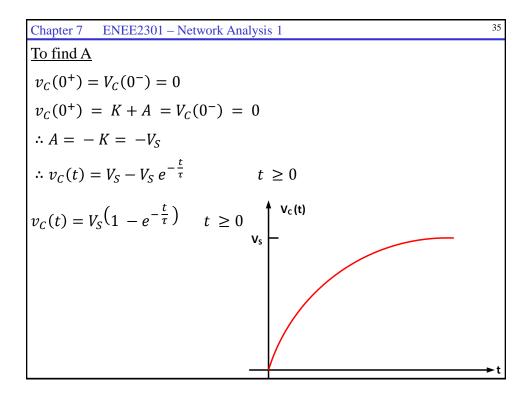


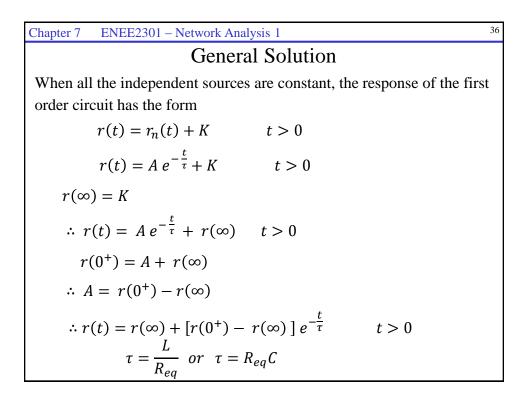


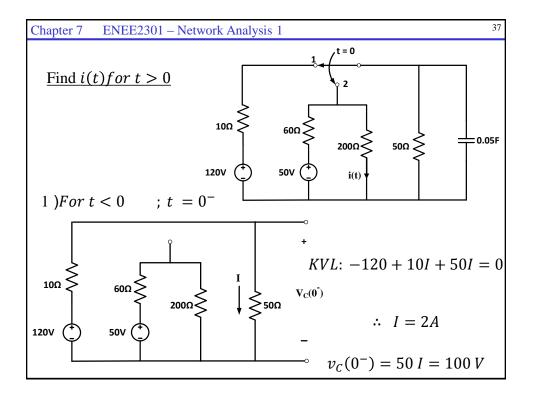
Chapter 7 ENEE2301 – Network Analysis 1	32
<u>To find A</u>	
$i(0^+) = i_L(0^+) = i_L(0^-) = 0$	
$i(0^+) = I_S + A = i_L(0^-) = 0$	
$\therefore A = -I_S$	
$\therefore i(t) = i_n(t) + i_f(t) \qquad ; t > 0$	
$i(t) = A e^{-\frac{t}{\tau}} + I_S$; $t > 0$	
$i(t) = -I_S e^{-\frac{t}{\tau}} + I_S$; $t > 0$	
$\therefore i(t) = I_S \left(1 - e^{-\frac{t}{\tau}} \right) \qquad ; t \ge 0$	

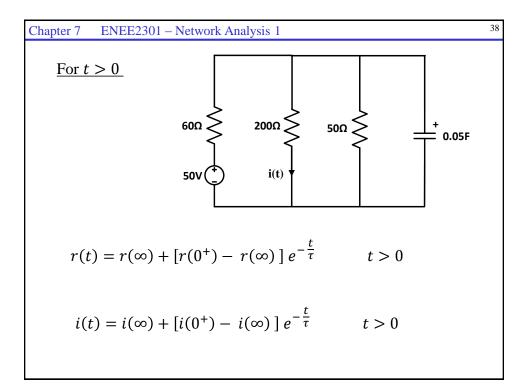


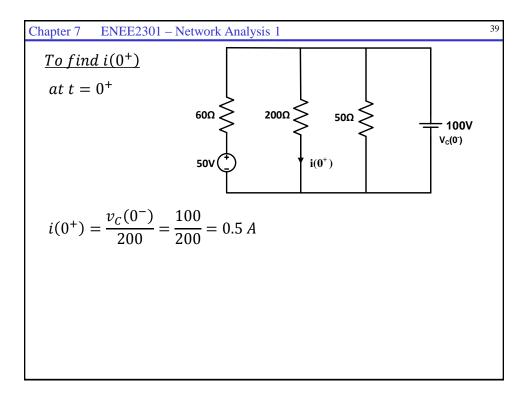


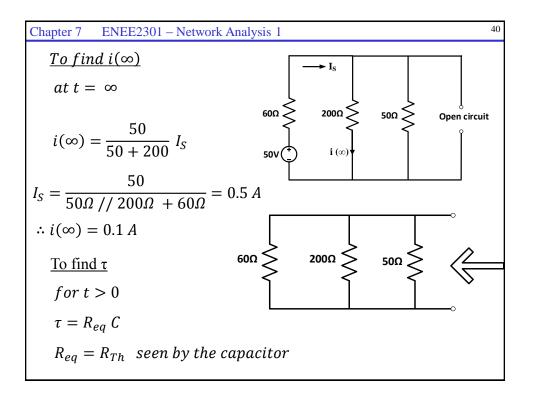


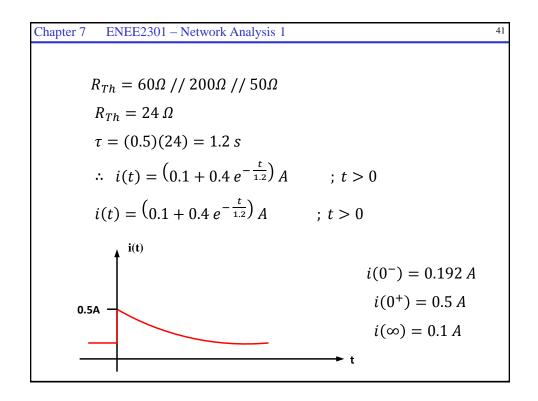


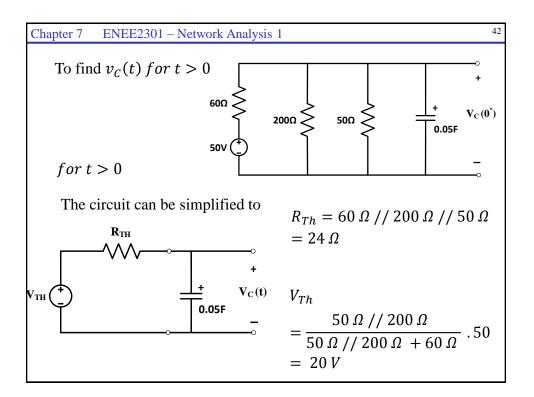


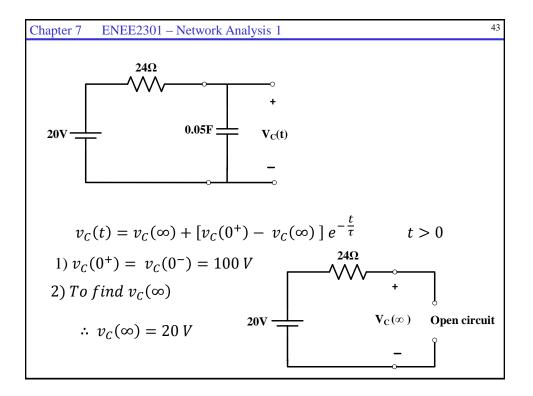






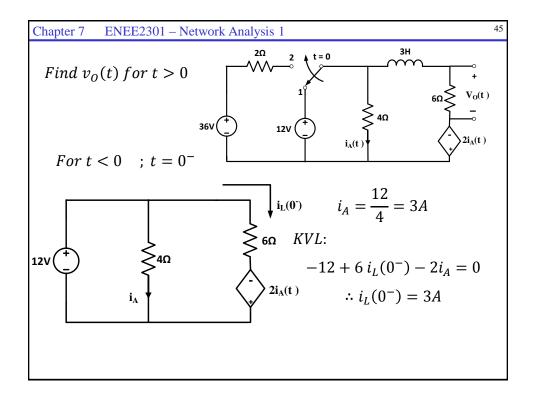


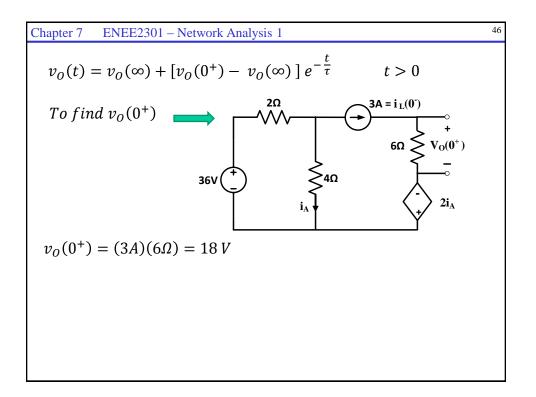


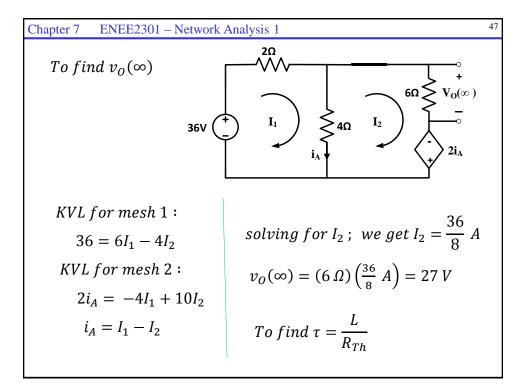


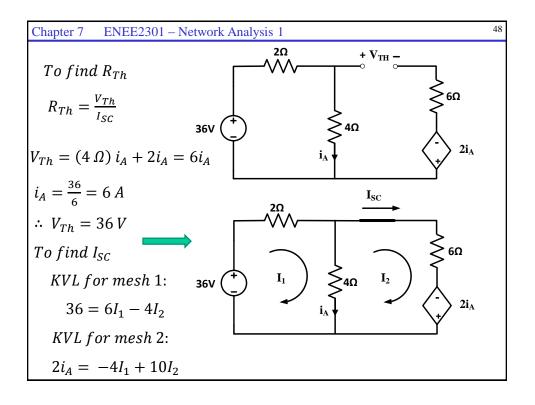
Chapter 7 ENEE2301 – Network Analysis 1 44
3)
$$\tau = R_{Th} C = 1.2 s$$

 $v_C(t) = 20 + (100 - 20) e^{-\frac{t}{1.2}} V$ $t \ge 0$
 $v_C(t) = (20 + 80 e^{-\frac{t}{1.2}}) V$ $t \ge 0$

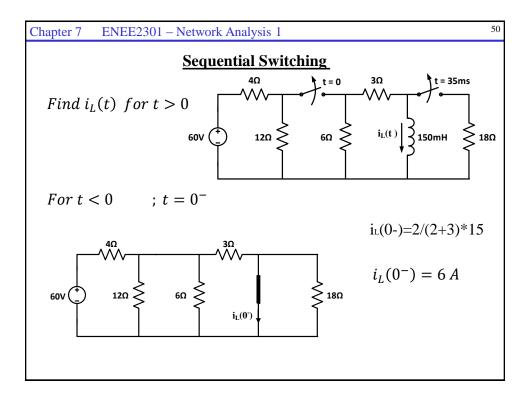








Chapter 7 ENEE2301 – Network Analysis 1 $i_A = I_2 - I_1$ Solving for $I_2 = I_{SC} = \frac{36}{8} A$ $\therefore R_{Th} = \frac{V_{Th}}{I_{SC}} = 8 \Omega$ $\therefore \tau = \frac{L}{R_{Th}} = \frac{3}{8} s$ $\therefore v_0(t) = v_0(\infty) + [v_0(0^+) - v_0(\infty)] e^{-\frac{t}{\tau}} \qquad t > 0$ $\therefore v_0(t) = 27 + [18 - 27] e^{-\frac{t}{\tau}} \qquad t > 0$ $\therefore v_0(t) = (27 - 9 e^{-\frac{8}{3}t}) V \qquad for t > 0$



49

