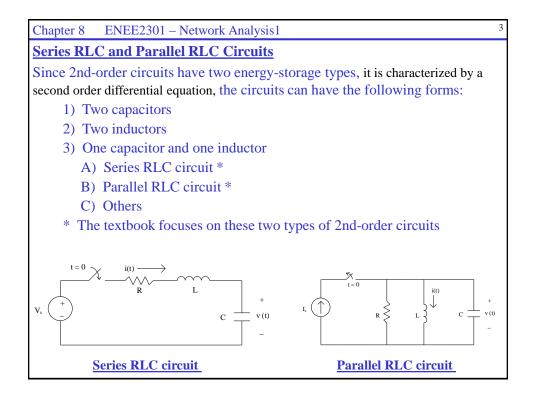


Chapter 8 ENEE2301 – Network Analysis1	2
Reading Assignment: Chapter 8 in Electric Circuits, 10th Ed. by Nilsson	
• 2 nd -order circuits have 2 independent energy storage elements (inductors and/or capacitors)	
• Analysis of a 2 nd -order circuit yields a 2 nd -order differential equation (DE)	
• A 2nd-order differential equation has the form:	
$\frac{d^2x}{dt^2} + a_1\frac{dx}{dt} + a_ox(t) = f(t)$	
• Solution of a 2 nd -order differential equation requires two initial conditions: x(0) and x'(0)	
• All higher order circuits (3 rd , 4 th , etc) have the same types of responses as seen in 1 st -order and 2 nd -order circuits	



Chapter 8 ENEE2301 – Network Analysis1

Form of the solution to differential equations

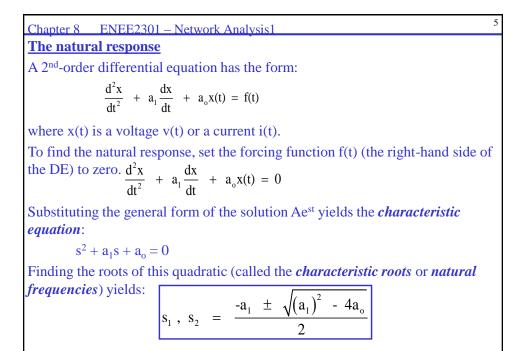
As seen with 1st-order circuits in Chapter 7, the general solution to a differential equation has two parts:

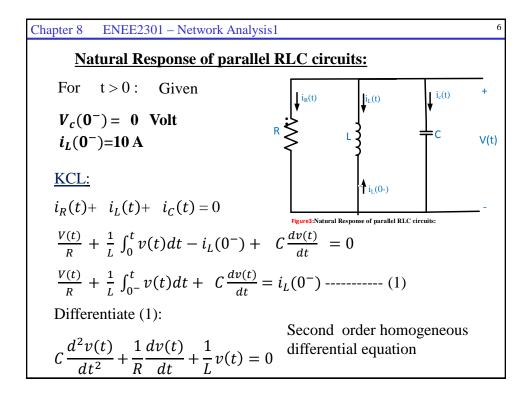
 $\begin{aligned} x(t) &= x_h + x_p = \text{homogeneous solution} + \text{particular solution} \\ \text{or} \quad x(t) &= x_n + x_f = \text{natural solution} + \text{forced solution} \end{aligned}$

where x_h or x_n is due to the initial conditions in the circuit and x_p or x_f is due to the forcing functions (independent voltage and current sources for t > 0).

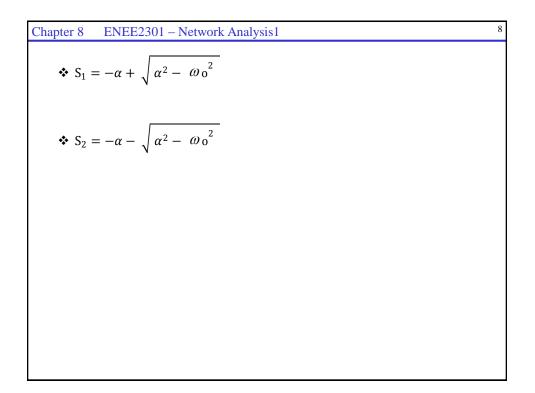
The forced response

The forced response is due to the independent sources in the circuit for t > 0. Since the natural response will die out once the circuit reaches steady-state, the forced response can be found by analyzing the circuit at $t = \infty$. In particular,





Chapter 8 ENEE2301 – Network Analysis	s1 7
$C\frac{d^2v(t)}{dt^2} + \frac{1}{R}\frac{dv(t)}{dt} + \frac{1}{L}v(t) = 0$ Solution of the following form V	
for t>0 $CA s^{2}e^{st} + \frac{1}{R} sAe^{st} + \frac{1}{L} Ae^{st} = 0$ $Ae^{st} \left(Cs^{2} + \frac{1}{R}s + \frac{1}{L}\right) = 0$ $Cs^{2} + \frac{1}{R}s + \frac{1}{L} = 0$ Characteristic equation roots: $S_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$	$S_{1} = -\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^{2} - \frac{1}{LC}}$ $S_{2} = -\frac{1}{2RC} - \sqrt{\left(\frac{1}{2RC}\right)^{2} - \frac{1}{LC}}$ Resonant frequency $\omega_{0} = \frac{1}{\sqrt{LC}}$ Damping coefficient $\alpha = \frac{1}{2RC}$



Chapter 8 ENEE2301 – Network Analysis1

Characteristic Roots

The roots of the characteristic equation may be real and distinct, repeated, or complex. Thus, the natural response to a 2^{nd} -order circuit has 3 possible forms

9

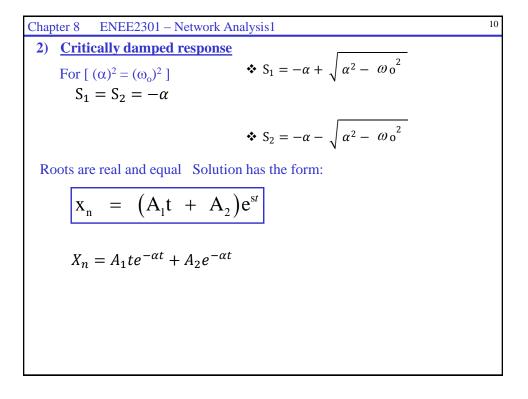
1) Overdamped response

For
$$[(\alpha)^2 > (\omega_0)^2]$$

 $S_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2} < 0$
 $S_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2} < 0$

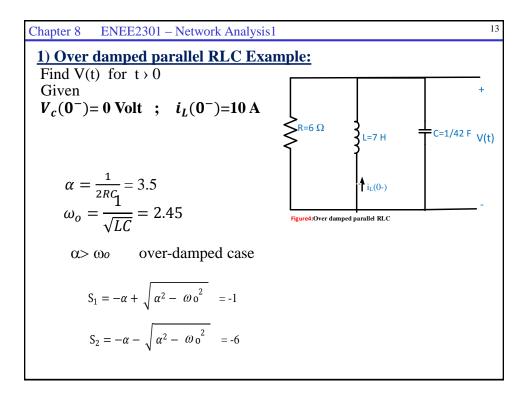
Roots are real and distinct (unequal) Solution has the form:

$$X_n = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$



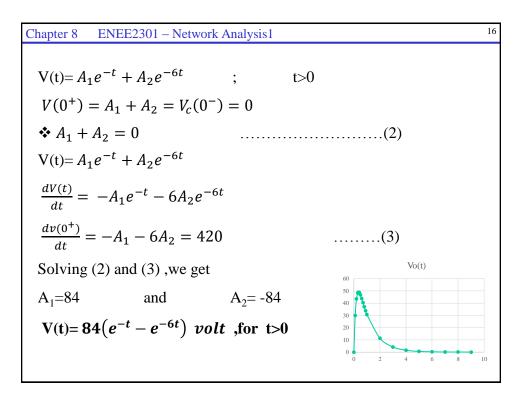
11 Chapter 8 ENEE2301 - Network Analysis1 $S_1 = -\alpha + \sqrt{\alpha^2 - \omega o^2}$ $S_2 = -\alpha - \sqrt{\alpha^2 - \omega o^2}$ 3) <u>Underdamped response</u> For[$(\alpha)^2 < (\omega_0)^2$] [⁻ر₀ $\alpha^2 - \omega_o^2 < 0$ $\sqrt{(\alpha^2 - \omega_0^2)} = \sqrt{(-1)(\omega_0^2 - \alpha^2)}$ $= i\omega_d$ ω_d =damped radian frequency \Rightarrow wd = $\sqrt{\omega_0^2 - \alpha^2}$ $S_{1,2} = -\alpha \pm j\omega_d$ Roots are complex conjugate $X_n = A_1 e^{(-\alpha + j\omega_d)t} + A_2 e^{(-\alpha - j\omega_d)t}$ The solution has the form: $e^{j\,\omega\,dt} = \cos\,\omega\,dt + j\,\sin\,\omega\,dt$ $e^{-j\,\omega\,dt} = \cos\,\omega\,dt - j\,\sin\,\omega\,dt$ $X_n(t) = V(t) = e^{-\alpha t} \left[(A_1 + A_2) \cos \omega dt + j(A_1 - A_2) \sin \omega dt \right]$ $X_n(t) = V(t) = e^{-\alpha t} \left[\beta_1 \cos \omega \, dt + \beta_2 \sin \omega \, dt \right]$

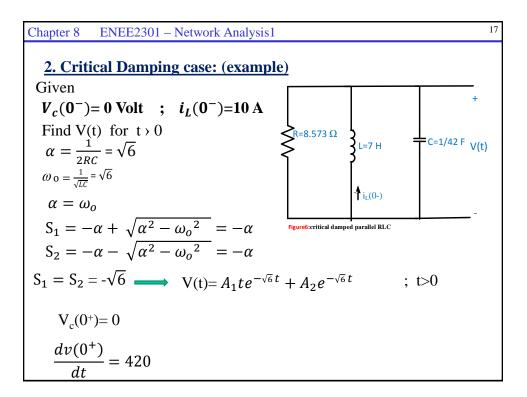
Chapter 8 ENEE2301 – Network Analysis1	12
1)Overdamped response2)Critically damped response	onse
For $[(\alpha)^2 > (\omega_o)^2]$ For $[(\alpha)^2 = (\omega_o)^2]$	
Roots are real and distinct (unequal) Roots are real and equ	ıal
$S_1 = S_2 = -\alpha$	
$S_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_o^2} \qquad \qquad X_n = A_1 t e^{-\alpha t} + A_2$	$e^{-\alpha t}$
$X_n = A_1 e^{s_1 t} + A_2 e^{s_2 t}$	
3) <u>Underdamped response</u>	
For[$(\alpha)^2 < (\omega_0)^2$]	
Roots are complex conjugate $S_{1,2} = -\alpha \pm j\omega_d$	
$X_n = A_1 e^{(-\alpha + j\omega_d)t} + A_2 e^{(-\alpha - j\omega_d)t}$	
$X_n(t) = V(t) = e^{-\alpha t} \left[(A_1 + A_2) \cos \omega dt + j(A_1 - A_2) \sin \omega dt \right]$	
$X_n(t) = \mathbf{V}(t) = \mathbf{e}^{-\alpha t} \left[\boldsymbol{\beta}_1 \cos \omega dt + \boldsymbol{\beta}_2 \sin \omega dt \right]$	

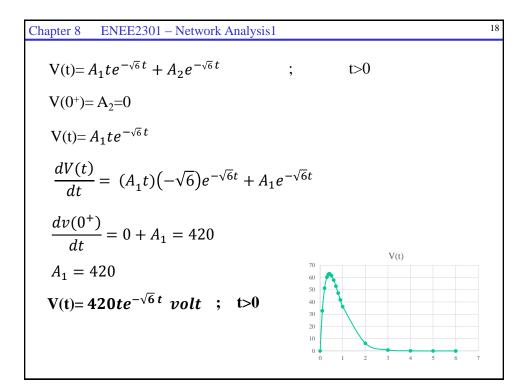


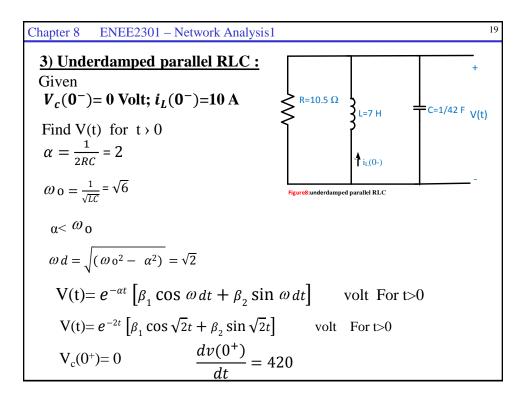
Chapter 8 ENEE2301 – Network Analysis1 14

$$V(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$
; $t > 0$
To find $A_1 & A_2$, we need to find $V(0^+)$ and $\frac{dv(0^+)}{dt}$
For $t > 0$
 $\frac{V(t)}{R} + \frac{1}{L} \int_{0^-}^t v(t) dt + C \frac{dv(t)}{dt} = i_L(0^-)$
At $(t=0^+)$
 $\frac{V(0^+)}{R} + \frac{1}{L} \int_{0^-}^{0^+} v(t) dt + C \frac{dv(0^+)}{dt} = i_L(0^-)$
 $V(0^+) = V_c(0^+) = V_c(0^-) = 0$
 $\int_{0^-}^{0^+} v(t) dt = 0$









Chapter 8 ENEE2301 – Network Analysis1 20

$$V(t) = e^{-2t} \left[\beta_1 \cos \sqrt{2}t + \beta_2 \sin \sqrt{2}t\right] \text{ volt}$$

$$V_c(0^+) = \beta_1 \implies \beta_1 = 0$$

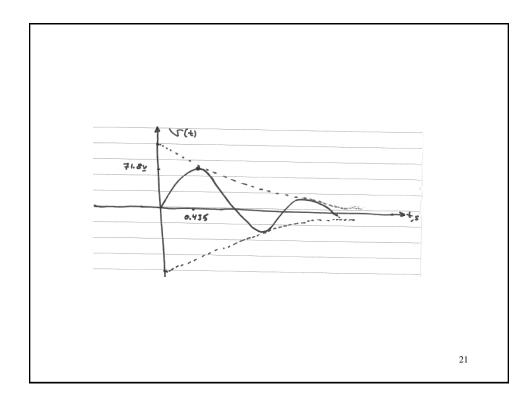
$$V(t) = e^{-2t} \left[\beta_2 \sin \sqrt{2}t\right] \text{ volt} \quad \text{For } t > 0$$

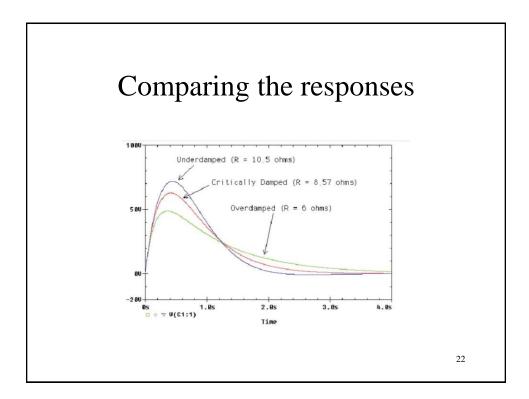
$$\frac{dV(t)}{dt} = (\beta_2 e^{-2t}) \left(\sqrt{2} \cos \sqrt{2}t\right) + (\sin \sqrt{2}t)(-2\beta_2 e^{-2t})$$

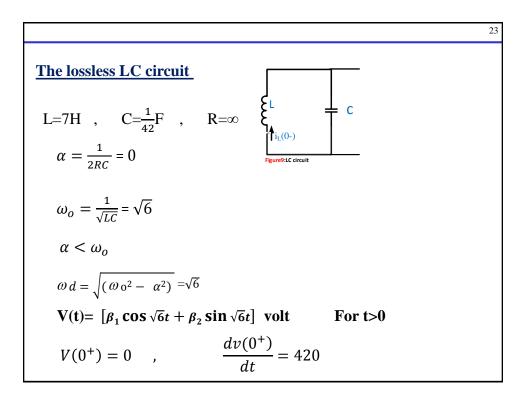
$$\frac{dv(0^+)}{dt} = \sqrt{2}\beta_2 + 0 = 420 \implies \beta_2 = \frac{420}{\sqrt{2}}$$

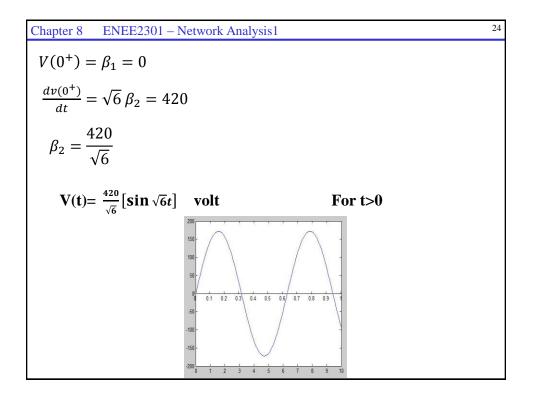
$$V(t) = e^{-2t} \left[\beta_2 \sin \sqrt{2}t\right] \text{ volt} \quad \text{For } t > 0$$

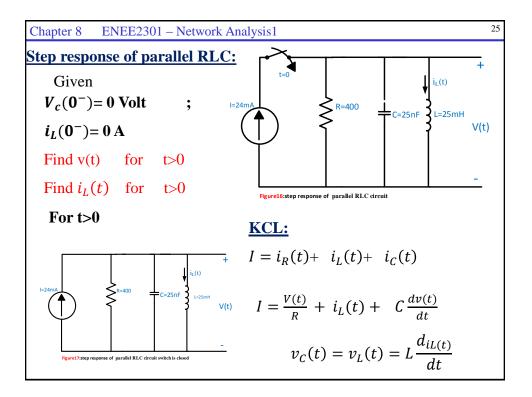
$$V(t) = \frac{420}{\sqrt{2}} e^{-2t} \left[\sin \sqrt{2}t\right] \text{ volt} \quad \text{For } t > 0$$











Chapter 8 ENEE2301 – Network Analysis1 26

$$I = LC \frac{d^2 i_L(t)}{dt^2} + \frac{L}{R} \frac{d i_L(t)}{dt} + i_L(t)$$

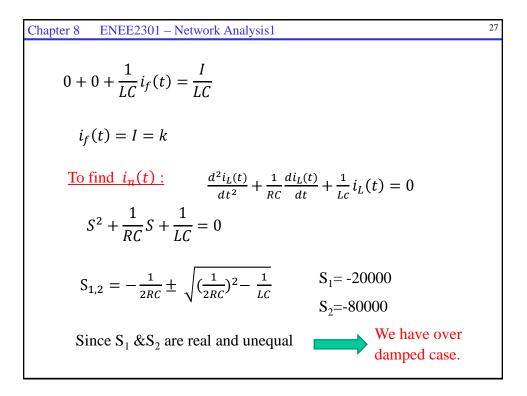
$$\frac{d^2 i_L(t)}{dt^2} + \frac{1}{RC} \frac{d i_L(t)}{dt} + \frac{1}{Lc} i_L(t) = \frac{I}{LC}$$
Second order nonhomogeneous differential equation.

$$i_L(t) = i_n(t) + i_f(t)$$

$$i_n(t) : \text{Natural response.} <== \text{was found earlier}$$

$$i_f(t) : \text{forced response.}$$

$$\frac{\text{To find } i_f(t) :}{\text{Lot } i_f(t) = k} + \frac{1}{RC} \frac{d i_L(t)}{dt} + \frac{1}{Lc} i_L(t) = \frac{I}{LC}$$
Let $i_f(t) = k$; k is constant.



Chapter 8 ENEE2301 - Network Analysis1 28

$$i_{Ln}(t) = A_1 e^{-20000t} + A_2 e^{-80000t}$$

$$i_L(t) = i_{Ln}(t) + i_{Lf}(t)$$

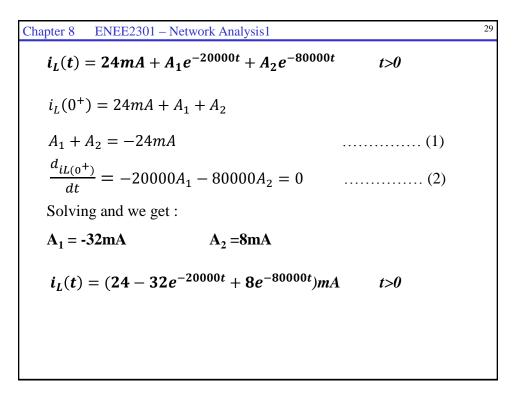
$$i_L(t) = 24mA + A_1 e^{-20000t} + A_2 e^{-80000t} t > 0$$
To find A1 & A2 , we need:

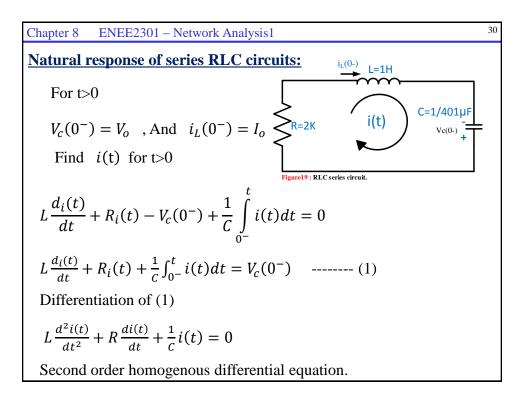
$$i_L(0^+) = 0 \text{ And } \frac{di_L(0^+)}{dt}$$

$$i_L(0^+) = i_L(0^-) = 0$$

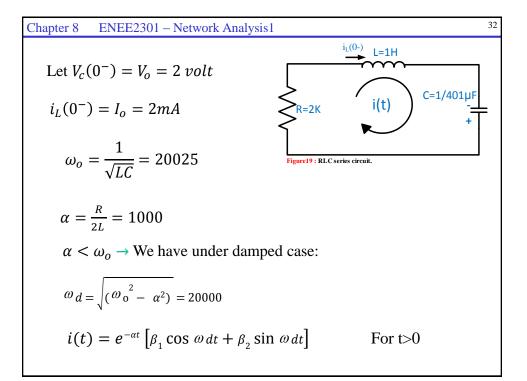
$$v_C(t) = v_L(t) = L \frac{d_{iL(t)}}{dt}$$

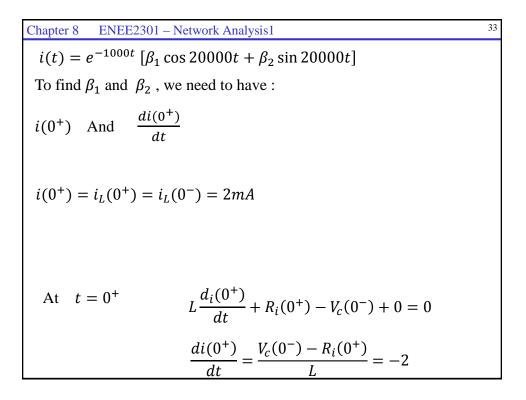
$$v_C(0^+) = L \frac{d_{iL(0^+)}}{dt} = v_C(0^-) = 0 \implies \frac{d_{iL(0^+)}}{dt} = 0$$

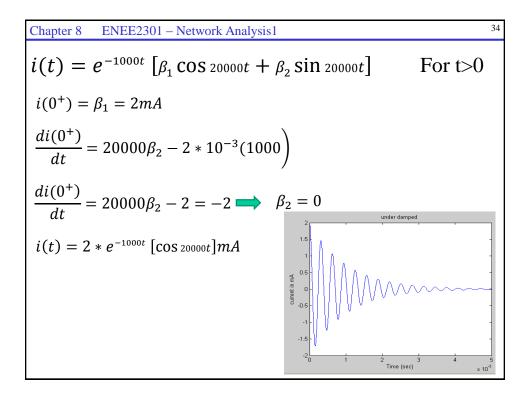


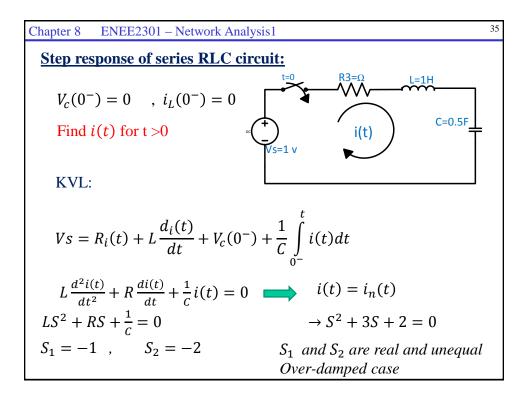


Chapter 8 ENEE2301 – Network Anal	ysis1	31
$LS^2 + RS + \frac{1}{C} = 0$		
$S_1 = -\frac{R}{2L} + \sqrt{(\frac{R}{2L})^2 - \frac{1}{LC}}$		
$S_2 = -\frac{R}{2L} - \sqrt{(\frac{R}{2L})^2 - \frac{1}{LC}}$		
Let $\omega_0 = \frac{1}{\sqrt{LC}}$	$\omega_0 =$ response frequency.	
And		
$\alpha = \frac{R}{2L}$	α =damping coefficient.	
$S_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_o^2}$		









Chapter 8 ENEE2301 - Network Analysis1 36

$$i(t) = A_1 e^{-t} + A_2 e^{-2t} ; t>0$$
OR
$$\omega_o = \frac{1}{\sqrt{LC}} = \sqrt{2}$$

$$\alpha = \frac{R}{2L} = 1.5$$

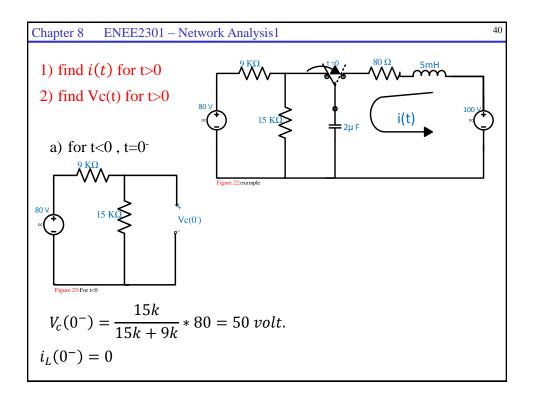
$$\alpha > \omega_o \rightarrow overdamped case$$
To find $A_1 \& A_2$

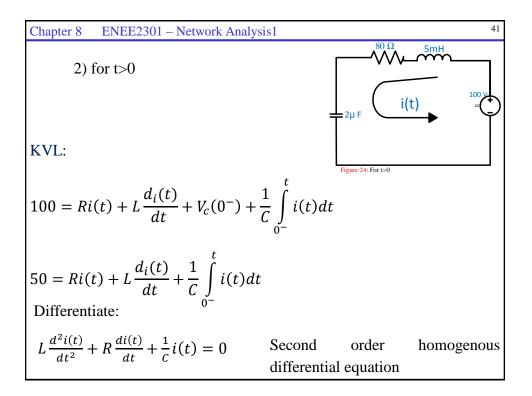
$$i(0^+) = i(0^-) = 0$$
Vs = $R_i(t) + L \frac{d_i(t)}{dt} + V_c(0^-) + \frac{1}{C} \int_{0^-}^{t} i(t) dt$
At $t = 0^+$:
$$Vs = R_i(0^+) + L \frac{d_i(0^+)}{dt} + 0 + 0$$

Chapter 8 ENEE2301 – Network Analysis1 37 $\frac{di(0^{+})}{dt} = \frac{V_c(0^{-}) - R_i(0^{+})}{L} = \frac{Vs}{L} = \frac{1}{1} = 1$ $\rightarrow i(t) = A_1 e^{-t} + A_2 e^{-2t}$ $i(0^{+}) = A_1 + A_2 = 0 \qquad ------(1)$ $\frac{di(0^{+})}{dt} = -A_1 - 2A_2 = 1 \qquad ------(2)$ Solving (1)&(2) $A_1 = 1 \qquad A_2 = -1 \qquad \rightarrow i(t) = e^{-t} - e^{-2t} \quad ; \qquad t > 0$ $V_c(t) = (1 - 2e^{-t} + e^{-2t}) \quad volt \qquad ; \qquad t > 0$

Chapter 8 ENEE2301 – Network Analysis1
Another Method To find
$$V_c(t)$$
 directly:
 $Vs = R_i(t) + L \frac{d_i(t)}{dt} + V_c(t)$
 $i(t)=i_c(t) = C \frac{dV_c(t)}{dt}$
 $Vs = RC \frac{dV_c(t)}{dt} + LC \frac{d^2V_c(t)}{dt} + V_c(t)$
 $V_c(t) = V_{cn}(t) + V_{cf}(t)$
 $V_{cf}(t) = k$, k is constant
 $k = Vs$
 $V_c(t) = V_s(t) + V_{cn}(t)$
 $0 = LCS^2 + RCS + 1 \rightarrow 0 = \frac{1}{2}S^2 + \frac{3}{2}S + 1 \rightarrow S_1 = -1; S_2 = -2$

Chapter 8 ENEE2301 – Network Analysis1	39
$V_c(t) = V_{cf}(t) + V_{cn}(t)$	
$V_c(t) = A_1 e^{-t} + A_2 e^{-2t} + 1$	
To find A_1, A_2	$0 = A_1 + A_2 + 1 \tag{1}$
$V_c(0^+) = V_c(0^-) = 0$	$A_1 + A_2 = -1 \qquad (1)$
$i(t) = i_L(t) = i_c(t) = C \frac{dV_c(t)}{dt}$	$\frac{dV_c(t)}{dt} = -A_1 e^{-t} - 2A_2 e^{-2t}$ $\frac{dV_c(0^+)}{dt} = -A_1 - 2A_2 = 0 - \dots (2)$
$i_L(0^+) = i_c(0^+) = C \frac{dV_c(0^+)}{dt} = 0$	Solving (1),(2)
$\frac{dV_c(0^+)}{dt} = 0$	$A_1 = -2$ $A_2 = 1$
$V_c(0^+) = 0$ $V_c(t) = A_1 e^{-t} + A_2 e^{-2t} + 1$	$V_c(t) = 1 - 2e^{-t} + e^{-2t}$ V





Chapter 8 ENEE2301 – Network Analysis1 42

$$i(t) = i_n(t)$$

$$0 = LCS^2 + RCS + 1$$

$$0 = 10 * 10^{-9}S^2 + 10 * 160^{-6}S + 1$$

$$S_1 = -8000 + j6000$$

$$S_2 = -8000 - j6000$$
Under damped case

$$i(t) = e^{-8000t} [\beta_1 \cos 6000t + \beta_2 \sin 6000t]$$
For t>0
To find $\beta_1 \& \beta_2$:

$$i(0^+) = i(0^-) = 0$$

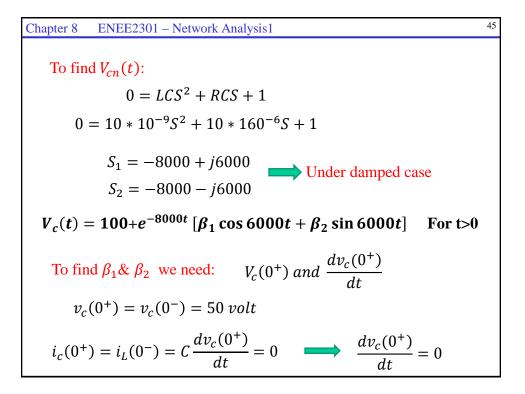
$$\frac{di(0^+)}{dt} = \frac{V_s - V_c(0^-)}{L} = 10000$$

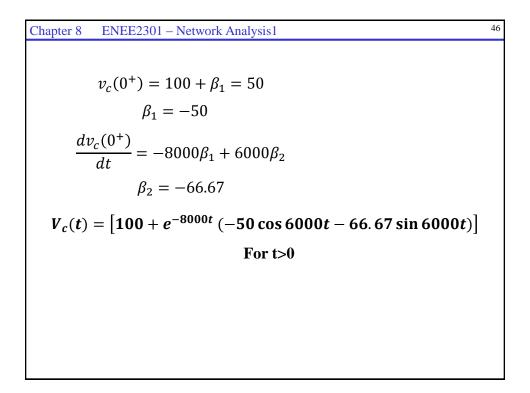
Chapter 8 ENEE2301 – Network Analysis1 43 $\beta_1 = 0$ $\beta_2 = 1.67$ $i(t) = 1.67e^{-8000t} [sin 6000t]$ A For t>0

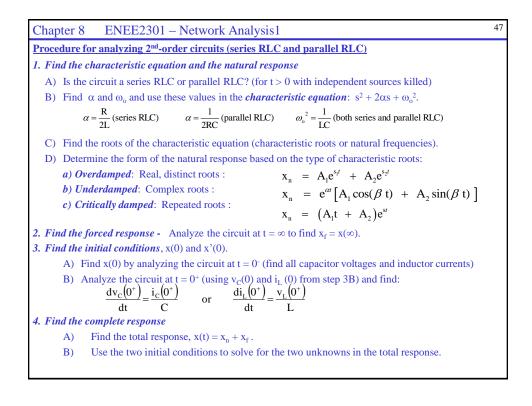
Chapter 8 ENEE2301 – Network Analysis1 44
2) find Vc(t) for t>0

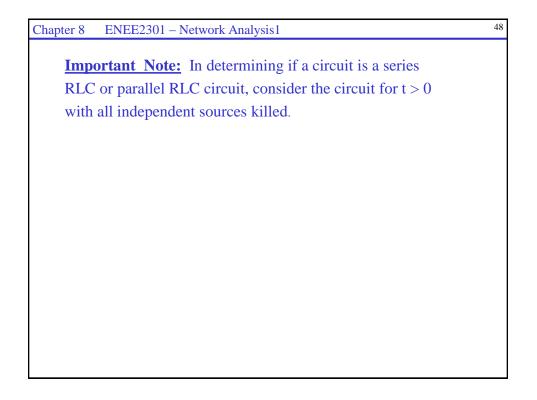
$$Vs = R_i(t) + L \frac{di(t)}{dt} + V_c(t)$$

 $i(t) = i_c(t) = C \frac{dv_c(t)}{dt}$
 $Vs = LC \frac{d^2v_c(t)}{dt^2} + RC \frac{dv_c(t)}{dt} + v_c(t)$ Second order nonhomogeneous
differential equation.
 $V_c(t) = V_{cf}(t) + V_{cn}(t)$
 $V_{cf}(t) = k$
 $Vs = 0 + 0 + k$
 $V_{cf}(t) = k$









Т	ne Circuit is	When	Qualitative Nature of the Response		
0	Overdamped $\alpha^2 > \omega_0^2$		The voltage or current approaches its final value without oscillation		
U	nderdamped	$\alpha^2 < \omega_0^2$	The voltage or current oscillates abo	out its final value	
G	ritically damped	$\alpha^2 = \omega_0^2$	The voltage or current is on the very	ge of oscillating about its final value	
or Critically Dampe	d, and Then We	Solve the	Appropriate Equations	t, We First Determine Whether it is Over-, Under-,	
Damping	Natural Re	sponse E	quations	Coefficient Equations	
Overdamped	$x(t) = A_1 e$	$s_1t + A_2e^s$	1	$x(0) = A_1 + A_2;$	
				$dx/dt(0) = A_1 s_1 + A_2 s_2$	
Underdamped	$x(t) = (B_1$	$\cos \omega_d t +$	$B_2 \sin \omega_d t e^{-\alpha t}$	$x(0) = B_1;$	
				$dx/dt(0) = -\alpha B_1 + \omega_d B_2,$	
				where $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$	
Critically damped	$x(t) = (D_1)$	$(t + D_2)e^{-}$	at	$x(0) = D_2,$	
, ,	.,	-		$dx/dt(0) = D_1 - \alpha D_2$	
TABLE 8.4 In De on the Damping	etermining the	Step Resp	oonse of a Second-Order Circuit	;, We Apply the Appropriate Equations Depending	
Damping	Step Resp	oonse Equ	uations ^a	Coefficient Equations	
Overdamped	x(t) = X	$f + A'_1 e^{s}$	$A' + A'_2 e^{s_2 t}$	$x(0) = X_f + A_1' + A_2';$	
				$dx/dt(0) = A'_1 s_1 + A'_2 s_2$	
Underdamped	$\mathbf{r}(t) = X$	$a + (B'_{1} c c$	$\cos \omega_d t + B'_2 \sin \omega_d t e^{-\alpha t}$	$x(0) = X_f + B_1';$	
	A(I) 11	. (D] .	$bb w_{a^{\mu}} + b_{2} \sin w_{a^{\mu}} + c$	$\frac{dx}{dt}(0) = -\alpha B_1' + \omega_d B_2'$	
Critically days			-al , DIal	/ /	
Critically damped	$x(t) = X_{t}$	$f + D_1' te$	$-\alpha t + D_2' e^{-\alpha t}$	$x(0) = X_f + D'_2;$	
				$dx/dt(0) = D_1' - \alpha D_2'$	

