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Basic Definitions 
We start our treatment of probability theory by introducing some basic definitions. 

Experiment:  
By an experiment, we mean any procedure that: 

1- Can be repeated, theoretically, an infinite number of times. 

2- Has a well-defined set of possible outcomes. 
 

Sample Outcome: 
Each of the potential eventualities of an experiment is referred to as a sample outcome(s). 
 

Sample Space: 
The totality of sample outcomes is called the sample space (S). 
 

Event: 
Any designated collection of sample outcomes, including individual outcomes, the entire sample 
space and the null space, constitute an event. 
 

Occur: 
An event is said to occur if the outcome of the experiment is one of the members of that event. 
 

 
EXAMPLE (2-1): 
Consider the experiment of flipping a coin three times. 
a- What is the sample space?  
b- Which sample outcomes make up the event: 

A : Majority of coins show heads. 
 
SOLUTION: 
 a- Sample Space (S) = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT} 
 b-  A = {HHH, HHT, HTH, THH} 

 
 

� Algebra of Events: 
Let A and B be two events defined over the sample space S, then: 

- The intersection of A and B, (A ∩ B), is the event whose outcome belongs to both A and B. 
 

- The union of A and B, (A U B), is the event whose outcome belongs to either A or B or both. 
 

- Events A and B are said to be Mutually Exclusive (or disjoint) if they have no outcomes in 
common, that is A ∩ B = Ø, where Ø is the null set (a set which contains no outcomes). 
 
 

- The complement of A (Ac or Ā) is the event consisting of all outcomes in S other than those 
contained in A. 
 

- Venn Diagram is a graphical format often used to simplify the manipulation of complex events. 
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� De Morgan's Laws: 

Use Venn diagrams to show that: 
1- (A ∩ B)c = Ac U Bc 
2- (A U B)c = Ac ∩ Bc 

 
EXAMPLE (2-2): 

An experiment has its sample space specified as: 
S = {1, 2, 3, ……, 48, 49, 50}. Define the events 
A : set of numbers divisible by 6 
B : set of elements divisible by 8 
C : set of numbers which satisfy the relation 2n , n = 1, 2, 3,… 
Find:   1- A, B, C                         2- A U B U C                      3- A ∩ B ∩ C 
 

SOLUTION: 

1- Events A, B, and C are: 
A = {6, 12, 18, 24, 30, 36, 42, 48} 
B = {8, 16, 24, 32, 40, 48} 
C = {2, 4, 8, 16, 32} 

2- A U B U C = {6, 12, 18, 24, 30, 36, 42, 48, 
                             8, 16, 32, 40, 
                             2, 4} 
3- A ∩ B ∩ C = { Ø } 

 
 
EXAMPLE (2-3): 

The sample space  of an experiment is: 
S = { 14  x  20- dd }. If A = { 5  x  10- dd } and B = { 0  x  7- dd } find. 
1- A U B                2- A ∩ B 
 

SOLUTION: 

1- A U B = { 5  x  10- dd } 
2- A ∩ B = { 0  x  7- dd } 

       A            B 
 
 
 
 
 

A ∩ B 

 

        A          B 
 
 
 
 
 

A U B 

        
 
 
 
 
 

Ac 

        A           B  
 
 
 
 
 

(A ∩ Bc) U (B ∩ Ac) 

        
 
 
 
 
 

A ∩ B = Ø 
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Definitions of Probability 
 
Four definitions of probability have evolved over the years: 
 

- Definition I: Classical (a priori) 
If the sample space S of an experiment consists of finitely many outcomes (points) that are 
equally likely, then the probability of event A, P(A) is: 

Sin  outcomes ofNumber 
Ain  outcomes ofNumber   P(A)  

Thus in particular, P(S) = 1 
 

- Definition II: Relative Frequency (a posteriori) 
Let an experiment be repeated (n) times under identical conditions then, the relative frequency: 

 trialsofNumber 
occursA   timesofNumber   

n
f(A)lim  P(A)

n
  

fo
 

f(A) is called the frequency of (A) 

Clearly 1  
n

f(A)  0 dd  

0  
n

f(A)
  if (A) does not occur in the sequence of trials 

1  
n

f(A)
  if (A) occurs on each of the (n) trials 

 
EXAMPLE (2-4): 

In digital data transmission, the bit error probability is (p). If 10,000 bits are transmitted over 
a noisy communication channel and 5 bits were found to be in error, find the bit error 
probability (p). 
 

SOLUTION: 

According to the relative frequency definition we can estimate (p) as: 
10,000

5  (p)  

 
- Definition III: Subjective 

Probability is defined as a person's measure of belief that some given event will occur. 

Example:  
What is the probability of establishing an independent Palestinian state in the next 2 years? 
Any number we might come up with would be our own personal (subjective) assessment of the 
situation. 
 

- Definition IV: Axiomatic 
Given a sample space (S), with each event (A) of (S) (subset of S) there is associated a number 
P(A), called the probability of (A), such that the following axioms of probability are satisfied: 
1- 0  P(A) t     ;    Probability is nonnegative 
2- 1  P(S)      ;    Probability of the sample space is a certain 
3- For the mutually exclusive events (A) and (B) (A ∩ B = Ø) 

P(A U B) = P(A) + P(B) ;   (A ∩ B = Ø) 
4- If (S) is infinite (has infinitely many points), axiom (3) is to be replaced by: 

P(A1 U A2 U A3 U ……) = P(A1) + P(A2) + P(A3) + …… 
where A1, A2, A3 …… are mutually exclusive events 
(A1 ∩ A2 = Ø A1 ∩ A3 = Ø     A2 ∩ A3 = Ø     …......) 
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Basic Theorems for Probability 
5- P(Ac) = 1 – P(A) 

Proof: S = A U Ac 
P(S) = P(A) + P(Ac) 
1 = P(A) + P(Ac)    Î P(Ac) = 1 - P(A) 

 

6- P(Ø) = 0 
Proof: 
S = S U Sc 
S = S U Ø ; Sc = Ø 
P(S) = P(S) + P(Ø)  Î P(Ø) = 0  

7- P(A U B) = P(A) + P(B) - P(A ∩ B) 
Proof: 
For events (A) and (B) in a sample space: 
{A U B} = {A ∩ Bc} U {A ∩ B} U {B ∩ Ac} 
{A U B} =         1       U      2       U     3 

 
Where events (1) and (2) and (3) are mutually exclusive 
P(A U B) = P(1) + P(2) + P(3) 
P(A) = P(1) + P(2) 
P(B) = P(2) + P(3) 
Î P(A U B) = {P(1) + P(2)} + {P(2) + P(3)} – {P(2)} 
Î P(A U B) = P(A) + P(B) – P(A ∩ B) 

 

- Theorem:  
If A, B, and C are three events, then: 
P(A U B U C) = P(A) + P(B) + P(C) – P(A ∩ B) – P(A ∩ C) – P(B ∩ C) + P(A ∩ B ∩ C) 
 

 

EXAMPLE (2-5): 
One integer is chosen at random from the numbers {1, 2, ……, 50}. What is the probability 
that the chosen number is divisible by 6? Assume all 50 outcomes are equally likely. 
 

SOLUTION: 
S  = {1, 2, 3, …………, 50} 
A = {6, 12, 18, 24, 30, 36, 42, 48} 

50
8  

Sin  elements ofNumber 
Ain  elements ofNumber   P(A)    

 
 

EXAMPLE (2-6): 

If the probability of occurrence of an even number is twice as likely as that of an odd number 
in Example (2-5). Find P(A); A is defined above. 
 
SOLUTION: 

P(S) = P(even) + P(odd) = 1 ; 
Let (P) be the probability of occurrence of an odd number, 
then (2P) will be the probability of occurrence of an even number. 

 
 
 
 1 

A B 

2 3 

S 
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(25)(2P) + (25)(P) = 1 

(50 + 25)(P) = 1    Î  
75
1  P   

75
16  2P  8  P(A)  u  

 
 

EXAMPLE (2-7): 

Suppose that a company has 100 employees who are classified according to their marital 
status and according to whether they are college graduates or not. It is known that 30% of 
the employees are married, and the percent of graduate employees is 80%. Moreover, 10 
employees are neither married nor graduates. What proportion of married employees are 
graduates? 
 

SOLUTION: 

Let:  M  : set of married employees 
         G  : set of graduate employees 
       N(.) : number of members in any set (.) 
Î N(S)  = 100 
     N(M) = 0.3 × 100 = 30 
     N(G)  = 0.8 × 100 = 80 
     N(M U G)c = 10 
Î N(M U G)  = 100 – 10 = 90 
     N(M U G)  = N(M) + N(G) – N(M ∩ G) 
     90 = 30 + 80 – N(M ∩ G) 
    N(M ∩ G) = 30 + 80 – 90 = 20 
Î Two third of the married employees in the company are graduates. 

 
 

EXAMPLE (2-8): 

An experiment has two possible outcomes; the first occurs with probability (P), the second 
with probability (P2), find (P). 
 

SOLUTION: 

P(S) = 1 
P + P2 = 1 
P2 + P – 1 = 0 

2
51   - P �

  ; (only the positive root is taken) 

 
 
EXAMPLE (2-9): 
A sample space “S” consists of the integers 1 to 6 inclusive. Each outcome has an associated 
probability proportional to its magnitude. If one number is chosen at random, what is the 
probability that an even number appears? 
 
SOLUTION: 
Sample Space “S” = {1 , 2 , 3 , 4 , 5 , 6} 
Event (A) = {2 , 4 , 6} 
P(A) = P(2) + P(4) + P(6) 

M G 

S 

20 10 60 

10 
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P(S) = 1 = 1
2

)16(6)()(
6

1

6

1
 

�
  ¦¦

  

DD
ii

iip  

Î The proportionality constant 
21
1

 D  

21
12

21
6

21
4

21
2)A(P  ��  

 
 

EXAMPLE (2-10): 
Let (A) and (B) be any two events defined on (S). Suppose that P(A) = 0.4, P(B) = 0.5, and 
P(A ∩ B) = 0.1. 
Find the probability that: 

1- (A) or (B) but not both occur. 
2- None of the events (A) or (B) will occur. 
3- At least one event will occur. 
4- Both events occur. 

 
SOLUTION: 
P(A) = P[(A ∩ Bc) U (A ∩ B)] 
Using Venn diagram: 
P(A) only = 0.3 
P(B) only = 0.4 

1- P(A or B only) = 0.3 + 0.4 = 0.7 
 
Note that:  
P(A U B) = P(A) + P(B) – P(A ∩ B) 
P(A U B) = 0.4 + 0.5 – 0.1 = 0.8 

2- P(none) = )BAP( U = 0.2  
3- P(at least one) = P(A U B) = 0.8 
4- P(both) = P(A ∩ B) = 0.1 
 

  

A B 

S 

0.1 0.3 0.4 

0.2 
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Discrete Probability Functions 
 
If the sample space generated by an experiment contains either a finite or a countable infinite 
number of outcomes, then it is called a discrete sample space. 
Any probability assignment on that space such that: 
 

a-  0  )P(si t  
b-  1  )P(s

S  s
i

i

 ¦
�

 

is said to be a discrete probability function. 
 

If (A) is an event defined on (S), then ¦
�

 
A  s

i
i

)P(s  P(A)  

For example, the sample space,    “S” = {1 , 2 , 3 , 4 , 5 , 6} is countably finite, 
while the set of positive integers, “S” =  {1 , 2 , 3 , ……...} is countably infinite. 
 

 
EXAMPLE (2-11): 
The outcome of an experiment is either a success with probability p or a failure with 
probability (1-p). If the experiment is to be repeated until a success comes up for the first 
time. Let X be the number of times the experiment is performed then the discrete probability 
function for the countably infinite sample space is 

1( ) (1 )xP x p p � � ; x = 1, 2, … 
What is the probability that a success occurs on an an odd-numbered trial? 
 
SOLUTION: 
The sample space for the experiment is S={1, 2, 3, ….} 
Let A be the event that a success occurs on an odd numbered trial. Then A consists of the 
sample points: A = {1, 3, 5, …} 
P(A) = P(1) + P(3) + P(5) + … 

1 1 3 1 5 1( ) (1 ) (1 ) (1 ) ...P A p p p p p p� � � � � � � � �  
2 4

2( ) (1 ...) ; 1  
1

pP A p q q q p
q

 � � �   �
�

, by virtue of the geometric series 

x1
1x

0k

k

�
 ¦

f

 

  

In the special case when p = ½, P(A) becomes  

Î  P(A) = 

4
11

1
2
1

�
u    Î  P(A) = 

3
2  

 
 
EXAMPLE (2-12): 

The discrete probability function for the countably infinite sample space S = {1, 2, 3, …} is: 

2x
CP(x)    ;  x = 1, 2, 3, …… 

a- Find the constant “C” so that P(x) is valid discrete probability function. 
b- Find the probability that the outcome of the experiment is a number less than 4. 
 
SOLUTION: 

a. By Axiom 2, P(S) = 1 
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1
x
C

1x
2  ¦

f

 

  Î  1
x
1C

1x
2  ¦

f

 

  Î  1
6
πC

2

 ,  Î 2π
6C   

 
b. The event “A” is A = {1 , 2 , 3} 

P(A) = P(1) + P(2) + P(3) 

Î 827.0
6π
49

(3)
1

(2)
1

(1)
1

π
6P(A) 22222   ¸̧

¹

·
¨̈
©

§
��  

 

Continuous Probability Functions 
 
If the sample space associated with an experiment is an interval of real numbers, then (S) has an 
uncountable infinite number of points and (S) is said to be continuous. 
 

Let )(xf be a real-valued function defined on (S) such that: 
a-  0  )( txf  
b- 1  dx )(

 xAll

 ³ xf  

The function f(x) that satisfies these conditions is called a continuous probability function. 
If (A) is an event defined on (S), then ³

�

 
A x 

dx )(  P(A) xf  

For example, the sample space S = { 2  x  1 dd } is uncountably infinite. 
 

EXAMPLE (2-13): 
Let the sample space of an experiment be: 
“S” = { 2  x  1 dd }. The continuous probability function defined over “S” is: 

)(xf 2  x  1     ,  
x
k

2 dd . 

a- Find (k) so that )(xf is a valid probability function. 
b- Find 1.5) x (P d  

 
SOLUTION: 

a- 2k     1dx 
x
k     1dx (x)f  P(S)

2

1
2

2

1

 � �  ³³  

b- 
3
2dx 

x
k  1.5) P(x 

1.5

1
2   d ³  

 
 
EXAMPLE (2-14): 
The length of a pin that is a part of a wheel assembly is supposed to be 6 cm. The machine 
that stamps out the parts makes them 6 + x cm long, where x varies from pin to pin according 
to the probability function: 
 

f(x) = k(x + x2)  ;  2x0 dd  
where (k) is a constant. If a pin is longer than 7 cm, it is unusable. What proportion of pins 
produced by this machine will be unusable? 
 
SOLUTION: 

1  dx )()(   ³ xfSP    
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28
6k     1 

2
x

2
xk

  1dx ) x(x k

2

0

22

2

0

2

 � «
¬

ª
�

 �³
 

A cotter pin is not accepted if the error 1x t cm. 

P( 1x t ) = ³ �
2

1

2 dx ) xk(x  

28
23

3
1

2
1

3
8

2
4

28
6

2
x

2
xk

2

1

22

 »¼
º

«¬
ª ��� «

¬

ª
�  

P( 1x t ) = p(pin length  7t cm) = 
28
23  
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Conditional Probabilities and Statistical Independence 
- Definition: 

Given two events (A) and (B) with P(A) and P(B) > 0. We define the Conditional Probability of 
(A) given (B) has occurred as: 

P(B)
B)P(A  P(A/B) �

  …………… (1) 

and the probability of (B) given (A) has occurred as: 

P(A)
B)P(A  P(B/A) �

  …………… (2) 

In (2), (A) serves as a new (reduced) sample space  
and P(B/A) is the fraction of (A) which corresponds to (A ∩ B). 
 
 
 
 
 
 
 
 
 
 

EXAMPLE (2-15): 
A sample space (S) consists of the integers 1 to n inclusive. Each has an associated 
probability proportional to its magnitude. One integer is chosen at random, what is the 
probability that number 1 is chosen given that the number selected is in the first (m) integers. 
 
SOLUTION: 
Let  (A) be the event “number 1” occurs  
      (A) = {1} 
       (B) the event “outcome belongs to the first m integers”  
       (B) = {1 , 2 , 3 , … , m} 

1i    1i P
n

1i

n

1i

n

1i
i  D� D ¦¦¦

   

  Î   
)1n(n

2   1
2

)1n(n
�

 D� 
�

D  

2
1)m(m

1

iα

α

P

α
P(B)
P(1) 

P(B)
B)P(A  P(A/B) m

1i

m

1i
i

�
     

¦¦
  

�  Î  
1)m(m

2  P(A/B)
�

  

A priori probability:          P(A) = 
)1n(n

2
�

 

A posteriori probability: 
1)m(m

2  P(A/B)
�

  

Clearly P(A/B) > P(A) due to the additional information given by event (B). 
 

 
Theorem: Multiplication Rule  

If (A) and (B) are events in a sample space (S) and P(A) ≠ 0, P(B) ≠ 0, then: 
P(A ∩ B) = P(A) P(B/A) = P(B) P(A/B) 
For three events A, B, and C: 
P(A ∩ B ∩ C) = P(A) P(B/A) P(C/B,A) 

A B 

S 
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EXAMPLE (2-16): 

A certain computer becomes inoperable if two components A and B both fail. The 
probability that A fails is 0.001 and the probability that B fails is 0.005. However, the 
probability that B fails increases by a factor of 4 if A has failed. Calculate the probability 
that: 

a- The computer becomes inoperable. 
b- A will fail if B has failed.  

 
SOLUTION: 

P(A) = 0.001;                  P(B) = 0.005 
P(B/A) = 4 × 0.005 = 0.020 
a- The system fails when both A and B fail, i.e., 

 P(B/A) P(A)  B)P(A  �  
0.020  0.001  B)P(A u �  = 0.00002 

b-  P(B/A) P(A)  B)P(A  �  =  P(A/B) P(B)  

005.0
0.020  0.001  P(A/B) u

    = 0.004 

 
 

 
EXAMPLE (2-17): 

A box contains 20 non-defective (N) items and 5 defective (D) items. Three items are drawn 
without replacement. 
a. Find the probability that the sequence of objects obtained is (NND) in the given order. 
b. Find the probability that exactly one defective item is obtained.  
 
SOLUTION: 

a. P(N�N�D) = P(N)  × P(N/N)  × P(D/N,N) 

    P(NND) = )
225

5)(
125
120)(

25
20(

��
� = )

23
5)(

24
19)(

25
20(  

b. One defective item is obtained, when any one of the following sequences occurs: 

(NND), (NDN), (DNN) 

The probability of getting one defective item is the sum of the probabilities of these 
sequences and is given as: 

)
23
5)(

24
19)(

25
20( + )

23
19)(

24
5)(

25
20( + )

23
19)(

24
20)(

25
5( = )

23
5)(

24
19)(

25
20)(3(  

Later in Chapter 2, we will see that Part (b) can be solved using the hyper-geometric 
distribution.  

 
Definition: Statistical Independence 
Two events (A) and (B) are said to be statistically independent if: 
P(A ∩ B) = P(A) P(B) 
From this definition we conclude that: 

P(A)  
P(B)

P(B) P(A)  P(A/B)   � a posteriori probability = a priori probability  
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P(B)  
P(A)

P(B) P(A)  P(B/A)    

This means that the probability of (A) does not depend on the occurrence or nonoccurrence of 
(B) and vice versa. Hence, the given information does not change our initial perception about 
the two given probabilities. 
 
Independence of Three Events: 
Events (A), (B) and (C) are independent if the following conditions are satisfied: 

- P(A ∩ B) = P(A) P(B) 
- P(A ∩ C) = P(A) P(C) 
- P(B ∩ C) = P(B) P(C) 
- P(A ∩ B ∩ C) = P(A) P(B) P(C) 
 

 
EXAMPLE (2-18): 

Let S = {1 , 2 , 3 , 4} ; Pi = 
4
1 . A = {1 , 2} and B = {2 , 3}. Are (A) and (B) independent? 

SOLUTION:   P(A) = 
2
1   ,  P(B) = 

2
1          Î        (A ∩ B) = {2} , P(A ∩ B) = 

4
1  

Î P(A ∩ B) = P(A) P(B)    Î         Events are  independent 

 
 
EXAMPLE (2-19): 
Consider an experiment in which the sample space contains four outcomes {S1, S2, S3, S4} 
such that P(Si) = 

4
1 . Let events (A), (B) and (C) be defined as: 

A = {S1, S2}   ,  B = {S1, S3}  ,  C = {S1, S4} 
Are these events independent? 
 

SOLUTION:    P(A) = P(B) = P(C) = 
2
1  

(A ∩ B) = {S1}   ;   (A ∩ C) = {S1}       ;    (B ∩ C) = {S1}   ;   (A ∩ B ∩ C) = {S1}    
P(A ∩ B) = 

4
1     ;   P(A ∩ C) = 

4
1          ;    P(B ∩ C) = 

4
1     ;   P(A ∩ B ∩ C) = 

4
1  

Check the conditions: 
- P(A ∩ B) = 

4
1  = P(A) P(B) = 

2
1

2
1
u       ;     P(A ∩ C) = 

4
1  =  P(A) P(C) = 

2
1

2
1
u  

- P(B ∩ C) = 
4
1  = P(B) P(C) = 

2
1

2
1
u      

- P(A ∩ B ∩ C) = 
4
1   ≠    P(A) P(B) P(C) = 

8
1

2
1

2
1

2
1

 uu  

Î Events are not independent (even though they are pair-wise  independent  ) 
 

 
EXAMPLE (2-20): “Reliability of a series system” 

Suppose that a system is made up of two components connected in series, each component 
has a probability (P) of working “Reliability”. What is the probability that the system works 
assuming that components work independently? 
 
SOLUTION: 

P(system works) = P(component 1 works ∩ component 2 works) 

P P 
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P(system works) = P × P = P2 

* The probability that the system works is also known as the “Reliability” of the system. 

 
 
EXAMPLE (2-21): “Reliability of a parallel system” 

Suppose that a system is made up of two components connected in parallel. The system 
works if at least one component works properly. If each component has a probability (P) of 
working “Reliability” and components work independently, find the probability that the 
system works. 
 
SOLUTION: 

Reliability of the system = P(system works) 
P(system works) = P(C1 or C2 or both C1 and C2 works) 

                          = P(C1 U C2) 

                          = P(C1) + P(C2) – P(C1 ∩ C2) 

                          = P + P – (P × P) = 2P – P2 

* This system fails if both components fail. 
 
EXERCISE: 

A pressure control apparatus contains 4 electronic tubes. The apparatus will not work unless 
all tubes are operative. If the probability of failure of each tube is 0.03, what is the probability 
of failure of the apparatus assuming that all components work independently? 
 

 
 
EXERCISE: “Mixed system” 

Find the reliability of the shown mixed system, assuming that all components work 
independently, and P is the reliability (probability of working) of each component. 
 

 

 

 

 
EXAMPLE (2-22): 
A coin may be fair or it may have two heads. We toss it (n) times and it comes up heads on 
each occasion. If our initial judgment was that both options for the coin (fair or both sides 
heads) were equally likely (probable), what is our revised judgment in the light of the data? 
 
SOLUTION: 
Let A : event representing coin is fair 
      B : event representing coin with two heads 
      C : outcome of the experiment �� 
�� 	�

n times

H ... H H H H H  

A priori probabilities: 

P 

P 

C2 

C1 

P 

P 

 

 

P P 
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P(A) = 
2
1      ,        P(B) = 

2
1  

Î We need to find P(A/C) = ? 

P(C)
P(C/A) P(A)  

P(C)
C) P(A   P(A/C)   
�  

heads) twocoin with  / H ... H H P(H P(B)  coin)fair  / H ... H H P(H P(A)
coin)fair  / H ... H H P(H P(A)  P(A/C)

�
  

nn

n

n

n

21
1

1
2
1

2
1

(1) 
2
1

2
1 

2
1

2
1 

2
1

   P(A/C)
�

 

�¸
¹
·

¨
©
§

¸
¹
·

¨
©
§

 

�¸
¹
·

¨
©
§

¸
¹
·

¨
©
§

  

n

n

n 21
2

21
11  P(A/C) - 1  P(B/C)

�
 

�
�   
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Theorem of Total Probability 
Let A1, A2, …, An be a set of events defined over (S) such that: 
S = A1 U A2 U… U An  ;  Ai ∩ Aj = Ø   for i ≠ j,   and P(Ai) > 0   for i = 1, 2, 3, … n. 
For any event (B) defined on (S): 
P(B) = P(A1) P(B/A1) + P(A2) P(B/A2) + …… + P(An) P(B/An) 
 

Proof: 

For events (A) and (B) in a sample space: 
B = {A1∩B} U {A2∩B} U {A3∩B} U {A4∩B} 

Since these events are disjoint, then: 

P(B) = P(A1∩B) + P(A2∩B) + P(A3∩B) + P(A4∩B) 

But P(A ∩ B) = P(A) P(B/A) = P(B) P(A/B) 

P(B) = P(A1) P(B/A1) + P(A2) P(B/A2) + P(A3) P(B/A3) + P(A4) P(B/A4) 
 
 
 
 
 
 
 
 
 
 

 
EXAMPLE (2-23): 

If female students constitute 30% of the student body in the Faculty of Engineering and 40% 
of them have A GPA > 80, while 25 % of the male students have their GPA > 80. What is 
the probability that a person selected at random will have a GPA > 80? 
 
SOLUTION: 

A1 = Event representing the selected person is a female 
A2 = Event representing the selected person is a male 
B  = Event representing GPA > 80 
P(A1) = 0.3 
P(A2) = 0.7 
B = (A1∩B) U (A2∩B) Î P(B) = P(A1∩B) + P(A2∩B) 
P(B) = P(A1) P(B/A1) + P(A2) P(B/A2) 
P(B) =   (0.3 × 0.4)  +  (0.7 × 0.25)  
P(B) = 0.295 

Baye's Theorem: 
If A1, A2, A3, ……, An are disjoint events defined on (S), and (B) is another event defined on 
(S) (same conditions as above), then: 
 

P(B)
B)  P(A

  
)P(B/A )P(A

)P(B/A )P(A
  /B)P(A j

i

n

1  i
i

jj
j

�
  

¦
 

 

 
 
 
 

 

A2∩B 

A1 A2 

B 

A1∩B 

A1 ∩ B 

A2 ∩ B 

A4 ∩ B 

A3 ∩ B 

A2 

A1 

A3 

A4 B 

B 
P(B/A2) 

)1P(A 
 

P(A2) 

P(An) 
P(B/An) 

P(B/A1) 
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EXAMPLE (2-24): 
Suppose that when a machine is adjusted properly, 50% of the items produced by it are of 
high quality and the other 50% are of medium quality. Suppose, however, that the machine is 
improperly adjusted during 10% of the time and that under these conditions 25% of the items 
produced by it are of high quality and 75% are of medium quality. 
 

a- Suppose that one item produced by the machine is selected at random, find the 
probability that it is of medium quality. 

 
b- If one item is selected at random, and found to be of medium quality, what is the 

probability that the machine was adjusted properly. 
 

SOLUTION: 
A1 = Event representing machine is properly adjusted 
A2 = Event representing machine is improperly adjusted 
H  = Event representing item is of high quality 
M = Event representing item is of medium quality 
From the problem statement we have: 
P(A1)    = 0.9     ;       P(A2)   = 0.1 
P(H/A1) = 0.5     ;      P(H/A2) = 0.25 
P(M/A1) = 0.5    ;      P(M/A2) = 0.75 
 

a- P(M) = P(A1 ∩ M) + P(A2 ∩ M) 
P(M) = P(A1) P(M/A1) + P(A2) P(M/A2) 
P(M) =  (0.9)(0.5) + (0.1)(0.75) = 0.525 
 

b- 
P(M)

)P(M/A )P(A
P(M)

M)  P(A
  /M)P(A 111

1  
�

  

        8571.0
(0.525)

(0.9)(0.5)  /M)P(A1    

 
 
 
 
 
 
 
 

 

A1 
P(A1) = 0.9 

A2 
P(A2) = 0.1 

H 

M 

0.5 

0.75 

0.25 

0.5 

 

A2∩M 

A1 

A2 

M 

A1∩M 
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EXAMPLE (2-25): 

Consider the problem of transmitting binary data over a noisy communication channel. Due 
to the presence of noise, a certain amount of transmission error is introduced. Suppose that 
the probability of transmitting a binary 0 is 0.7 (70% of transmitted digits are zeros) and 
there is  a 0.8 probability that a given 0 or 1 being received properly. 
 

a- What is the probability of receiving a binary 1. 
b- If a 1 is received, what is the probability that a 0 was sent. 

 

SOLUTION: 

A0 = Event representing 0 is sent 
A1 = Event representing 1 is sent 
B0 = Event representing 0 is received 
B1 = Event representing 1 is received  

From the problem statement we have: 

 P(A0)    = 0.7    ;       P(A1)   = 0.3 
P(B0/A0) = 0.8    ;      P(B0/A1) = 0.2 
P(B1/A0) = 0.2    ;      P(B1/A1) = 0.8 

a- P(B1) = P(A0) P(B1/A0) + P(A1) P(B1/A1) 
P(B1) =  (0.7)(0.2) + (0.3)(0.8) = 0.38 
P(B0) = 1 – P(B1) = 0.62 

b- 
)P(B

)/AP(B )P(A
)P(B

)B  P(A  )/BP(A
1

010

1

10
10  

�
  

    3684.0
(0.38)

(0.7)(0.2)  )/BP(A 10    

 
 
 

 
EXAMPLE (2-26): 

In a factory, four machines produce the same product. Machine A1 produces 10% of the 
product, A2 20%, A3 30%, and A4 40%. The proportion of defective items produced by the 
machines follows:  
 
A1:  0.001      ;      A2:  0.005      ;      A3:  0.005      ;      A4:  0.002 
 
An item selected at random is found to be defective, what is the probability that the item was 
produced by machine A1? 
 
SOLUTION: 

Let D be the event: Selected item is defective 

P(D) = P(A1) P(D/A1) + P(A2) P(D/A2) + P(A3) P(D/A3) + P(A4) P(D/A4) 
P(D) =  (0.1 × 0.001)  +  (0.2 × 0.005)  +  (0.3 × 0.005)  +  (0.4 × 0.002) 
P(D) =  0.0034 

34
1

0.0034
0.0001

(0.0034)
(0.001) (0.1)

P(D)
)P(D/A )P(A  /D)P(A 11

1      

A0 
P(A0) = 0.7 

A1 
P(A1) = 0.3 

B0 

B1 

0.8 

0.8 

0.2 

0.2 
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Counting Techniques 
Here we introduce systematic counting of sample points in a sample space. This is necessary for 
computing the probability P(A) in experiments with a finite sample space (S) consisting of (n) 
equally likely outcomes. Then each outcome has probability .

n
1
¸
¹
·

¨
©
§  

And if (A) consists of (m) outcomes, then 
n
m )A(P   

- Multiplication Rule: 
If operation A can be performed in n1 different ways and operation B in n2 different ways, then 
the sequence (operation A , operation B) can be performed in n1 x n2 different ways. 
 

 
EXAMPLE (2-27): 

There are two roads between A and B and four roads between B and C. How many different 
routes can one travel between A and C. 
 
SOLUTION: 

n = 2 x 4 = 8 

 
� Permutation: 

Consider an urn having (n) distinguishable objects (numbered 1 to n). We perform the following 
two experiments: 
 
1- Sampling without replacement: 

An object is drawn; its number is recorded and then put aside, another object is drawn; its 
number is recorded and then put aside, the process is repeated (k) times. The total number of 
ordered sequences {x1, x2, ……., xk} (repetition is not allowed) called permutation is: 
N = n (n – 1) (n – 2) …… (n – k + 1) 

)!kn(
!nN

�
  …………….. (1) 

where   n! = n (n – 1) (n – 2) …… (3) (2) (1) 
 
2- Sampling with replacement: 

If in the previous experiment, each drawn object is dropped back into the urn and the process is 
repeated (k) times. The number of possible sequences {x1, x2, ……., xk} of length (k) that can 
be formed from the set of (n) distinct objects (repetition allowed): 
N = nk  …………….. (2) 
 

 
EXAMPLE (2-28): 

How many different five-letter computer passwords can be formed: 
a- If a letter can be used more than once.  
b- If each word contains each letter no more than once. 

SOLUTION: 

a- N = (26)5 

b- 
)!526(

!26
�

 N   

 

1 
2 

3 
n 

A B C 
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EXAMPLE (2-29): 

An apartment building has eight floors (numbered 1 to 8). If seven people get on the elevator 
on the fist floor, what is the probability that: 
 

a- All get off on different floors? 
b- All get off on the same floor? 

 
SOLUTION: 

Number of points in the sample space: 
First person can get off at any of the 7 floors.  
 
Person (2) can get off at any of the 7 floors and so on.  

Î  The number of ways people can get off: 

(N) = 7 × 7 × 7 × 7 × 7 × 7× 7 = 77 

a- Here the problem is to find the number of permutations of 7 objects taking 7 at a time. 

77
! 7P   

b- Here there are 7 ways whereby all seven persons get off on the same floor. 

77
7P   

 
 
EXAMPLE (2-30): 

If the number of people getting on the elevator on the first floor is 3: 
 

a- Find the probability they get off the elevator on different floors. 
b- Find the probability they get off the elevator on the same floor. 

 
SOLUTION: 

Number of points in the sample space (N) = 7 × 7 × 7 = 73 

a- 37
567P uu

  

b- 37
7P   

 
 
EXAMPLE (2-31): 

If the number of floors is 5 (numbered 1 to 5) and the number of people getting on the 
elevator is 8. Find the probability that exactly 2 people get off the elevator on each floor. 
 
SOLUTION: 

Number of points in the sample space (N) = 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 = 48 

84
2
2

2
4

2
6

2
8

¸̧
¹

·
¨̈
©

§
¸̧
¹

·
¨̈
©

§
¸̧
¹

·
¨̈
©

§
¸̧
¹

·
¨̈
©

§

 P  

  

 8 d 
 7 d 
 6 d 
 5 d 
 4 d 
 3 d 
 2 d 

ddddddd 
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EXAMPLE (2-32): 

To determine an "odd man out", (n) players each toss a fair coin. If one player's coin turns 
up differently from all the others, that person is declared the odd man out. Let (A) be the 
event that some one is declared an odd man out. 
 

a- Find P(A) 
b- Find the probability that the game is terminated with an odd man out after (k) trials 

 

SOLUTION: 

a- 
sequences possible ofNumber 

(A)event in  outcomes ofNumber P(A)   

number of outcomes leading to an odd man out: 
(n – 1) Heads and one Tail 
(n – 1) Tails and one Head 

1nn 2
n

2
n 2P(A)

�
   

with an odd man out, a success is obtained  
and the game is over. 

b- A second trial is needed when the experiment  
ends with a failure: 
Î P(a second trial is needed) = 1 – P(A) 
For (k) trials: 

P(S) P(F)  )S  F ... F F F F( 1-k

  1

 
�
�
�	�

Trialsk

P  

P(A) P(A)] - [1  )S  F ... F F F F( 1-k

  1

 
�
�
�	�

Trialsk

P  

 

� Combination:  
In permutation, the order of the selected objects is essential. In contrast, a combination of        a 
given objects means any selection of one or more objects without regard to order. 
The number of combinations of (n) different objects, taken (k) at a time, without repetition is 
the number of sets that can be made up from the (n) given objects, each set containing (k) 
different objects and no two sets containing exactly the same (k) objects.  
The number is: 

)!kn( !k
!n

k
n

�
 ¸̧

¹

·
¨̈
©

§
 

Note that: 

��� 
��� 	���� 
��� 	���� 
��� 	�
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(k)  theArrange

 then and 

k
n

(n) from objects
(k)select First  
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N
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)!kn(
!nN
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  Î      ¸̧
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·
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N
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EXAMPLE (2-33): 

From four persons (set of elements), how many committees (subsets) of two members 
(elements) may be chosen? 
 

SOLUTION: 

Let the persons be identified by the initials A, B, C and D 
Subsets: (A , B) , (A , C) , (A , D) , (B , C) , (B , D) , (C , D) 

6
)!24( !2

!4
2
4

 
�

 ¸̧
¹

·
¨̈
©

§
 N  

Missing sequences: (A , A) , (B , B) , (C , C) , (D , D)  Î (repetition is not allowed) 
Missing sequences: (B , A) , (C , A) , (D , A) 
                            (C , B) , (D , B) , (D , C)               Î (order is not important) 

 
 
EXAMPLE (2-34): 

Consider the rolling of a die twice, how many pairs of numbers can be formed for each case? 
 

SOLUTION: 
n = 6 and k = 2 
Case I: Permutation 
a- With repetition 
    N = nk = 62 = 36 

b- Without repetition 

    30
)!26(

!6
)!kn(

!nN  
�

 
�

  

Case I: Combination 

15
)!26(!2

!6
)!kn(!k

!n
k
n

 
�

 
�

 ¸̧
¹

·
¨̈
©

§
 

D2 
D1 1 2 3 4 5 6 

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 

2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 

3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 

4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 

5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 

6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) 

 
 

EXAMPLE (2-35): 

In how many ways can we arrange 5 balls numbered 1 to 5 in 10 baskets each of which can 
accommodate one ball? 
 

SOLUTION: 

The number of ways 
!5
!10

)!510(
!10

)!kn(
!n)N(  

�
 

�
  

NOTE: 
If we remove the numbers of the balls so that the balls are no longer distinguishable, then: 

The number of ways 
!5!5

!10
)!510(!5

!10
)!kn(!k

!n
k
n

 
�

 
�

 ¸̧
¹

·
¨̈
©

§
 

This is because the permutation within the 5 balls is no longer needed. 
 
Arrangement of Elements of Two Distinct Types 
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When a set contains only elements of two distinct types, type (1) consists of k elements and type 
(2) consists of (n-k) elements, then the number of different arrangements of all the elements in 
the set is given by the  binomial coefficient. Suppose, for example, that we have k ones and (n-

k) zeros to be arranged in a row, then the number of binary numbers that can be formed is ¸̧
¹

·
¨̈
©

§
k
n

. If n = 4 and k = 1, then the possible binary numbers are (0001, 0010, 0100, 1000). 
 
Exercise: How many different binary numbers of five digits can be formed from the numbers 
1, 0? List these numbers. 
 
Exercise: How many different binary numbers of five digits can be formed from the numbers 
1, 0 such that each number contains two ones? List these numbers. 
 
Exercise: In how many ways can a group of five persons be seated in a row of 10 chairs? 
 
The Multinomial Coefficient: 
The number of ways to arrange n items of which n1 are of one type, n2 of a second type, …, nk 

of a k'th type is given by  
!!...!

!
.. 2121 kk nnn

n
nnn

n
N  ¸̧

¹

·
¨̈
©

§
  

 
 

- Comments: Stirling's formula 
Computing n! can be approximated by:  n -1/2n e n 2 ~ n! �S  
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Problem Set (1) 
Fundamental Concepts of Probability 

 
1) Let A and B denote two events defined over a sample space S. Suppose it is given that 
P(AUB) = 0.76 

a. If A and B are mutually exclusive events with > @ 45.0 AP , then what is P[B]? 
b. Suppose, instead, that A and B are independent events with > @ 12.0/  ABP ,. What is 

> @AP ? 
c. If it is  given that > @ 30.0 AP  and that > @ 60.0/  ABP , what is P[B]? 

 
2) In a certain lot of personal computers, it is known that 1 % have some minor defect as they 
come off the production line. They are put through a test procedure, which detects any defect 
98 % of the time if a defect is really present, and indicates a defect 1 % of the time even 
though there is none present. What is the probability that 

a. a computer will be classified defective as a result of the test procedure? 
b. a computer is in fact defective if the test indicates that it is defective? 

 
3) A sample space consists of three events, A, B and C. If P(Ac) = 0.5, and P(A∩B) = 0.25, 
P(BUC) = 0.75. The pair of events (A and B), (B and C) are independent. Events A and C are 
mutually exclusive. Find the followings: 

a. Probability that exactly one event will occur. 
b. P(B/A) 

 
4) Consider the following systems made up of independent components. The probability that 
each component functions is indicated in the figures. 

a. Find the probability that the systems work properly (system reliability). 
b. Is it possible to increase the reliability up to 99.5% for the system in (b) by adding 

more components in the parallel connection? 
 
 
 
 
                  
         
 
 
       (a)          (b) 
 
 5) Items in a production line have to pass two successive quality control tests. If the 
probability of producing items of high quality is 0.95, the probability of misclassifying the 
items through the first and second tests is 0.05 and 0.02 respectively. 

a. Find the percentage of items classified as high quality. 
b. If an item is classified as high quality, what is the probability that it came out of the 

production line as high quality? 
 
6) An irrigation well is to be drilled in the area shown in the figure. The probability of 
obtaining water for each sub-area A, B and C is 0.8, 0.1 and 0.3 respectively. The probability 
of selecting any of the three sub-areas is proportional to the area 

a. Find the probability of obtaining water. 
b. If no water was obtained, what is the probability that the well was drilled in area C? 

A 
0.9 

C 
0.85 

B 
0.8 

D 
0.9 

B 
0.85 
 

A 
0.9 

C 
0.9 
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7) An urn contains colored balls:  4 Red balls and 6  Green balls.  Suppose that three balls are 
drawn from this urn. 

a. If the three balls are drawn one after another without replacement, what is the 
probability that the colors observed will be Red, Green in this order? 

b. If the three balls are drawn one after another with replacement, what is the 
probability that all three of the selected balls will be of the same color? 

c. If the three balls are drawn simultaneously from this urn (thus without 
replacement), what is the probability that the selected balls will all be of the same 
colors? 

 
8) Prove that a set with n elements has 2n subsets. 
 
9) For a storm-sewer system, estimates of annual maximum flow rates (AMFR) and their 
likelihood of occurrence [assuming that a maximum of 12 cubic feet per second, cfs, is 
possible] are given as: 

Event A: (5 d AMFR d 10 cfs)  P(A)  = 0.6 
Event B: (8 d AMFR d 12 cfs)  P(B) = 0.6 
Event C=A�B     P(C) = 0.7 

Determine P (8 d AMFR d 10 cfs), the probability that AMFR is between 8 and 10 cfs. 
 
10) Given that P(A) = P(B) = P(C) = ¼, P(A∩B) = P(C∩B) = 0, P(A∩C) = 1/8, find 

a. the probability that at least one of the events A, B, or C occurs 
b. P(AUBUC) 
c. the probability that exactly one even occurs 

 
11) A box contains three coins. One coin is two-headed, a second is fair, and the third is biased 
with p being the probability of getting a head. A coin is chosen at random from the box and 
flipped once 

a. What is the probability that the flip results in a head? 
b. Suppose that the flip yields a head, what is the probability that the chosen coin is the 

biased one? 
 
12) An experiment is independently repeated five times. The probability of a success in every 
trial is 0.5, find the probability of obtaining three consecutive successes. 
 
13) An experiment is independently repeated until a success is obtained for the first time. 
What is the probability that it will take five trials for that to happen assuming that the 
probability of a success in each trail is p. 
 
14) A motor drives an electric generator. During a 30-day period, the motor needs repair with 
probability 8% and the generator, independently of the motor, needs repair with probability 
4%. What is the probability that during the given period, the entire apparatus will need repair? 

 

         R                               B 
    
   A         C 

3
R 
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15) Assume that the reaction time of a driver over the age of 70 to a certain visual stimulus is 
described by a continuous probability function of the form xxexf � )( ,  x>0, where x is 
measured in seconds. Let A be the event “Driver requires longer than 1.5 seconds to react”. 
Find P(A). 
 
16) One model to describe the mortality is 22 )100()( tkttf � , 0 ≤ t ≤ 100, where t describes 
the age at which a person dies. 

a. Find k 
b. Let A be the event “Person lives over 60”. Find P(A) 
c. What is the probability that a person will die between the age of 80 and 85 given that 

the person has lived to be at least 70? 
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� Definition 
A real-valued function whose domain is the sample space is called a random variable (r.v). 

- The random variable is given an uppercase letter X, Y, Z, … while the values assumed by this 
random variable are given lowercase letters x, y, z, … 

- The whole idea behind the r.v is a one to one mapping from the sample space on the real line 
via the mapping function X(s). 

- Associated with each discrete r.v (X) is a Probability Mass Function P(X = x). This density 
function is the sum of all probabilities associated with the outcomes in the sample space that get 
mapped into (x) by the mapping function (random variable X). 

- Associated with each continuous r.v (X) is a Probability Density Function (pdf) fX(x).This fX(x) 
is not the probability that the random variable (X) takes on the value (x), rather fX(x) is a 
continuous curve having the property that: 

b

X
a

P(a X b)  f ( ) dxxd d  ³  

� Definition: 
The cumulative distribution function of a r.v (X) defined on a sample space (S) is given by: 
FX(x) = P{X d  x} 
 

- Properties of FX(x) 
1- FX(– ∞) = 0 
2- FX(∞) = 1 
3- 0 d  FX(x) d  1 
4- FX(x1) d  FX(x2)  if  x1 d  x2 
5- FX(x+) = FX(x) function is continuous from the right 
6- P{x1 d  X d  x2} = FX(x2) – FX(x1) 
 

 
EXAMPLE (3-1): 

A chance experiment has two possible outcomes, a success with probability 0.75 and a 
failure with probability 0.25. Mapping function (random variable X) is defined as: 
x = 1     if outcome is a success 
x = 0     if outcome is a failure 
 
SOLUTION: 

P(X < 0) = 0       ;       P(X d  0) = 0.25        ;        P(X < 1) = 0.25      ;        P(X d  1) = 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  F            
S 

0 1 

0.25 

0.75 
P(X = x) 

Probability Mass Function 

Real Line x 0 1 

0.25 

0.75 

P(X  x) 

1.0 

Cumulative Distribution Function 

x 
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EXAMPLE (3-2): 

Let the above experiment be conducted three times in a row. 
a- Find the sample space. 
b- Define a random variable (X) as: X = number of successes in the three trials. 
c- Find the probability mass function P(X = x). 
d- Find the cumulative distribution function FX(x) = P{X d  x} 

 

SOLUTION: 

In the table below we show the possible outcomes and the mapping process: 

Sample Outcome P(si) x P(X = x) 
F     F     F (0.25)3 0 (0.25)3 = 0.015625 
F     F     S (0.75) (0.25)2 

1 3 x (0.75) (0.25)2 = 0.140625 S     F     F (0.75) (0.25)2 
F     S     F (0.75) (0.25)2 
S     S     F (0.75)2 (0.25) 

2 3 x (0.75)2 (0.25) = 0.421875 S     F     S (0.75)2 (0.25) 
F     S     S (0.75)2 (0.25) 
S     S     S (0.75)3 3 (0.75)3 = 0.421875 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Binomial Distribution: (n) = number of trials  ; (x) number of successes in (n) trials 
 

F F 
F F 
S 

S F 
S S 

F S 
S 

S F 

0 1 

P(X = 0) 
0.015625 

Probability 
 Mass  

Function 

Real Line x 
2 3 

P(X = 1) 
0.140625 

P(X = 2) 
0.421875 

P(X = 2) 
0.421875 

0 1 

P(X = 0) 
= 0.015625 

Cumulative  
Distribution  

Function 

x 
2 3 

P(0) + P(1) 
= 0.15625 

P(0) + P(1) + P(2) 
= 0.578125 

P(0) +P(1)+(2) + P(3)   
= 1.0 

FX(x) = P{X  x} 
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EXAMPLE (3-3): 

Suppose that 5 people including you and your friend line up at random. Let (X) denote the 
number of people standing between you and your friend. Find the probability mass function 
for the random variable (X). 
 

SOLUTION: 

Number of different ways by which the 5 people can arrange themselves = 5! 
This is the total number of points in the sample space. 

Let (A) denote you, 
      (B) denote your friend. 
The random variable (X) assumes four possible values 0, 1, 2, 3 as shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Any Sequence similar to what is shown can be done in:  N N
people 

other  the
friend     

your  andyou  

 ! 3   ! 2 u  

4.0
!5

3!  2!  4  0)  P(X  
uu

   

3.0
!5

3!  2!  3  1)  P(X  
uu

   

2.0
!5

3!  2!  2  2)  P(X  
uu

   

1.0
!5

3!  2!  1  3)  P(X  
uu

   

    
 
 
 
 
 
           
 

` 3)  (X    B O O OA 

2)  (X    
B O OA  O
O B O OA 

1)  (X    
B OA  O O
O B OA  O
O O B OA 

0)  (X    

BA  O O O
O BA  O O
O O BA  O
O O O BA 

 �

 �
¿
¾
½

 �
°
¿

°
¾

½

 �

°
°
¿

°
°
¾

½

 

 

0 1 

0.4 

0.2 

fX(x) 

0.1 

Probability Mass Function 

x 

0.3 

2 3 
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EXAMPLE: 

A chance experiment consists of flipping a fair coin twice. The outcome of the coin is 
independent from trial to trial. The profit, X, is a random variable, that is related to the 
experiment outcome as follows: 
X = 10 if no heads appear 
X = 40 if one head appears 
X = 100 if two heads appear 
 
Find the probability mass function of X 
 

SOLUTION 

25.0)5.0)(5.0(P(T)P(T)P(TT)  10)  P(X      ;  
 

5.0)5.0)(5.0(2P(TH)P(HT)  40)  P(X   �   
 

25.0)5.0)(5.0(P(HH)  100)  P(X      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           

� Continuous Random Variables and Distribution: 
- Definition: 

A random variable and its distribution are called of continuous type if the corresponding 
cumulative distribution function FX(x) can be given by an integral of the form: 

³
f

 
x

-
XX du (u)  (x)F f  

where fX(x) is the probability density function related to FX(x) by: 

(x)F
dx
d  (x) XX  f  

- Properties of fX(x) 
1- fX(x) t  0       ;  nonnegative 

2- ³
f

f-
X dx (x)f  = 1 

3- P{x1dXd x2}= ³
2

x1
X du (u)

x

f  ;  Probability is the area under the fX(x) curve between x1 and x2. 

 

10 40 

0.25 0.25 

P(X=x) 

Probability Mass Function 

x 

0.5 

100 
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EXAMPLE (3-4): 

Let (X) have the pdf:    fX(x) = 0.75 (1 – x2)   ;   {-1 d  x d  1} 

1- Verify that fX(x) is indeed a valid pdf. 

2- Find: 
a- FX(x)  

b- P{
2
1

� dX d
2
1 } 

 

SOLUTION: 

1- ³
f

f-
X dx (x)f  = 1   Î   ³

1

0

2 dx ) x- (1 0.752  

     =  0.1)25.075.0(2
3
u0.75 -u  0.75(2

1

0

3

 � u  

2-a)   ³
f

 
x

-

2
X du )u - (1 0.75  (x)F  = 0.5 + 0.75x – 0.25 x3 

2-b)   P{
2
1

� dX d
2
1 } = ³

2
1

2
1-

2 du )u - (1 0.75   

                              = FX(
2
1 ) – FX(

2
1

� ) = 0.6875 

EXERCISE: 
 
Find x0 such that FX(x) = P{X d  x0} = 0.95 
 

SOLUTION: 

P{X d  x0} = 0.5 + 0.75x0 – 0.25 x03 = 0.95   Î   3x0 – x03 = 1.8   Î  x0 #  0.73 

 

x 

fX(x) 

FX(x) 

-1 1 

x 
-1 1 

0.75 

Probability Density Function 

Cumulative Distribution Function 

0.5 

1 
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� Mean and Variance of a Distribution: 
- Definition: 

The mean value or expected value of a random variable (X) is defined as: 
¦    P ) x P(X x  E{X}  iiX    if x is discrete 

³
f

f

  P
-

XX dx (x)f x  E{X}      if x is continuous 

 
- Definition: 

The variance of a random variable (X) is defined as: 
¦  P P V ) x P(X ) - (X  }) - E{(X  i

2
x

2
x

2
X  if x is discrete 

³
f

f

P P V
-

X
2

x
2

x
2
X dx (x)f ) -(x   }) - E{(X    if x is continuous 

2
XX   V V      is the standard deviation 

 
The variance is the measure of the spread of the distribution. 
 

- Definition: 
For any random variable (X) and any continuous function Y = g (X), the expected value of g(X) 
is defined as: 
 

¦   ) x P(X )g(x  E{g(X)} ii    if x is discrete 

³
f

f

 
-

X dx (x)f )x(g  E{g(X)}     if x is continuous 

 
- Theorem: 

Let (X) be a random variable with mean XP , then: 
2
X

22
X  - )E(X  P V  

Proof: 

³
f

f

P P V
-

X
2

X
2

X
2
X dx (x)f ) -(x   }) - E{(X   

³
f

f

P�P V
-

X
2
XX

22
X dx (x)f ) 2x - (x   

³³³
f

f

f

f

f

f

P�P V
-

X
2
X

-
XX

-
X

22
X dx (x)f  dx (x)fx 2 - dx (x)f x   

2
XXX

22
X   2 - )E(X  P�PP V  

2
X

22
X μ  -)E(X  σ   

 
Illustration: 

 

1. The center of mass for a system of particles of masses m1, m2 ..., mn placed at x1, x2 …, xn is:  

)m  x...... mxm(x 
m

1  x nn2211
i

cm �� 
¦

 

If we let m1 = p1, m2 = p2, …, then: 
nn2211cm p  x...... pxp x x ��   (The mean of a discrete distribution) 

 

2. If ρ(x)  is the density of a rigid body along the x-axis, then the center of mass is: 
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³ dx ρ(x)x 
M
1  xcm  

Where ³ dx ρ(x)  M  
Again, if ρ(x)  is replaced by fX(x), the pdf function, then: 

³ dx x   xcm (x)f X  is the mean of continuous distribution. 
 

Moment of Inertia: 
3. If the particles in (1) above rotate with angular velocity (w), then the moment of inertia is 

evaluated as: 
2
i

n

1  i
i  xm   I ¦

 

  

With mi replaced by pi, we have: 
2
i

n

1  i
i  xp   I ¦

 

  
 

4. If the rigid body in (2) rotates with angular velocity (w), then: 

³ dx ρ(x) x  I 2  Î  ³ dx  x  )E(x 22 (x)f X  
 

5. The variance  })μ - E{(X 2
X parallels the moment of inertia about the center of mass. 

“Recall the parallel axis theorem” 
I = Icm + M h2 

(x)Eσ )E(x 222 �  
 

 
EXAMPLE (3-5): 

In the kinetic theory of gases, the distance (x) that a molecule travels between collisions is 
described by the exponential density function 

0    x e  
λ
1  (x) λ

-x

! Xf  

a-  The mean free path defined as the average distance between collisions is calculated as: 

Mean Free Path = ³
f

  
0

X dx (x)   E{X}  μ Xfx  

                         
N/V d  π2

1  λdx e 
λ
1x  

2
0

λ
-x

  ¸
¹
·

¨
©
§ ³

f

 

Where (N/V) is the number of molecules per unit volume and (d) is the molecular diameter. 

b- If the average speed of a molecule is ν m/s, then the average collision rate is 

       Rate = 
λ
ν  

   



SINGLE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS CHAPTER III 

 -28- 

 
EXAMPLE (3-6): 

Maxwell’s Distribution Law: 
The speed of gas molecules follows the distribution: 

0  ν   e  ν 
T R  π2

M  π4  )( T R 2
ν M-

22
3 2

t¸
¹
·

¨
©
§ Qf  

Where  v   is the molecular speed 
  T  is the gas temperature in Kelvin 
  R  is the gas constant (8.31 J/mol.K) 
  M is the molecular mass of the gas 
a- Find the average speed, ν  
b- Find the root mean square speed vrms 
c- Find the most probable speed 

 

SOLUTION: 

a- ν  = E(v) ³
f

  
0 M π

T R 8  d )(  vvfv  

b- � �
M

T R 3   d  )(  }E{
0

22
rms

2    ³
f

vvfQQQ     Î   )E(  rms     ;    
M

T R 3 2
rms QQ    

c- The most probable speed is the speed at which )(Qf attains its maximum value. 
Therefore, we differentiate )(Qf with respect to (v), set the derivative to zero and solve 
for the maximum. The result is: 
 

       Most probable speed = 
M

T R 2  
 

Root    Î        
Mean   Î  E(.) 
Square Î  v2 
Î )E(  rms 2Q  

 
Exercise  
The radial probability density function for the ground state of the hydrogen atom (the pdf of 
the electron position from the atom) is given by 

arer
a

rf /22
3

4)( �  for r > 0 

where a is the Bohr radius (a = 52.9 pm). 
 

a. What is the distance from the center of the atom that the electron is most likely to be 
found? 

b. Find the average value of r?, (the mean distance of the electron from the center of the 
atom). 

c. What is the probability that the electron will be found within a sphere of radius a 
centered at the origin? 

 
- Theorem: 

Let (X) be a random variable with mean Xμ  and variance 2
XV .  

Define Y = aX + b ; (a) and (b) are real constants, then: 

f (v) 

v 
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b   a   xY �P P  ………… (a) 
2
X

22
Y  a  V V   ………… (b) 

 

Proof: 
a-   b}  E{aX  μY �  

          ³
f

f

� 
-

X dx (x)f b) ax(  

         ³³
f

f

f

f

� 
-

X
-

X dx (x)fb  dx (x)fx a  Î   b  a    xY � PP  

b-  }) - E{(Y  2
Y

2
Y P V  

           }b)]  (a - b) E{[(ax  2
X �P�     })] -E{[a(x    2

XP  
           }) -E{(x a 2

X
2 P              Î   2

X
22

Y σ a  σ   
 

 
EXAMPLE (3-7): 

Find the mean and the variance of the binomial distribution considered earlier (Example 3-
2) with n = 3 and P(S) = 0.75 
 

SOLUTION: 

Mean = ¦    P ) x P(X x  E{X}  iiX  
 

 
 
 
 
 
 

 
¦  ) x P(X x ii  = 2.25 = 3 x 0.75  
Î  pn   E(X)    = number of trials x probability of a success 
 

Variance = 222
X [E(X)] - )E(X   V     ;     ¦   ) x P(X x  }E{X i

2
i

2  
 
 
 
 
 
 
 

 
0.5625   (2.25) 5.625 -  σ 22

X    = 3 x 0.75 x 0.25 
= number of trials x probability of success x probability of Failure  Î p)-(1 p n  σ 2

X   
 

 x P(X = x) x . P(X = x) 
0 0.015625 0 
1 0.140625 0.140625 
2 0.421875 0.843750 
3 0.421875 1.265625 

∑ 2.25 

x x2 P(X = x) x2 . P(X = x) 
0 0 0.015625 0 
1 1 0.140625 0.140625 
2 4 0.421875 1.687500 
3 9 0.421875 3.796875 

∑ 5.625 
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EXAMPLE (3-8): 

Find the mean and the variance of the uniform distribution shown in the figure. 
 
 

SOLUTION: 

 

Mean   = ³
f

f

  P
-

XX dx (x)f x  E{X}   

              ³
�

  P
b

a
X 2

ba dx  
a - b

1 x   

Var(X) = 222
X [E(X)] - )E(X   V  

              ³
��

 
�

  
b

a

2233
22

3
baba

a)-3(b
ab dx  

a - b
1 x }E{X  

              
12

)ab(
2

ba - 
3

baba  
2222

2
X

�
 ¸

¹
·

¨
©
§ ���

 V  

 

 
EXAMPLE (3-9): 

Let 
X

X-X
  Z
V
P

  (Standardized r.v.), show that the mean of (Z) is zero and the variance is 1. 

SOLUTION: 

Z can be written as:  baXX  Z
X

X

X

� 
V
P

�
V

  

Mean   = 0)}(E)X(E{1 )}X{(E1  E{Z}  X
X

X
X

Z  P�
V

 P�
V

  P  

Var(Z) = 11  2
X2

X

2
Z  V

V
 V              

 

 
EXAMPLE (3-10): 

Let X be a discrete random variable with the following pmf: P(X 0) 0.4 , P(X 1) 0.3  
P(X 2) 0.2 ,P(X 3) 0.1 . Find the mean and variance of X. 
SOLUTION: 
 ¦    P ) x P(X x  E{X}  iiX =0(0.4)+1(0.3)+2(0.2)+3(0.1) = 1 

 ¦   ) x P(X x  }E{X i
2
i

2 = 2 20(0.4) 1(0.3) (2) (0.2) (3) (0.1) 2  

Variance = 222
X [E(X)] - )E(X   V  = 2 – 1= 1 

 
- Some useful properties of expectation: 
- aE{a}      ;  a is a constant 
- E{g(X)} a  g(X)} E{a   ;  a is a constant 
- (X)}E{g (X)}g E{  (X)}g (X)g E{ 2121 � �  

 
 
 

a b 

 

fX(x) 

x 
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- The median and the mode: 

- Definition: 

For a continuous random variable (X), the median of the distribution of (X) is defined to be a 
point (x0) such that: 

) x P(X  ) x P(X 00 t �  

- Definition: 

If a random variable (X) has a pdf fX(x), then the value of (x) for which fX(x) is maximum is 
called the mode of the distribution. 
 
 

 
EXAMPLE (3-11): 

Find the median and the mode for the random variable X with pdf:  
2

( ) 2 x
Xf x xe , x >0 

SOLUTION: 
The median is a point (𝑥0) such that 

∫ 2𝑥𝑒−𝑥2𝑑𝑥 =
𝑥0

0
∫ 2𝑥𝑒−𝑥2𝑑𝑥 = 1/2
∞

𝑥0
 

 
(𝑥0) is the solution to 

2
0 0.5xe  which results in (𝑥0) = 0.832554 

 
To find the mode we differentiate ( )Xf x  with respect to x and set the derivative to zero 

2 22( )
2 4 0x xdf x
e x e

dx
, the solution of which is 1/ 2x . 

 
� Common Discrete Random Variables: 

I. The Binomial Distribution 
- Definition:  

A random experiment consisting of (n) repeated trials such that: 

a- The trials are independent. 
b- Each trial results in only two possible outcomes, a success and a failure. 
c- The probability of a success (p) on each trial remains constant  

Is called a binomial experiment. 

The r.v (X) that equals the number of trials that results in a success has a binomial distribution 
with parameters (n) and (p). 
 
The probability mass function of (X) is: 

xnp
x
n

xXP ��¸̧
¹

·
¨̈
©

§
  )1(p )( x  ;   x = 0, 1, 2, ...... , n 

Theorem: 

If (X) is a binomial r.v with parameters (n) and (p), then: 

pn   E(X)X   P  

 p)-(1 pn   Var(X)  2
X   V  
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Proof: 
First we show that pn  X  P  

¦
 

��¸̧
¹

·
¨̈
©

§
  

n

x

xnp
n

x
0

x
X )1((p) 

 x
  E(X)P = ¦

 

��
�

n

x

xnp
xnx

nx
1

x )1((p) 
)!(!

!  

 = ¦
 

��
��

n

x

xnp
xnx

n
1

x )1((p) 
)!()!1(

!  

Let u= x -1. In terms of u, the summation above can be expressed as 

¦
�

 

��� �
��

�
 

1

0

11u
X )1((p) 

)!1(!
)!1( 

n

u

unp
unu

nnP  

Now substitute m = n-1, and take n and p out of the summation we get 

¦
 

��
�

 
m

u

ump
umu

mnp
0

u
X )1((p) 

)!(!
! P  

 
The summation on the right hand side equals 1 since this is the summation of probabilities of a 
binomial distribution with parameters m and p. The mean value of X is then 

 X np P  
This result simply states that the mean value of a binomial random variable with parameters (n, 
p) equals the number of the times the experiment is repeated times the probability of a success 
on each trial. 
 
To find the variance of X we find it convenient to first find E(X(X-1)) as follows: 

¦
 

��¸̧
¹

·
¨̈
©

§
� 

n

x

xnp
n

xx
0

x )1((p) 
 x

)1(  1))-E(X(X = ¦
 

��
�

�
n

x

xnp
xnx

nxx
2

x )1((p) 
)!(!

!)1(  

= ¦
 

��
���

�
n

x

xnp
xnxxx

nxx
2

x )1((p) 
)!()!2)(1(

!)1(  

= ¦
 

��
��

n

x

xnp
xnx

n
2

x )1((p) 
)!()!2(

!  

As we did before, let u= x-2 or x = u+2. The summation above becomes 

= ¦
�

 

��� �
��
��2

0

22u )1((p) 
)!2(!
)!2)(1( 

n

u

unp
unu

nnn  

Next let m = n-2 and take out of the summation n, (n-1) and p2 , we get 

= ¦
 

��
�

m

u

ump
umu

m
0

u2 )1((p) 
)!(!

!1)p-n(n  

Again, the summation on the right hand side equals 1 since it represents the sum of probabilities 
for a binomial distribution with parameters m and p. Therefore, 

21)p-n(n 1))-E(X(X   
But 

E(X)-)E(XX)-E(X 1))-E(X(X 22    
Or, 1))-E(X(XE(X))E(X 2 �  
From which we conclude that: 

222
X

22
x )(1)p-n(nnp)(-)E(X np��  PV  

This simplifies to 
p)-np(12

x  V  
which concludes the proof. 
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EXAMPLE (3-12): 

Suppose that the probability that any particle emitted by a radioactive material will penetrate 
a certain shield is 0.02. If 10 particles are emitted. Find the probability that: 
 
a- Exactly one particle will penetrate the shield. 
b- At least two particles will penetrate the shield. 
SOLUTION: 

   xnx p)(1p 
x
n

x)P(X ��¸̧
¹

·
¨̈
©

§
      ;   p = 0.02   ;   n = 10 

a- 1101 )02.01((0.02) 
1 

10
)1X(P ��¸̧

¹

·
¨̈
©

§
   

b- ¦
 

��¸̧
¹

·
¨̈
©

§
 t

10

2

10x )02.01((0.02) 
 x
10

)2(
x

xXP  

    Also: P(X = 0) + P(X = 1) + P(Xt 2) = 1 
    Î    P(Xt 2) = 1 – [P(X = 0) + P(X = 1)] 

    »
¼

º
«
¬

ª
�¸̧

¹

·
¨̈
©

§
��¸̧

¹

·
¨̈
©

§
� t �� 11010100 )02.01((0.02) 

1 
10

)02.01((0.02) 
0 

10
1)2X(P             

 
EXAMPLE (3-13): 

Consider the parallel system shown in the figure. The system fails if at least three of the five 
machines making up the system fail. Find the reliability of the system assuming that the 
probability of failure of each unit is 0.1 over a given period of time. 
 
SOLUTION: 

Let (X) be the number of machines in failure.  
(X) has a binomial distribution. 

P(system fails) = P(number of machines in failure 3 t ) 
                         = 3) P(x t   

                        5423 (p) 
5
5

p)(1(p) 
4
5

p)(1(p) 
3
5

 ¸̧
¹

·
¨̈
©

§
��¸̧

¹

·
¨̈
©

§
��¸̧

¹

·
¨̈
©

§
  

P(system fails) = 0.00856  ;  when p = 0.1 

Î   Reliability = 1 – P(Failure) = 0.99144 

 
EXAMPLE (3-14): 

The process of manufacturing screws is checked every hour by inspecting 10 screws selected 
at random from the hour’s production. If one or more screws are found defective, the 
production process is halted and carefully examined. Otherwise the process continues. From 
past experience it is known that 1% of the screws produced are defective. Find the probability 
that the process is not halted. 
 
SOLUTION: 

Let (X) be the number of defective items in the sample.  
P(system is not halted) = P(X = 0) = P(number of defective items is zero) 
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                                     0 - 100 p)(1(p) 
0 

10
 �¸̧

¹

·
¨̈
©

§
  

                                     9043.0)99.0((0.99)(0.01) 
0 

10
 100 - 100   ¸̧

¹

·
¨̈
©

§
  

 
 
EXAMPLE (3-15): 
Thirty students in a class compare birthdays. What is the probability that: 
a- 5 of the students have their birthday in January? 
b- 5 of the students have their birthday on January 1st? 
c- At least one student is born in January? 

 
SOLUTION: 

a- 
12
1  P(success)    ;   

12
11P(failure)  ,     Number of trials (n) = 30 

Required number of successes (k) = 5 
k -n k )p(1(p) 

k
n

   trials)30in  successes P(5 �¸̧
¹

·
¨̈
©

§
  

5 - 305

12
11

12
1 

5 
30

   trials)30in  successes P(5 ¸
¹
·

¨
©
§

¸
¹
·

¨
©
§
¸̧
¹

·
¨̈
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§
 

 

255
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12
1 

5 
30
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¸
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b- 

365
1  P(success)    ;   

365
364P(failure)  ,     Number of trials (n) = 30 

Required number of successes (k) = 5 

k -n k )p(1(p) 
k
n

   trials)30in  successes P(5 �¸̧
¹

·
¨̈
©

§
  

255

365
364

365
1 

5 
30
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¸
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c- 
12
1 P(success)    ;   

12
11P(failure)   

9265.00735.01
12
11

12
1 

0 
30

1  0)  P(X - 1  1)P(X
0 - 300
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EXAMPLE (3-16): 
The captain of a navy gunboat orders a volley of 25 missiles to be fired at random along        
a 500-foot stretch of shoreline that he hopes to establish as a beach head. Dug into the beach 
is a 30-foot long bunker serving as the enemy's first line of defense.  
a. What is the probability that exactly three shells will hit the bunker? 
b. Find the number of shells expected to hit the bunker. 
 
SOLUTION: 

06.0
500
30P(success)     

k -n k )p(1(p) 
k
n

  shells) 25in  successes P(3 �¸̧
¹

·
¨̈
©

§
  

For p = 0.06 and n = 25 
3 - 253 )06.0(1(0.06) 

3 
25

  shells) 25in  successes P(3 �¸̧
¹

·
¨̈
©

§
  223 (0.94)(0.06) 

3 
25

  ¸̧
¹

·
¨̈
©

§
               

500 ft 
 
              30 ft 
 



SINGLE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS CHAPTER III 

 -35- 

b. E(x) = n p = 25(0.06)= 1.5.   
 
 

II. The Geometric Distribution 

Let the outcome of an experiment be either a success with probability (p) or a failure with 
probability (1 – p). Let (X) be the number of times the experiment is performed to the first 
occurrence of a success. Then (X) is a discrete random variable with integer values ranging from 
one to infinity. The probability mass function of (X) is: 
 

P(S)P(F)  S) F . . . F F F FP(  x)P(X 1 -x 

1 -x 

   �
�	�  

  = (1 – p)x–1 (p)   ;  x = 1, 2, 3, …… 

- Theorem: 

The mean and the variance of (X) are: 

p
1  E(X)μX    

2
2
X p

p-1  Var(X)  σ    

 
EXAMPLE (3-17): 
Let the probability of occurrence of a flood of magnitude greater than a critical magnitude in   a 
given year be 0.02. Assuming that floods occur independently, determine the “return period” 
defined as the average number of years between floods. 
 
SOLUTION: 
(X) has a geometric distribution with p = 0.01 

 years 50  
0.02

1  
p
1  E(X)μX      

 
 
EXAMPLE (3-18): 

Show that the mean value of the geometric distribution = 1/p and the variance is 2
X 2

1-p
σ   

p
 , 

where p is the probability of a success. 
SOLUTION: 

 1 2 3
X

1
E(X)   p(1 ) p{1+2(1-p)+3(1-p) 4(1 ) ...}x

x
x p pP

f
�

 

  �  � � �¦  

Recall the geometric series 
2 3 11 ...

1
u u u

u
� � � �  

�
 

Differentiating both sides with respect to u, we get 
2

2

11 2 3 ...
(1 )

u u
u

� � �  
�

 

Making use of this result (with u =1-p), the expected value of X becomes 

X 2

1 1 p
(1-(1-p)) p

P    

To find the variance, we first find E(X(X-1)) as  
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1 2 3

1
E(X(X-1))  ( 1) p(1 ) {2(1)(1 ) 3(2)(1 ) 4(3)(1 ) ...}x

x
x x p p p p p

f
�

 

 � �  � � � � � �¦  

1 2E(X(X-1))  p(1-p){2(1)+3(2)(1 ) 4(3)(1 ) ...}p p � � � �  
Differentiating the geometric series twice with respect to u 

2
3

22 3(2) 4(3) ...
(1 )

u u
u

� �  
�

 

Making use of this result (with u=1-p), we get 

3 2

2 2(1 )E(X(X-1))  p(1-p)
p

P
p
�

   

But, E(X)-)E(XX)-E(X 1))-E(X(X 22    
Or, 1))-E(X(XE(X))E(X 2 �  
From which we conclude that: 

2 2 2
x X 2 2 2

1 2(1 ) 1 (1 )E(X )-( ) p p
p p p p

V P � �
  � �   

 
 
Hyper-geometric Distribution 
Consider the sampling without replacement of a lot of (N) items, (k) of which are of one type 
and (N – k) of a second type. The probability of obtaining (x) items in a selection of (n) items 
without replacement obeys the hyper-geometric distribution: 

¸̧
¹

·
¨̈
©

§

¸̧
¹

·
¨̈
©

§
�
�

¸̧
¹

·
¨̈
©

§

  

n
N

 
xn
kN

 
x
k

x)P(X  

x = 0 , 1 , 2 ,  ……… , min(n , k) 
 
NOTE: 

N
kp   is the ratio of items of type (I) to the total population 

 
- Theorem: 

The mean and the variance of the hyper-geometric random variable are: 

p n
N
kn   E(X)X    P  

¸
¹
·

¨
©
§
¸
¹
·

¨
©
§
¸
¹
·

¨
©
§   V

1 - N
n - N 

N
k - N 

N
kn   

1) -(N N
n) - (N k) - (Nk n   Var(X)  2

2
X  

                  ¸
¹
·

¨
©
§ ¸

¹
·

¨
©
§
¸
¹
·

¨
©
§
¸
¹
·

¨
©
§ 

1 - N
n - N p) - (1 pn   

1 - N
n - N 

N
k - 1 

N
kn    

 
EXAMPLE (3-19): 

Fifty small electric motors are to be shipped. But before such a shipment is accepted, an 
inspector chooses 5 of the motors randomly and inspects them. If none of these tested motors 
are defective, the lot is accepted. If one or more are found to be defective, the entire shipment 

Type I          Type 
II 
 

    k               (N – k) 
 
 

 (N objects) 

Type I      Type 
II 

Sample of size (n) 
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is inspected. Suppose that there are, in fact, three defective motors in the lot. What is the 
probability that the entire shipment is inspected? 
 
SOLUTION: 

Let (X) be the number of defective motors found, then (X) assumes the values (0 , 1 , 2 , 3). 
P(entire shipment is inspected) = P(X t  1) = 1 – P(X = 0) 

¸̧
¹

·
¨̈
©

§

¸̧
¹

·
¨̈
©

§
�¸̧

¹

·
¨̈
©

§

  

5
50

 
x5

47 
 

x
3

)xX(P  

¸̧
¹

·
¨̈
©

§

¸̧
¹

·
¨̈
©

§
¸̧
¹

·
¨̈
©

§

  

5 
50

 
5 
47

 
0
3

)0X(P  = 0.72   (The lot is accepted) 

P(X t  1) = 1 – 0.72 = 0.28          
 
 

EXAMPLE (3-20): 

A committee of seven members is to be formed at random from a class with 25 students of 
whom 15 are girls. Find the probability that: 
 

a- No girls are among the committee 
b- All committee members are girls 
c- The majority of the members are girls 

 
SOLUTION: 

Let (X) represents the number of girls in the committee. 

a- 

¸̧
¹

·
¨̈
©

§

¸̧
¹

·
¨̈
©

§
¸̧
¹

·
¨̈
©

§

  

7 
25

 
7 

10
 

0 
15

0)P(X   

b- 

¸̧
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©
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¸̧
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·
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¸̧
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·
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©
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7 
25

 
0 

10
 

7 
15

)7P(X  

c- P(majority are girls) = P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) 

¦
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¸̧
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7

4

7 
25

 
x-7 

10
 

 x
15

x

 

 
Theorem: 

For large (N), one can use the approximation: 
xnx )P1(P 

x
n

)xX(P ��¸̧
¹

·
¨̈
©

§
#    ;   

N
kP   
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This approximation gives very good results if 1.0
N
n
d , for the example above: 

06.0
50
3P         Î      050 )06.01((0.06) 

0
5

)0( ��¸̧
¹

·
¨̈
©

§
# XP  = 0.733 

 
III. Poisson Distribution 
- Definition:  

A discrete random variable (X) is said to have a Poisson distribution if it has the following 
probability mass function: 

!
e )( b-

x
bxXP

x

   ;   x = 0 , 1 , 2 , ………  where (b) is a positive constant. 

To verify that this is, indeed, a valid probability mass function we need to show that: 
 

¦
f

 

 
0

b- 1
!

e 
x

x

x
b  

The left hand side is expanded as: 

...
!3!2!1

1e
!

e 
32

0

b-

0

b- ���� ¦¦
f

 

f

 

bbb
x
b

xx

x

 

The summation on the right side is easily recognized as the power series expansion of be . 
Therefore, 

1ee
!

e bb-

0

b-   ¦
f

 x

x

x
b .  

 
- Theorem: 

If (X) is a Poisson r.v with parameter (b), then its mean and variance are: 
b E(X)X   P  

b  Var(X)  2
X   V  

 
Proof: 
First we find the mean value of X. The method we follow is quite similar to the one used to find 
the mean and variance of the binomial distribution. 
 

¦¦
f

 

f

 

  
1

b-

0

b-
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xe
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xeE(X) 
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x
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x
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xx
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Let u = x-1 ( or x = u + 1), and change the index of the summation from x to u. The result is 

¦¦
f

 

f

 

�

  
0

b-

0

1
b-

!
e

!
eE(X) 

u

u

u

u

u
bb

u
b  

As was shown earlier, the summation on the right side equals 1. Therefore, 
b E(X)  

which completes the proof.  
 
To find the variance, we first find E(X(X-1)) 
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f
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¦
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x
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Let u = x-2 in the above summation , or x = u + 2, then 

¦
f
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2
b-

!
e1))-E(X(X 

u

u

u
b = ¦

f

 0

b-2

!
e 

u

u

u
bb = 2 b  

But,  )()())1(( 2 XEXEXXE � �  
Or,  )())1(()( 2 XEXXEXE ��  
The variance of X can, therefore, be obtained as 

2222
X )())1(()( XX XEXXEXE PPV ��� �  

bbbb  �� 222
X V  

 
- Poisson Process:  

Consider a counting process in which events occur at a rate of �O� occurrence per unit time. Let 
X(t) be the number of occurrences recorded in the interval (0 , t), we define the Poisson process 
by the following assumptions: 
 

1- X(0) = 0 , i.e., we begin the counting at time t = 0. 
 

2- For non-overlapping time intervals (0 , t1) , (t2 , t3), the number of occurrences {X(t1) – X(0)} 
and {X(t3) – X(t2)} are independent. 
 

3- The probability distribution of the number of occurrences in any time interval depends only on 
the length of that interval. 
 

4- The probability of an occurrence in a small time interval ('t) is approximately (O�'t). 
 
 
 
 
Using the above assumptions, one can show that the probability of exactly (x) occurrences in 
any time interval of length (T) follows the Poisson distribution and, 
 

!x
)T(e )xX(P

x
T- OO    ;   x = 0 , 1 , 2 , 3 , ………  

- Theorem: 
Let (b) be a fixed number and (n) any arbitrary positive integer. For each nonnegative integer (x): 

!x
be)p1((p) 

x
n
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bxnx

n
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¹
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©

§
 ;  where  p = b/n 

 
 
EXAMPLE (3-21): 
Messages arrive to a computer server according to a Poisson distribution with a mean rate  
of 10 messages/hour. 
 
a- What is the probability that 3 messages will arrive in one hour. 
b- What is the probability that 6 messages will arrive in 30 minutes. 

 

SOLUTION: 
a-  O� �10 messages/hour    Î    T = 1 hour 

     
!x
)10(e

!x
)1  10(e )xX(P

x
10-

x
110-  

u
  u     ;    x = 0 , 1 , 2 , 3 , ……… 

t = 0 t1 t2 t3 

X(t1) X(t2) X(t3) X(t0) 
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! 3
)10(e )3X(P

3
10-   

b- �O� �10 messages/hour    Î    T = 0.5 hour 

     
!x
)5(e

!x

)
2
1  10(

e )xX(P
x

5-

x

2
110-

 
u

  
u

    ;    x = 0 , 1 , 2 , 3 , ……… 

     
! 6
)5(e )6X(P

6
5-   

 

 
EXAMPLE (3-22): 

The number of cracks in a section of a highway that are significant enough to require repair 
is assumed to follow a Poisson distribution with a mean of two cracks per mile.  
 

a- What is the probability that there are no cracks in 5 miles of highway? 
b- What is the probability that at least one crack requires repair in ½ miles of highway? 
c- What is the probability that at least one crack in 5 miles of highway? 

 
SOLUTION: 
a-  O� �2 cracks/mile        Î    T = 5 miles 

     
!x
)10(e

!x
)5  2(e )xX(P

x
10-

x
52-  

u
  u         ;    x = 0 , 1 , 2 , 3 , ……… 

     -10e )0X(P    
b- �O� �2 cracks/mile        Î    T = 5 miles  

     
!x

e
!x

)1(e
!x

)
2
1  2(

e )xX(P
1-x

1-

x

2
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u

  ;    x = 0 , 1 , 2 , 3 , ……… 

     1-

1x
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e - 1  0)]  P(X - 1[  
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e 1)P(X     t ¦
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c- O� �2 cracks/mile        Î    T = 5 miles 

     
!x
)10(e

!x
)5  2(e )xX(P

x
10-

x
52-  

u
  u         ;    x = 0 , 1 , 2 , 3 , ……… 
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EXAMPLE (3-23): 
Given 1000 transmitted bits, find the probability that exactly 10 will be in error. Assume that 

the bit error probability is
365
1 . 

SOLUTION: 
X: random variable representing number of bits in error. 
 Exact solution: 

365
1  error)P(bit      ;     Number of trials (n) = 1000 

Required number of bits in error (k) = 10 

k -n k )p(1(p) 
k
n

  10)  P(X �¸̧
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99010
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Approximate solution: 
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!x
be )xX(P

x
b-          ;  b = n p = 

365
1000  

365
1  1000  u  

! 10
be )10X(P

10
b-   

Exercise: 
 Perform the computation and compare the difference 

� Common Continuous Random Variables: 
I. Exponential Distribution: 
- Definition:  

It is said that a random variable (X) has an exponential distribution with a parameter O (O > 0) 
if (X) has a continuous distribution for which the pdf fX(x) is given as: 
 

x-
X e  )x(f OO  ; 0x t  

The cumulative distribution function is: 
x-

X e  -1 )x(F O  ; 0x t  
 
 
 
 
 
 
 
 
The exponential distribution is often used in a practical problem to represent the distribution of 
the time that elapses before the occurrence of some event. It has been used to represent the such 
periods of time as the period for which a machine or an electronic component will operate 
without breaking down, the period required to take care of a customer at some service facility, 
and the period between the arrivals of two successive customers at a facility. 
 
If the event being considered occurs in accordance with a Poisson process, then both the waiting 
time until an event will occur and the period of time between any two successive events will 
have exponential distribution. 
 
 
 
 
 
 

- Theorem: 

If the random variable (X) has an exponential distribution with parameter (O), then: 

𝜇𝑋 = 𝐸(𝑋) = ∫ 𝑥𝜆𝑒−𝜆𝑥𝑑𝑥 =
1
𝜆

∞

0
 

𝐸(𝑋2) = ∫ 𝑥2𝜆𝑒−𝜆𝑥𝑑𝑥 =
2
𝜆2

∞

0
 

𝜎𝑋2 = 𝐸(𝑋2) − 𝐸2(𝑋) =
1
𝜆2

 
 

x x 

 Occurrence of events 

 Time 
(t) 

  fX(x) 

x 

FX(x) 

x 
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Exercise  
The number of telephone calls that arrive at a certain office is modeled by a Poisson random 
variable. Assume that on the average there are five calls per hour. 

a. What is the average (mean) time between phone calls? 
b. What is the probability that at least 30 minutes will pass without receiving any 

phone call? 
c. What is the probability that there are exactly three calls in an observation interval 

of two consecutive hours? 
d. What is the probability that there is exactly one call in the first hour and exactly two 

calls in the second hour of a two-hour observation interval? 
 

 
EXAMPLE (3-24): 

Suppose that the depth of water, measured in meters, behind a dam is described by an 
exponential random variable with pdf: 

°̄

°
®


! 
 w. o              0    

0 x      e  
13.5

1
  (x)

13.5
-x

Xf  

There is an emergency overflow at the top of the dam that prevents the depth from exceeding 
40.6 m. There is a pipe placed 32.0 m below the overflow that feeds water to a hydroelectric 
generator (turbine). 
 
a- What is the probability that water is wasted though emergency overflow? 
b- What is the probability that water will be too low to produce power? 
c- Given that water is not wasted in overflow, what is the probability that the generator 

will have water to derive it? 
 
SOLUTION: 

a-  P(water wasted through emergency) = m) 40.6P(X t   ³
f

�  
40.6

313.5
 x-

e x d e 
5.13

1  

b- �P(water too low to produce power) = P(x < 8.6 m)       � � 47.0e - 1 637.0   �  

c-  P(generator has water to derive it / water is not wasted) = P(x > 8.6 / x < 40.6) 

     = 
40.6)P(x

40.6) x  P(8.6
40.6)P(x

40.6)  x  8.6P(x
�

��
 

�
�! � 504.0

e x d e 
5.13

1

xd e 
5.13

1

 40.6

0

313.5
 x-

6.40

8.6

13.5
 x-

 
 

 

³

³
�

 

 
II. Rayleigh Distribution: 

The Rayleigh density and distribution functions are: 
2 /2

( ) x b
Xf x xe

b
 ;  0x t  

  - 1  (x)X
b

-x2

eF   ;  0x t  
The Rayleigh pdf describes the envelope of white noise when passed through a band pass filter. 
It is used in the analysis of errors in various measurement systems. 
 

- Theorem: 
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4
πb E(X)μX      and    

4
π)-b(4  Var(X)  σ 2

X    

III. Cauchy Random Variable: 
This random variable has: 

22X x
/ )x(f
D
SD
�

 , ¸
¹
·

¨
©
§� �

DS
xtan1

2
1 )x(F 1

X  

 

Exercise: Prove that the mean and variance of the Rayleigh distribution are as given in the 

theorem above. 

Exercise: Find the mode and the median of the Rayleigh distribution 

Exercise: Find the mean and variance of the Cauchy distribution. 
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Gaussian (Normal) Distribution: 
- Definition:  

A random variable (X) with pdf: 

2
X

2
X

 2
) - x(

2
X

X e
  2

1 )x( V

P�

VS
 f   f��f� x  

has a normal distribution with parameters ( XP ) and ( 2
XV ) where f��f� x  and 02

X tV . 
Furthermore: 

X)x(E P  ;      2
X)x(Var V  

 
Infinite number of normal distributions can be formed by different combination of parameters. 
 
 
 
 
 
 
 
 
 
 
 
 

- Definition:  

A normal random variable with mean zero and variance one is called a standard normal random 
variable. A standard normal random variable is denoted as Z. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- Definition:  

The function Ф(z) = P{Z d  z} is used to denote the cumulative distribution function of a 
standard normal random variable: 

Ф(z) = du e 
 2

1z
2

u 2

³
f�

�

S
 

This function is tabulated for z t  0 
For z < 0 ; Ф(z) = 1 – Ф(–z) 

   

fX(x) 

x 

 

 

0 z 

fZ (z) 

z 

P1 ≠ P2 
V1 = V2 

P1 = P2 
V1 ≠ V2 

P1 ≠ P2 
V1 ≠ V2 
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0 1 

fZ (z) 

Ф(1) Ф(b) - Ф(a) 
a 
 

b 

Ф(-1) = 1 - Ф(1) 
-1 
 

1 
 Area = 1 - Ф(1) 

1 
 

-1 
 

Area = Ф(1) - Ф(-1) 

        = Ф(1) – [1 – Ф(1)] 

        = 2Ф(1) – 1 

z 

 
x - Scale 

        

z - Scale 
0 1 2 3 4 -4 -3 -2 -1 
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- Cumulative Distribution Function:  

P(X d  x) = dx e
  2

1 )x(F
x

-

 2
) - x(

2
X

X

2
X

2
X

³
f

V

P�

VS
  

Let ¸̧
¹

·
¨̈
©

§
 

X

X

σ
μ -x  u  Î  

X

dx du
V

  Î  dudx XV  

du e  
 2
1 )x(F X

x

-

2
u

2
X

X

X

X
2

V
SV

 ³
V
P�

f

�

  

Ф(z) due  
 2

1 
-

2
u2

³
f

�

S
 

z

 

Ф(z) ¸̧
¹

·
¨̈
©

§
) 

X

X

σ
μ - Z  

Therefore, we conclude that: 

1- P(X d  x0) = ¸̧
¹

·
¨̈
©

§
)

X

X0

σ
μ - x

  

2- P(x0 d  X d  x1) = ¸̧
¹

·
¨̈
©

§
)

X

X1

σ
μ - x

 – ¸̧
¹

·
¨̈
©

§
)

X

X0

σ
μ - x

   

 
 
EXAMPLE (3-25): 

Suppose the current measurements in a strip of wire are assumed to follow a normal 
distribution with a mean of 10 mA and variance 4 (mA)2. What is the probability that      
a measurement will exceed 13 mA? 

 
SOLUTION: 

X = current in mA 

¸
¹
·

¨
©
§ ¸̧

¹

·
¨̈
©

§
 

2
10 - X 

σ
μ - X

 Z
X

X  

¿
¾
½

¯
®


 ¸
¹
·

¨
©
§!¸

¹
·

¨
©
§  ! 1.5

2
10 - 13

2
10 - X ZP13)P(X  

^ ` )(11.5ZP13)P(X z)� ! !  Î From tables: 
                = 1 – 0.93319 = 0.06681 
 
 
 
 
 
 
 
 
 
 
 
 
 

fX(x) 

x 0 1.5 

fZ(z) 

z 
13 10 
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EXAMPLE (3-26): 

The diameter of a shaft in an optical storage drive is normally distributed with mean 0.25 
inch and standard deviation of 0.0005 inch. The specifications on the shaft are 0.25 ± 0.0015 
inch. What proportion of shafts conforms to specifications? 
 

SOLUTION: 
 

¿
¾
½

¯
®


¸
¹
·

¨
©
§��¸

¹
·

¨
©
§ 

��

0.0005
0.2500- 0.2515

0.0005
0.2500-0.2485P

2515).0XP(0.2485

Z
 

^ 3̀Z3P ���  

= Ф(3) – Ф(–3)  

= 2 Ф(3) – 1    Î From tables: 

= Ф(3) – Ф(–3) = (2 x 0.99865) – 1 = 0.9973 
 

 
 
EXAMPLE (3-27): 

Assume that the height of clouds above the ground at some location is a Gaussian random 
variable (X) with mean 1830 m and standard deviation 460 m. find the probability that clouds 
will be higher than 2750 m.  
 

SOLUTION: 
 

2750)P(X1 2750)P(X d� !  

¿
¾
½

¯
®


¸
¹
·

¨
©
§d� 

460
1830 - 2750ZP1  

)0.2ZP(1 d�  

= 1 – Ф(2.0)  Î From tables: 

= 1 – 0.9772  

0228.0 2750)P(X  !  

 
Exercise 
The tensile strength of paper is modeled by a normal distribution with a mean of 35 pounds 
per square inch and a standard deviation of 2 pounds per square inch. 

a. If the specifications require the tensile strength to exceed 33 lb/in2 , what is the 
probability that a given sample will pass the specification test? 

b. If 10 samples undergo the specification test, what is the probability that at least 9 
will pass the test? 

c. If 20 samples undergo the test, what is the expected number of samples that pass 
the test? 

 
Exercise 
The rainfall over Ramallah district follows the normal distribution with a mean of 600 mm and 

:area. Find 2deviation of 80 mm. The rainfall is distributed over 500 km a standard 

0.2515 
 

0.2485 0.25 
 

fX(x) 
 

fZ(z) 
 

3 
 

-3 0 
 

1830 
 

2750 
 

fX(x) 

x 

0 
 

2.0 
 

fZ(z) 
 

z 
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1. The probability of obtaining a rainwater volume less than 206 MCM (MCM = Million 
Cubic Meter) 

2. Find the mean and the standard deviation of the volume (V) of rainfall in MCM. 
3. Flooding condition will be considered if the rainfall is higher than 900 mm. 
 Find the probability of flooding for any given year. 
 

- Remark: 
The area under the Gaussian curve within (k) standard deviations of the mean is given in the 
following table: 
 

k 
Area 

)kXk(P XXXX V�PddV�P  
1 0.6826 
2 0.9544 
3 0.9973 

4                  0.99994           Î Total probability outside an interval of 4 standard 
deviations on each side of the mean is only 0.00006 

 
� Normal Approximation of the Binomial and Poisson Distribution: 
- Theorem: De-Moiver-Laplace 

For large (n) the binomial distribution 

q pn  2
)np - x(

xnx

2

e
q pn   2

1~)p1(p 
x
n �

�

S
�¸̧

¹

·
¨̈
©

§  ( ~ : asymptotically equal) 

Which is a normal distribution with mean (n p) and variance (n p q). Therefore, if (X) is  

a binomial r.v, then 
¸
¸
¹

·
¨
¨
©

§
 

q pn 
pn  - X Z  is approximately a standard normal r.v. 

The theorem gives better results when (n p > 5) and (n p q > 5) 

)( - )(  ~  )p1(p 
x
n

)bXP(a
b

ax

xnx D)E)�¸̧
¹

·
¨̈
©

§
 dd ¦

 

�    where: 

¸
¸
¹

·
¨
¨
©

§
 E

q pn 
pn  - b   and   

¸
¸
¹

·
¨
¨
©

§
 D

q pn 
pn  - a  

 
EXAMPLE (3-28): 

Consider a binomial experiment with n = 1000 and p = 0.2. if X is the number of successes, 
find the probability that .240X d  
 
SOLUTION: 

Exact solution:   � � � �¦
 

¸̧
¹

·
¨̈
©

§
 d

240

0

 x- 1000x 0.2-10.2
  x
1000

240)P(X
x

= 0.999141 

Applying the Demoiver-Laplace theorem:, we can approximate the probability as: 

999216.0)162.3(
8.02.01000
2.01000240)240P(X  ) ¸̧
¹

·
¨̈
©

§

uu
u�

) �  

 



SINGLE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS CHAPTER III 

 -50- 

- Theorem: 

If (X) is a Poisson r.v with E(X) = b and Var(X) = b, then:   ¸̧
¹

·
¨̈
©

§
 

b
b - X Z   

is approximately a standard normal r.v. The approximation is good for (b > 5). 

b 2
b) -(x x

b-

2

e
b  π2

1      
!x 

be
�

o  

 
EXAMPLE (3-29): 

Assume the number of asbestos particles in a cm3 of dust follow a Poisson distribution with   
a mean of 1000. If a cm3 of dust is analyzed, what is the probability that less than 950 
particles are found in 1 cm3? 
 
SOLUTION: 

Exact solution:   
! x
)1000(e950)P(X

x950

0x

1000-¦
 

 d  

Approximate:     ^ ` 057.058.1ZP
1000

1000950ZP)950P(X  �d 
¿
¾
½

¯
®
 �

d �  

 

� Transformation of Random Variables: 
Let (X) be a random variable with a pdf fX(x). If Y = g(X) is a function of (X), then (Y) is        a 
random variable. Its pdf is to be determined. The function g(X) is a single valued function of its 
argument. 
 
I. Discrete Case: 

 
EXAMPLE (3-30): 

Let (X) be a binomial r.v with parameters (n = 3) and (p = 0.75). Let Y = g(x) = 2X + 3 
P(Y = y) = P(X = x)  

SOLUTION: 
The table below shows the (x) and (y) values and their probabilities. 

xnx )p1(p 
x
n

)xX(P ��¸̧
¹

·
¨̈
©

§
   

 
 

  
 

y   = 2 x  +  3 

0 
2 
4 
6 
8 

10 

0 1 2 3 4 
(x) 

(y) 

Y = g(X) x y 

(0, 1, 2, 3) (3, 5, 7, 9) 
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x y P(X = x) P(Y = y) 

0 3 (1 – p)3 (1 – p)3 

1 5 3 p (1 – p)2 3 p (1 – p)2 

2 7 3 p2 (1 – p) 3 p2 (1 – p) 

3 9 p3 p3 

 
 

 
EXAMPLE (3-31): 

Let (X) has the distribution P{X = x} = 
6
1   ;  x  = -3 , -2 , -1 , 0 , 1 , 2 

Define Y = g(x) = X2. Find the pdf of the random variable Y. 
 
SOLUTION: 

x y P(X = x) P(Y = y) 
-3 9 1/6 1/6 
-2 4 1/6 1/6 
-1 1 1/6 1/6 
0 0 1/6 1/6 
1 1 1/6 1/6 
2 4 1/6 1/6 

 
The distribution of Y is: 

P(Y = 0) = 1/6 
P(Y = 1) = 2/6 
P(Y = 4) = 2/6 
P(Y = 9) = 1/6 

II. Continuous Case: 

Let Y = g(X) be a monotonically increasing or decreasing function of (x). 

^ `)xx(yY)x(yP)xxXP(x '��� '���  

^ `yyYyP)xxXP(x '��� '���  

fX(x) 'x = fY(y) 'y  

dx
dy

)x(

x
y

)x(
y
x)x()y( XX

XY
ff

ff  

'
'

 
'
'

  

y1 < y < y2 
 
 

 
EXAMPLE (3-32): 

Let (X) be a Gaussian r.v with mean (0) variance (1). 

y(x) 

y(x+'x) 

x+'x x 
x 

y 
y +�'y 

y 

0 1 

P(Y=0) 

P(Y=4) 

P(Y=9) 

Probability Density Function fY(y) 
 

y 9 4 

P(Y=1) 

-3 -2 

P(X=x) = 1/6 

Probability Density Function fX(x) 

x 
0 -1 1 2 
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Let Y = X2. Find fY(y) 

SOLUTION: 

fdd  y   0      
dxdy

)x(
2)y( X

Y
f

f    ;    x2
dx
dy

  

0y;e
y2

1 )y(

e
2
1

y
1 )y(

yx,e
 2

1 
x2
2)y(

2
y

Y

2
y

Y

2
)x(

Y

2

t
S

 

S
 

 
S

 

�

�

�

f

f

f

 

 
 
EXAMPLE (3-33): 

Let (X) be a uniform r.v in the interval (-1 , 4). If Y = X2. Find fY(y) 

SOLUTION: 

For )1X(-1 dd :   Î   
y 5

1  
 x2

51  2  
dxdy

)x(
2)y( X

Y  
u

  
f

f   

For )4X(1 d� :    Î   
y 10

1  
 x2
51  

dxdy
)x(

)y( X
Y    

f
f  

°
°
°
°

¯

°°
°
°

®



d�

d�

 

Otherwise             0   

16 y   1          
y10

1

1 y   0           
y5

1

)y(Yf  

 
 
 
 
  

4 
x 

y 

16 

1 -1 
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EXAMPLE (3-32): 

Let (X) be a r.v with the exponential pdf:  
¯
®


�
!

 
0        x0  
0    x e 

 )(
- x

X xf
OO

 

Let Y = 2X + 3. Find fY(y) and the region over which it is defined. 

SOLUTION: 

dxdy
)x(

)y( X
Y

f
f     ;    2

dx
dy

  

2
2

3 -y 

 )y(        
2

3 -y  but x   ,  
2

)x()y(
X

Y
X

Y

¸
¹
·

¨
©
§

 �  
f

fff  

°
°
¯

°°
®



�

!
 

�

0 
2

3-y            0      

0  
2

3-y     e 
 2 (y)

)
2

3(-

Y

y

f

OO

     Î    
°
¯

°
®



�

! 
¸
¹
·

¨
©
§

3 y            0      

3 y      e 
 2 (y)

 2
3-y-

Y

OO
f  

NOTE:   P(3 < Y d  5) = P(0 < X d  1) = OOO -
1

0

x- e-1dx e  ³  

 
 
EXAMPLE (3-33): 

Let (X) be a Gaussian r.v with mean ( XP ) variance ( 2
XV ) 

Let (Y) = aX + b be any r.v. Find fY(y) 

SOLUTION: 

Y = aX + b      Î     a
dx
dy

   and 
a

byx �
  

2
X

2
X

2
X

2
X

2
X

2
X

)(a 2
) a- by(

2
X

 2

) - 
a

by(

2
X

 2
) - x(

2
X

Y e
)(a  2

1e
)(a  2

1  e
  2

1 
a
1)y( V

P��

V

P
�

�

V

P�

VS
 

VS
 

VS
 f  

but from previous results we have: b   a   xY �P P   and   2
X

22
Y  a  V V  hence, 

2
Y

2
Y

 2
) y(

2
Y

Y e
  2

1)y( V

P��

VS
 f  

Therefore, Y is Gaussian with mean ( YP  = a XP  + b) and variance ( 2
YV  = a2 2

XV ) 
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SPECIAL CASE: The Standard Normal  
If (X) is a Gaussian r.v with mean ( XP ) variance ( 2

XV ), then:  

the r.v ¸̧
¹

·
¨̈
©

§
 

X

X

σ
μ - X

 Z  is a Gaussian r.v with mean ( ZP  = 0) variance ( 2
ZV  = 1). 

That is (Z) is a standard normal random variable. 

GENERAL RESULT: 

A linear transformation of a Gaussian random variable is also Gaussian. 



PROBABILITY DISTRIBUTIONS FOR MORE THAN ONE R.V. CHAPTER IV 

 

 

Problem Set (2) 
Single Random Variables 

 
1) The time X (in minutes) for a lab assistant to prepare the equipment for a certain experiment 
is believed to have a uniform distribution over (25, 35). 

a. Find the values of E (X) and Var (X). 
b. What is the probability that the preparation time is within 2 minutes of the mean time? 
c. Plot the graph of the cumulative distribution function of X. 

 
2) The time X (in second) it takes a librarian to locate an entry in a file of records on checked 
out books has an exponential distribution with expected time of 20 seconds. Calculate the 
following probabilities: 

a. P(20 < X < 30). 
b. P(X > 15 / X < 30). 

 
3) The number of failures of a testing instrument from contamination particles on the product 
is a Poisson random variable with a mean of 0.04 failures per hour. What is the probability that 
the instrument does not fail in an 8-hour shift? 
 
4) Because of design problem in a  system, there is a 40% chance that the system will fail 
before the warranty period is up and be brought in for repair. In a group of 8 customers, what 
is the probability that at least 3 customers will bring the system in for repair before warranty 
period is over. 
 
5) Let X be a continuous random variable that has the following probability density function 

¯
®
 ��

 
Elsewhere       0  

1x  0         2
)(

x
xf X  

a. Find the mean and variance of X.  
b. find and plot the cumulative distribution function of X.  
c. What is P(0.3 < X < 0.6)?  
d. Let Y = 1/X  compute E(1/X). 

 
6) Suppose that the lifetime X of a power transmission tower, measured in years, is described 
by an exponential distribution with mean equals to 25 years  

°̄

°
®
 t 

�

otherwise

xexf
x

x
0

0
25
1

)(
25/

 

If three towers, operated independently, were erected at the same time, what is the probability 
that at least two will still stand after 35 years. 
 
7) Marketing estimates that a new instrument for the analysis of soil samples will be very 
successful, moderately successful, or unsuccessful, with probabilities 0.3, 0.6, and 0.1 
respectively. The yearly revenue associated with a very successful, moderately successful, or 
unsuccessful instrument is JD 10,000, JD 7,000, and JD 2,000 respectively. Let X denote the 
yearly revenue of the instrument 

a. Determine the probability mass function of X. 
b. Determine the expected value of the yearly revenue. 

 
8) The probability density function of the length X of a metal bar is f (x) = 2 for          2.3 < x 
< 2.8 meters. If the specifications require the length of the metal bars to be from 2.25 to 2.75 
meters, what proportion of the bars fails to meet the specifications? 
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9) The radial probability density function for the ground state of the hydrogen atom (the pdf of 
the electron position from the atom) is given by 

arer
a

rf /22
3

4)( �  for r > 0 

where a is the Bohr radius (a = 52.9 pm). 
 

d. What is the distance from the center of the atom that the electron is most likely to be 
found? This value of r is called the mode of the random variable. 

e. Find the average value of r?, (the mean distance of the electron from the center of the 
atom). 

f. What is the probability that the electron will be found within a sphere of radius a 
centered at the origin? 

 
10) The number of telephone calls that arrive at a certain office is modeled by a Poisson 
random variable. Assume that on the average there are five calls per hour. 

e. What is the average (mean) time between phone calls? 
f. What is the probability that at least 30 minutes will pass without receiving any 

phone call? 
g. What is the probability that there are exactly three calls in an observation interval 

of two consecutive hours? 
h. What is the probability that there is exactly one call in the first hour and exactly two 

calls in the second hour of a two-hour observation interval?  
 
11) The lifetime of a system, expressed in weeks, is a Rayleigh random variable X for which 

400/2

200
)( xexxf �  for x ≥ 0. 

a. What is the probability that the system will not last a full week? 
b. What is the probability that the system lifetime will exceed one year? 
c. Find a value t for which P{X ≤ t} = P{X ≥ t}. This value of X is called the median of 

the random variable 
 
12) An intercom system master station provides power to four offices. The probability that any 
one office will be switched on and draw power at any time is 0.4. When on, an office draws 
0.5 Watts 
a. The master station is overloaded when 2 Watts is demanded. Find the probability of 

overload. 
b. Find the mean value of the power delivered by the master station. 
 
13) The number of knots in a certain type of wood used in the making of quality kitchen 
cabinets has been observed to follow a Poisson distribution with a mean of 1.5 knots per cubic 
meter of wood. What is the probability that 

a. there is at most one knot in a one m3 sample of this wood? 
b. there is at least one knot in a one m3 sample of this wood? 
c. there are exactly two knots in a two m3 sample of this wood? 

 
14) Two shooters A and B point their guns towards a disk. For shooter A, the probability that 
any bullet hits the disk is 0.8, while for shooter this probability is 0.85. If shooter A fires 5 
bullets, and independently of A, shooter B fires 6 bullets. 

a. Find the probability that the disk is free from bullets 
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b. Find the probability that two bullets from shooter A and three bullets from shooter B 
reside on the disk. 

 
15) The current I passing through an electronic device is related to the voltage V at its 
terminals by the relation kVeII 0  where I0 and k are constants and V is a random variable 
uniformly distributed between (0, 0.25). Find the expected value of the current passing 
through the device.  
 
16) The skewness of a random variable X can be measured in terms of its third moment about 
the mean. If a pdf is symmetric, }){( 3

XXE P�  will obviously be 0; for pdf’s not symmetric, 
}){( 3

XXE P� will not be zero. In practice, the symmetry (or lack of symmetry) of a pdf is 

often measured by the coefficient of skewness defined as: }){(1 3
31 X

X

XE P
V

J � . 

a. Find the skewness of a random variable X uniformly distributed over (-a, a) 

b. Find the skewness of the distribution 
¯
®
 ���

 
otherwise

xx
xf x 0

10)1(2
)(  

 
17) Let X be the number of independent trials until a success occurs for the first time and let  p 
be the probability of a success in a single trial. 

a. Show that X has the discrete probability mass function ppXXP x 1)1()( ��   , x =1, 
2, 3,  … 

b. Find the mean value of X. 
 
18) Let X be a binomial random variable with parameters n and p.  

a. Show that the mean value of X is np 
b. Show that the variance of X is np(1-p) 

19) Let X be a Poisson random variable with parameter b. Show that the probability that X is 

even is )1(
2
1 2be��  

20) A company makes castings for steel stress-monitoring gauges. The annual profit Q, in 
hundreds of thousands of dollars, can be expressed as a function of product demand, x: 

)1(2)( 2xexQQ ��  . Suppose that the demand (in thousands) for their castings follows an 
exponential pdf xexf 66)( � , x > 0. Find the company’s expected profit. 
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Problem Set (3) 
Single Random Variables 

 
1)The distribution of resistance for resistors of a certain type is known to be normal. 10% of 
all resistors have a resistance exceeding 10.256 ohms, and 5% have resistance smaller than 
9.671 ohms. What are the mean value and standard deviation of the resistance distribution? 
 
2) The tensile strength of paper is modeled by a normal distribution with a mean of 35 pounds 
per square inch and a standard deviation of 12 pounds per square inch. The specifications 
require that the tensile strength exceed 30 pounds per square inch. What is the probability that 
a randomly selected piece of paper will exceed the specifications? 
 
3) The specifications for a component require that its length be between 2.53 cm and 2.57 cm. 
The current manufacturing process produces parts whose length is a normally distributed 
random variable, with a mean of 2.55 and a standard deviation of 0.015. What percentage of 
the parts will be within specifications? 
 
4) A complex chemical manufacturing process is difficult to control. Only 70% of all batches 
of chemicals that are produced are within specifications. What is the probability that at least 
270 of the most recent 400 batches are within specifications? 
 
5) A biased coin comes up heads 30% of the time. The coin is tossed 400 times. Let X be the 
number of heads in the 400 tossing. 

a. Use Chebyshev’s inequality to bound the probability that X is between 100 and 140. 
b. Use Gaussian approximation to compute the probability that X is between 100 and 

140. 
 
6) The lifetime of a structure T is a Gaussian random variable which is dependent on the 
strength of used concrete. B250 has P = 35 years, V = 10 years, whereas B300 has P = 50 
years, V = 5 years. If a structure with a design period of 40 years is be designed, which 
concrete is better to be used? 
 
7) The rainfall over Ramallah district follows the normal distribution with a mean of 600 mm 
and a standard deviation of 80 mm. The rainfall is distributed over a 500 km2 area. Find: 

a- The probability of obtaining a rainwater volume less than 206 MCM  
(MCM = Million Cubic Meter) 

b- Find the mean and the standard deviation of the volume of rainfall in MCM. 
c- Flooding condition will be considered if the rainfall is higher than 900 mm.  

Find the probability of flooding for any given year. 
8) An exponential random variable X has a pdf 

¯
®


d
t

 
�

00
0

)(
x
xe

xf
x

X  

Find the pdf of a new random variable Y = X2 
 
9) If a projectile is fired at an angle T with an initial velocity v, the distance R (called the 
horizontal range) that it travels can be expressed as T2sin)/( 2 gvR  , where g is the 
gravitational constant. If T is uniformly distributed on (0, S/2),  

a. find the mean distance the projectile travels 
b. find the pdf of R. 
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10) The stored energy in a spring of stiffness constant k N/m displaced a distance x meters 

from an equilibrium position is 2

2
1 kxE   J. If the displacement X is known to be a random 

variable uniformly distributed between (-', '), find the mean value of the stored energy. 
 
11) A complex system is made up of 100 components functioning independently. The 
probability that any one component will fail during the period of operation is 0.1. In order for 
the entire system to function, at least 85 of the components must be working. Evaluate the 
probability of this. 
 
12) The temperature, X, achieved in a certain chemical reaction varies from experiment to 
experiment but appears to be described well by a pdf of the form 2/2

)( xxexf � , x > 0, where 
x is measured in Fahrenheit. The conversion formula for going from degrees Fahrenheit (X) to 

degrees Celsius (Y) is )32(
9
5

� XY . Describe the distribution of temperature in terms of 

degrees Celsius. That is, find f(y). 
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In certain experiments we may be interested in observing several quantities as they occur, such 
as carbon content (X) and hardness (Y) of steel; input (X) to a system and output (Y) at a given 
time too.  
 

- If we observe two quantities (X) and (Y), each trial gives a pair of values X = x and Y = y, (x,y) 
which represents a point (x,y) in the x-y plane. 
 

- The joint cumulative distribution function of two r.v X and Y is defined as: 

FXY(x,y) '  P{X d  x , Y d  y} 
 
Event (A) = {X d  x} 

Event (B) = {Y d  y} 
 
 
 
 
 
 
 
 
 
 
 
 
 

I. Discrete Two Dimensional Distribution: 
A random variable (x,y) and its distribution are called discrete if (x,y) can assume only countably 
finite or at most countably infinite pairs of values (x1,y1), (x2,y2), ……  
 
The joint probability mass function of (X) and (Y) is: 
 
Pij = P{X = xi , Y = yj} such that 

FXY(x,y) = ¦ ¦
d d x x y  y

ij
i j

P   

and        1P  
i j

ij  ¦ ¦  

 
II. Continuous Two Dimensional Distribution: 

A random variable (x,y) and its distribution are called continuous if FXY(x,y) can be given by: 

³ ³
f f�

 
y

-

x

XYXY dydx  )y,x(  y)(x,F f  

where fXY(x,y) is the joint probability density function (f being continuous and nonnegative) 

(x,y) 

R 
x 

y 

S 

            A       B    
 
  
 
 
 
                A ∩ B 

R 
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- Properties of the joint pdf: 

1- fXY(x,y) t  0 

2- 1dydx  )y,x(
-

XY  ³ ³
f

f

f

f�

f  

3- ³ ³ d�d�
2

1

2

1

y

y

x

x
XY2121 dydx  )y,x(  )y Y y , xXP(x f  

and in general:  

³³ �
R

XY dydx  )y,x(  R) y  ,P(x f  

� Marginal Distributions of a Discrete Distribution: 
P(X = xi) = P(X = xi , Y arbitrary) 
               = ¦   

y
ji )y  Y ,  x P(X  

This is the probability that (X) may assume a value (x), while (Y) may assume any value which 
we ignore.  
 

Likewise: 
P(Y = yj) = ¦   

x
ji )y  Y ,  x P(X  

 

� Marginal Distributions of a Continuous Distribution: 
For a continuous distribution we have: 

dxdy )y,x(  x) P(X  (x)F
x

-
XYX ³ ³

f

f

f�
¸̧
¹

·
¨̈
©

§
 d f  

but (x)F
dx
d  (x) XX  f  

Î  ³
f

f

 
-

XYX dy )y,x(  (x) ff    ;   Marginal pdf 

Î  ³
f

f

 
-

XYY dx )y,x(  (y) ff    ;   Marginal pdf 

 

� Independence of Random Variable: 
- Theorem: 

Two random variables (X) and (Y) are said to be independent if: 

FXY(x,y) = FX(x) FY(y) holds for all (x,y), or equivalently: 

fXY(x,y) = fX(x) fY(y) 
 
Proof: 

FXY(x,y) = P{X d  x , Y d  y} 
Let: A: event {X d  x} 

B: event {Y d  y} 

A and B are independent if: 
P(A ∩ B) = P(A) P(B) 
P(X d  x ,Y d  y) = P(X d  x) P(Y d  y) 

x1 x1 x 

y 

y1 

y2 

R 

R 

x 

y 

x 

y 

x 

Region such that: 
{X ≤ x} 
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� Conditional Densities: 
Let (X) and (Y) be discrete random variables. The conditional probability density function of 
(Y) given (X = x), that is the probability that (Y) takes on the value (y) given that (X = x), is 
given by: 

)xX(P
y)Y , xX(P   x) X y P(Y )y( /X/Y  

  
    f  

If (X) and (Y) are continuous, then the conditional pdf of (Y) given (X = x) is given by: 

)x(
)y,x(

 )y(
X

Y,X
X/Y f

f
f   

 
EXAMPLE (4-1): 

Let (X) and (Y) be continuous random variables with a joint pdf: 

)yx6(
8
1)y,x(Y,X �� f   ;   0 ≤ x d  2 ,  2 ≤ y d  4 

1- Find fX(x) and fY(y). 
2- Find the conditional pdf fY/X(y). 
3- Find P(2≤yd 3) 
4- Find P(2≤yd 3 / x=1) 

  
SOLUTION: 

1- ³
f

f

 
-

XYX dy )y,x(  (x) ff  

               = )x26(
8
1dy )yx6(

8
14

2

� ��³   ;   0 ≤ x d  2 

³
f

f

 
-

Y dx ),(  (y) yxff XY  = y)(5
4
1dx y)x(6

8
12

0

� ��³   ;   2 ≤ y d  4 

2- 
)x(

)y,x(
 )y(

X

Y,X
X/Y f

f
f   

                  = 
)x26(

)yx6(

)x26(
8
1

)yx6(
8
1

�
��

 
�

��
       ;    0 < x d  2     ,    2 ≤ y d  4 

3- P(2≤Yd 3) = ³³   
3

2

3

2
Y 8

5dy y)-(5
4
1dy (y)f  

4- 
4

)y5( )1x/y(X/Y
�

  f   ;     2 ≤ y d  4 

      P(2≤Yd 3 / X=1) = 
8
5dy 

4
y53

2

 
�

³  

 

Exercise: 

1- Find P(2≤Yd 3 / 0dXd 1) 
2- Find XP , Yμ , 2

Xσ , and 2
Yσ  

3- Are X and Y independent? 
 

4 

1 2 0 

y 

x 

R 3 

1 

2 
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EXAMPLE (4-2): 

Suppose that the random variable (X) can take only the values (1 , 2 , 3) and the random 
variable (Y) can take only the values (1 , 2 , 3 , 4). The joint pdf is shown in the table. 
 
 

Y 
X 1 2 3 4 

1 0.1 0 0.1 0 

2 0.3 0 0.1 0.2 

3 0 0.2 0 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
1- Find fX(x) and fY(y). 

2- Find P(X t  2) 

3- Are (X) and (Y) independent. 
4- Find the mean and variance for both X and Y 
5- Find P(X > Y) 
6- Find P( X = Y) 
7- Find the correlation coefficient between X and Y. 

  
SOLUTION: 

1- P(X = 1) = 0.2                  P(Y = 1) = 0.4 

P(X = 2) = 0.6                  P(Y = 2) = 0.2 

P(X = 3) = 0.2                  P(Y = 3) = 0.2 

                                         P(Y = 4) = 0.2 

          ∑ = 1.0                            ∑ = 1.0 

2- P(X t  2) = P(X = 2) + P(X = 3) = 0.6 + 0.2 = 0.8 

3- Check all pairs (x,y) for:  

P(X = x ,Y = y)  
?
   P(X = x)  P(Y = y) 

P(X = 1 , Y = 1) = 0.1 ≠  (0.2 x 0.4) = 0.08   Î  we do not continue 

Î X and Y are not independent 

1 

2 
3 

1 
2 

3 
4 

Y 

X 

 
0.3 

0.2 

0.2 
0.1 0.1 

0.1 
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4. The mean value and variance of X 

         X ( ) 1(0.2) 2(0.6) 3(0.2) 2E X  
        2( ) 1(0.2) 4(0.6) 9(0.2) 4.4E X  
        2 2 2

X ( )- ( ) =4.4-4=0.4E X E X  

The mean and variance of Y: 

        Y ( ) 1(0.4) 2(0.2) 3(0.2) 4(0.2) 2.2E Y  
        2( ) 1(0.4) 4(0.2) 9(0.2) 16(0.2) 6.2E Y  
        2 2 2

Y ( )- ( ) =6.2-(2.2)(2.2)=1.36E Y E Y  

 

5. The set {X > Y} consists of all pairs that form the event A, where  

            A = { (2,1), (3,2), (3,1)} 

            P(A) = 0.3 + 0.2 +0 = 0.5 

 

6. The Set { X =Y} consists of the pairs { (1,1), (2,2). (3,3)} 

                 P(X = Y) = 0.1 + 0 + 0 = 0.1 

 

7. The correlation coefficient is defined as:  

          X Y X Y
XY

X Y X Y

E{(X - )(Y - )} ( )
 =   

  
E XY

 

E (XY) = (1)(1)(0.1) + (1)(3)(0.1) + (2)(1)((0.3) + (2)(3)(0.1) + (2)(4)(0.2) +((3)(2)(0.2) = 

4.4 

      X Y
XY

X Y

( ) 4.4 (2)(2.2)
  0

 0.4 1.36
E XY

 

 

            Note that X and Y are uncorrelated, yet they are dependent 
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EXAMPLE (4-3): 

Let (X) and (Y) have the joint pdf: 

¯
®
 dddd

 
otherwise      ,      0   

 1, y   0  1,  x  0      ,y   k x 
),(, yxf YX  

a- Find (k) so that fX(x) is a proper pdf. 
b- Find P(X ≥ 0.5 , Y ≥ 0.5) 
c- Find the marginal pdf’s  fX(x) and fY(y) 
d- Are (X) and (Y) independent. 

  
SOLUTION: 

a- 1dydx  )y,x(
-

XY  ³ ³
f

f

f

f�

f   Î   1dy dx xyk
1

0

1

0

 ¸̧
¹

·
¨̈
©

§
³ ³  

4
k  

2
y

2
k dy  y

2
kdy 

2
xyk

1

0

21

0

1

0

1

0

2

   
¸
¸

¹

·

¨
¨

©

§
³³   Î  4 k       1  

4
k  � ?  

b- P(X ≥ 0.5 , Y≥ 0.5) = ³ ³
1

0.5

1

0.5

dydx y  x 4  

¸
¸

¹

·

¨
¨

©

§

¸
¸

¹

·

¨
¨

©

§ 1

5.0

21

5.0

2

2
y 

2
x 4   0.5625  0.75  0.75  0.25) - (1  0.25) - (1   u u  

c- ³ 
1

0
XYX dy )y,x(  (x) ff  

³ 
1

0
X dyy  x 4  (x)f  =  x2  

2
y x 4

1

0

2

  

³ 
1

0
Y dxy  x 4  (y)f  = y 2  

2
xy  4

1

0

2

  

Since fXY(x,y) = fX(x) fY(y)   

Î   4 x y   =  (2 x) (2 y)   Î  (X) and (Y) are independent. 

 
 
EXAMPLE (4-5): 

For example (4-3), find P(X > Y). 

SOLUTION: 

³³ �
R

dydx  y x 4  X)  P(Y  ³ ³ 
1

0

x

0

dxdy y  x 4  ³ ³ 
1

0

1

y

dydx y  x 4   

2
1  

4
x 2 X)P(Y

dx   x2 dx  
2
x x 4 dx    

2
y x 4

1

0

4

1

0

3
1

0

21

0

x

0

2

 
¸
¸

¹

·

¨
¨

©

§
 �

  
¸
¸

¹

·

¨
¨

©

§
 ³³³

 

 
  

1 

0.5 

0.5 1 (0,0) 

y 

x 

R 

1 

y 

x 
1 

y = x 
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EXAMPLE (4-4): 

Two random variables (X) and (Y) have the joint pdf: 

°̄

°
®
 ddd

 
otherwise      ,       0     

 2 x y   0      ,y     x
16
5

),(
2

yxf XY  

a- Verify that fXY(x,y) is a valid pfd. 
b- Find the marginal density functions of X and Y. 
c- Are X and Y statistically independent? 
d- Find P{X≤1} , P{Y≤0.5} , P{XY≤1} 

  

SOLUTION: 

a- ³³
R

XY dydx  )y,x(f  = ³ ³
2

0

x

0

2 dxdy  yx
16
5  

dx dy yx
16
5 2

0

x

0

2³ ³ ¸̧
¹

·
¨̈
©

§
= 1

5
32

2
1

16
5  

5
x

2
1

16
5 dx  

2
x

16
5dx 

2
yx

16
5

2

0

52

0

42

0

x

0

2
2  uu uu  

¸
¸

¹

·

¨
¨

©

§
³³  

b- ³
f

f

 
-

XYX dy )y,x(  (x) ff  Î ³ 
x

0

2
X dyy   x

16
5  (x)f  = 4

x

0

2
2  x

32
5  

2
y  x

16
5

  

°̄

°
®
 ��

 
otherwise      ,       0   

 2  x  0      ,    x
32
5

)x(
4

Xf    Î   check ³ �  
2

0

2

0

5
4 OK      1

2
x

32
5 dx   x

32
5  

³
f

f

 
-

XYY dx )y,x(  (y) ff  Î ³ 
2

y

2
Y dxy   x

16
5  (y)f  = )y - y(8 

48
5  

3
xy  

16
5 3

2

y

3

  

°̄

°
®
 ��

 
otherwise    ,           0        

 2 y   0     ,   )y - y(8 
48
5

)y(
3

Yf  Î  

c- Since fXY(x,y) ≠ fX(x) fY(y) Î  (X) and (Y) are not statistically independent. 

d- P{X<1} = 03125.0
32
1

5
x

32
5 dx   x

32
5 dx  (x)

1

0

1

0

5
4

1

0
X     ³³ f  

P{Y<0.5} = ³³  
5.0

0

3
0.5

0
Y dy )y - y(8 

48
5 dy  (y)f  

               = 1025.0
1024
105

4
y - y4

48
5

5.0

0

4
2   ¨̈

©

§
 

P{XY≤1} = P{Y≤
X
1 } 

P{Y≤
X
1 } = ³³

R
XY dydx  )y,x(f  

P{Y≤
X
1 } = ³ ³³ ³ �

2

1

x
1

0

2
1

0

x

0

2 dxdy  yx
16
5dxdy  yx

16
5  

=1/32 + 5/32 = 6/32 

2 

y 

x 
2 

R 

2 

y 

x 
2 

R 
1 

1 
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Addition of Means and Variances: 
- Review: (Basic operations on a single random variable) 

- ³
f

f�

 dx (x)x E(X) Xf  

    - ^ ` ³
f

f�

 dx (x) g(X)g(X)E Xf  

    - ^ ` ^ ` ^ `(X)gE(X)gE(X)g  (X)gE 2121 � �  

    - If Y = aX + b 
       E(Y) = a E(X) + b    Î       b  μ a  μ XY �      Î    2

X
22

Y σa  σ   

- Definition: 

The expected value of a function g(x,y) of two random variables (X) and (Y) is: 
E{g(x,y)} = ¦ ¦   

i jx
j

y
iji )y  Y , x P(X )y, g(x  ;  X and Y are discrete 

     = ³ ³
f

f

f

f�-
XY dydx  )y,x( y),g(x f   ;  X and Y are continuous 

Since summation and integration are linear processes, we have: 
 

E{a g1(x,y) + b g2(x,y)} = a E{g1(x,y)} + b E{g2(x,y)} 
 

- Theorem: Addition of Means 

The mean or expected value of a sum of random variables is the sum of the expectations. 
 

E(x1 + x2 + ……. + xn) = E(x1) + E(x2) + ……. + E(xn) 
 

- Theorem: Multiplication of Means 

The expected value of the product of independent r.v equals the product of the expected values. 
 

E(x1 x2 ……. Xn) = E(x1) E(x2) ……. E(xn) 

Proof: 

If (X) and (Y) are independent random variables, then fXY(x,y) = fX(x) fY(y), so: 

E(XY) = ³ ³³ ³
f

f

f

f�

f

f

f

f�

 
-

YX
-

XY dy )y(y dx  )x(x   dydx  )y,x(y x fff  = E(X) E(Y) 

And in general, if (X) and (Y) are independent, then: 
E{g1(X) g2(Y)} = E{g1(X)} E{g2(Y)} 

- Theorem: Addition of Variances 

- Definition: 
The correlation coefficient between two random variables (X) and (Y) is: 

YX

XY

YX

YX
XY σ σ

μ  
σ σ

)}μ - )(Yμ - E{(X Δ ρ   

where XYP  is called the covariance and XYU  is bounded between 1   1 XY dUd�  
when XYU  = 0 , (X) and (Y) are said to be uncorrelated. 
when XYU  = ±1 , (X) and (Y) are said to be fully correlated. 
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- Theorem: 

Let Y = a1X1 + a2X2 , then 

212121 XXXX21
2
X

2
2

2
X

2
1

2
Y ρσσaa 2  σa  σa  σ ��  

Proof: 
})a -a - Xa  XE{(a  }) - E{(Y  2

X2X12211
2

Y
2
Y 21

PP� P V  

})] -(Xa  ) - (XE{[a       2
X22X11 21

P�P  

)} -)(X - E{(X a a 2  }) -(XE{a  }) - (XE{a       
2121 X2X121

2
X2

2
2

2
X1

2
1 PP�P�P  

XY21
2
X

2
2

2
X

2
1  aa 2  a  a      

21
P�V�V  

since 
YX

XY
XY  

  
VV

P
 U  XYXX21

2
X

2
2

2
X

2
1

2
Y ρσσaa 2  σa  σa  σ  

2121
�� ?  

- Theorem: Multiplication of Means 
If (X) and (Y) are independent random variables, then they are uncorrelated. 
Proof: 

)}μ - )(Yμ - E{(X  μ YXXY   

YXXY   E{Y} - E{X} - E{XY}        PP�PP  
E{X}E{Y} - E{XY}          

But since (X) and (Y) are independent, then E{X}E{Y}  E{XY}   

Î  0  XY  P   Î  0  
 

  
YX

XY
XY  

VV
P

 U  

This result asserts that if X and Y are independent then they are uncorrelated (   0XY ). 
However, the converse is not necessarily true. That is, if   0XY , then X and Y are nor 
necessarily independent. The only exception is when X and Y are Gaussian. In this case, 

  0XY  implied that X and Y are independent. 
 

- Theorem: 
Let Y = a1X1 + a2X2 , and (X) and (Y) are independent random variables, then 

2
X

2
2

2
X

2
1

2
Y 21

a  a  V�V V  
This result follows immediately from the above two theorems. 
 
The sum of independent random variables equals the sum of the variances of these variables. 
 

� Functions of Random Variables: 
- Let (X) and (Y) be random variables with a joint pdf fXY(x,y) and let g(x,y) be any continuous 

function that is defined for all (x,y). then: 
Z = g(x,y) is a random variable. The objective is to find fZ(z). 

- When (X) and (Y) are discrete random variables, we may obtain the probability mass function 
P{Z = z} by summing all probabilities for which g(x,y) equals the value of (z) considered, thus: 

)y  Y ,  x P(X )  P(Z ji
y)g(x,
Σ  Σ     
 z

z  

- In the case of continuous random variables (X) and (Y) we find FZ(z) first: 
FZ(z) = P{Z d  z} = ³³

dzy)g(x,
XY dydx  )y,x(f  
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Then we find:  fZ(z) = 
dz

)(F d z z
  

 
- Theorem: 

Let Z = X + Y and let (X) and (Y) be independent random variables, then; 

³
f

f

 
-

YXZ dx )x - ( )x()( zz fff  

Proof: 

³³ d 

d� d 

R
XYZ

Z

dydx  )y,x(X)- Y(P)(F

 ) YX(P )  P(Z)(F

fzz

zzz
 

= ³ ³
f

f

�

f�-

x

XY dydx  )y,x(
z

f  

since (X) and (Y) are independent random variables, then 

fXY(x,y) = fX(x) fY(y); So 

dx )x( dy )y(  )(F

 dydx  )y( )x()(F

X
-

x

Yz

-

x

YXz

ff

ff

³ ³

³ ³
f

f

�

f�

f

f

�

f�

¸
¸
¹

·
¨
¨
©

§
 

 

z

z

z

z

 

dx )x(F )x()(F
-

YXz ³
f

f

� zz f  

fZ(z) = 
dz

)(F d z z
  

³
f

f

 
-

YXZ dx  x)- ( (x))( zz fff  

The Convolution Integral 
 
  

y 

x 

z 

z 

 

y = z - x 
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EXAMPLE (4-6): 

Consider the joint pdf shown in the table (considered before in example 4-1). 
Let Z = X + Y.  

1- Find the probability mass function of (Z), P{Z = z}. 
2- Find P(X = Y). 
3- Find E{XY} 

 
Y 

X 1 2 3 4 

1 0.1 0 0.1 0 

2 0.3 0 0.1 0.2 

3 0 0.2 0 0 
SOLUTION: 

1- Possible values of (Z) and their probabilities are shown as follows: 

Z P(Z = z) 

2 P(X = 1 , Y = 1) = 0.1 

3 P(X = 1 , Y = 2) + P(X = 2 , Y = 1) = 0 + 0.3 = 0.3 

4 P(X = 1 , Y = 3) + P(X = 3 , Y = 1) + P(X = 2 , Y = 2) = 0.1 + 0 + 0 = 0.1 

5 P(X = 1 , Y = 4) + P(X = 2 , Y = 3) + P(X = 3 , Y = 2) = 0 + 0.1 + 0.2 = 0.3 

6 P(X = 2 , Y = 4) + P(X = 3 , Y = 3) = 0.2 + 0 = 0.2 

7 P(X = 3 , Y = 4) = 0 
 

 
2- P(Y = X) = summation of probabilities over all values for which x = y. 
                    = P(X=1 , Y=1) + P(X=2 , Y=2) + P(X=3 , Y=3) 
                    = 0.1 + 0 + 0 = 0.1 

3- E{XY}    = ¦ ¦   
i jx

j
y

iji )y  Y , x P(X yx  

                        = (1)(1) P(X=1 , Y=1) + (1)(3) P(X=1 , Y=3) + (2)(1) P(X=2 , Y=1) 
                        + (2)(3) P(X=2 , Y=3) + (2)(4) P(X=2 , Y=4) + (3)(2) P(X=3 , Y=2) 
 
                        = (1)(1) (0.1) + (1)(3) (0.1) + (2)(1) (0.3) 
                        + (2)(3) (0.1) + (2)(4) (0.2) + (3)(2) (0.2) 
 

E{XY}    = 4.4 
 
 

Exercise: 

Let Z = |X – Y|  

- Find the pmf of Z: P(Z = z) 
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EXAMPLE (4-7): 

Let (X) and (Y) be two independent exponential random variables, such that: 

¯
®
 !

 
otherwise      ,      0   

 0       x,  e 
)(

x-a

X
a

xf ;
¯
®
 !

 
otherwise      ,      0   

 0 y      ,  e 
)(

y-b

Y
b

yf  

Let Z = X + Y. Find fZ(z ). 

SOLUTION: 

³ � 
z

YXZ dxxzfxfzf
0

)()()(  

³ ��� 
z

xbabz
Z dxeabezf

0

)()(  

- -( )( ) e (1 e )
( )

z z
Z zf  

-( ) (e e )
( )

z z
Z zf , z ≥ 0 

 
 
EXAMPLE (4-8): 

Let (X) and (Y) be two identical and independent random variables, such that: 

°̄

°
®
 ��

 
otherwise      ,     0

 2 x0      ,    
2
1

)x(Xf  ;  
°̄

°
®
 ��

 
otherwise      ,      0

2y0      ,     
2
1

)(yfY  

Let Z = X + Y. Find fZ(z ). 

SOLUTION: 

   Z = X + Y          Î   0 < z < 4 
-  For (z < 0)        Î   fZ(z ) = 0  
-  For (0 < z < 2)  

   ³
f

f

 
-

YXZ dx  x)- ( (x))( zz fff  

  
4

dx  
2
1

2
1)(

0

z
z

z

 u ³Zf  

-  For (z  = 2) 

2
1

4
x dx  

2
1

2
1)(

2

00

  u ³
2

zZf  

-  For (2 < z < 4) 

   ³
�

u 
2

2-
Z dx 

2
1

2
1)(

z

zf  = > @ > @zz
z

 - 4
4
1  )  (-2 - (2

4
1

4
x 2

2-

 � 
�

 

   

Î Total area = 1
2
14

2
1

 uu  Î It is a pdf 

fX(x) 

x 

x 

x 

x 

fY(x) 

fY(-x) 

fY(z -x) 

 

z 

fX(x) 

x 

x 

x 

x 

fY(x) 

fY(-x) 

fY(z -x) 

 

z 
 

-2 +z 

 

-2 

 

2 

 

2 

½  

) z(Zf 

z 
2 4 

½  

½  

0 
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EXAMPLE (4-9): 
Let (X) and (Y) be two uniformly distributed  and independent random variables, such that: 

°̄

°
®
 ��

 
otherwise      ,     0

 2 x0      ,    
2
1

)(xf X  ;  
°̄

°
®
 ��

 
otherwise      ,      0

4y0      ,     
4
1

)y(Yf  

Let Z = X + Y. Find fZ(z ). 
SOLUTION: 
-  For (z < 0)        Î   fZ(z ) = 0  

-  For ( 20 ��z )  Î   zz
z

8
1xd  

4
1

2
1)(

0

 u ³Zf  

-  For ( 42 ��z )  Î  
4
12

8
1xd  

4
1

2
1)(

2

0

 u u ³zZf  

-  For ( 64 ��z ) 

   )6(
8
1 

8
1xd  

4
1

2
1)(

2

4-

2

4-

zz
zz

�  u 
��

³ xfZ  

   

°
°
°

¯

°
°
°

®



��

��

��

 

6    4    ) - (6
8
1

4    2         
4
1   

 2    0        
8
1   

)(

zz

z

zz

zZf  

 
 
EXAMPLE (4-10): 

Let (X) and (Y) be two identical and independent random variables, such that: 

¯
®
 !D

 
D

otherwise      ,      0   
 0       x,  e 

)x(
x-

Xf  ;  
¯
®
 !D

 
D

otherwise      ,      0   
0 y      ,  e 

)y(
y-

Yf  

Let Z = X + Y. Find fZ(z ). 

SOLUTION: 

³³ �DD
f

f

DD  
z

zzz
0

x)(-x-

-
YXZ dx e  .e dx )x - ( )x()( fff   

³ D�DDD 
z

zz
0

x-x-2
Z dx e .e )(f  

³DD 
z

zz
0

-2
Z dxe)(f zzz DD -2

Z e)(f  

Exercise: Find the pdf of  1 2 2Z X X X  when 
the variables are independent and identically distributed exponential  
Random variables having the above given pdf. 
 
 

fX(x) 

x 

x 

x 

x 

fY(x) 

fY(-x) 

fY(z -x) 

 

z 
 

-4 +z 

 

-4 

 

4 

 

2 

Area = 1 
1/4 

) z(Zf 

z 
2 4 6 

fX(x) 

x 

x 

x 

x 

fY(x) 

fY(-x) 

fY(z -x) 

 

z 
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Transformation of Multiple Random Variables 
 
Let  𝑋1  and 𝑋2 be two random variables with a joint pdf  𝑓𝑥1𝑥2 (𝑥1 , 𝑥2)  
and let  𝑌1= 𝑔1(𝑋1, 𝑋2)  , 𝑌2= 𝑔1(𝑋1, 𝑋2) be two new random variables , where we 
assume that 𝑔1 and 𝑔2 have continuous first partial derivatives for all  𝑥1 and  𝑥2. 
 
For a one-to-one mapping, we have  
P{ 𝑥1≤  𝑋1≤ 𝑥1+ ∆ 𝑥1 , 𝑥2≤  𝑋2≤ 𝑥2+ ∆ 𝑥2} = P{ 𝑦1≤  𝑌1≤ 𝑦1+ ∆ 𝑦1 , 𝑦2≤  𝑌2≤ 𝑦2+ ∆ 
𝑦2} 
 

𝑓x1,x2 (𝑥1 , 𝑥2)d𝑥1 d𝑥2 = 𝑓y1,y2 (𝑦1 , 𝑦2)d𝑦1 d𝑦2 
 

𝑓y1,y2 (𝑦1 , 𝑦2) = 𝑓x1,x2 (𝑥1 ,𝑥2)
|d𝑦1 d𝑦2 /d𝑥1 d𝑥2|

 = 𝑓x1,x2 (𝑥1 ,𝑥2)
|𝐽|

 
 

The denominator is what is called the Jacobean. It is the ratio of the differential area in 
the 𝑦1 − 𝑦2 plane to the differential area in the 𝑥1 − 𝑥2 plane. 
 

|J| = |

∂𝑦1 
d𝑥1

∂𝑦1 
d𝑥2

∂𝑦2
d𝑥1

∂𝑦2
d𝑥2

|   ;         J≠0 

Therefore, the joint pdf of  𝑌1 and  𝑌2 can be determind as  
 

𝒇𝐲𝟏,𝐲𝟐 (𝒚𝟏 , 𝒚) = 𝒇𝐱𝟏,𝐱𝟐 (𝒙𝟏 ,𝒙𝟐)
|𝑱|

 
Note that 

J = | ∂𝑦1 ∂𝑦2
∂𝑥1  ∂𝑥2

 |= |

∂𝑦1 
d𝑥1

∂𝑦1 
d𝑥2

∂𝑦2
d𝑥1

∂𝑦2
d𝑥2

| 

 
which can also be re-written in the equivalent form:  

J = 𝟏

|𝛛𝒙𝟏 𝛛𝒙𝟐𝛛𝒚𝟏 𝛛𝒚𝟐
 |
  = 𝟏

|

𝛛𝒙𝟏 
𝛛𝒚𝟏

𝛛𝒙𝟏 
𝛛𝒚𝟐

𝛛𝒙𝟐
𝛛𝒚𝟏

𝛛𝒙𝟐
𝛛𝒚𝟐

|

 

 
The marginal pdf’s can be found as 
 

𝑓y1 ( 𝑦1) =  ∫ 𝑓y1,y2 
∞
−∞ (𝑦1 , 𝑦2) d𝑦2 

𝑓y2 ( 𝑦2) =  ∫ 𝑓y1,y2 
∞
−∞ (𝑦1 , 𝑦2) d𝑦1 
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Example 1 
Let 𝑋1 and 𝑋2 be two independent exponential R.V with pdf’s 

   𝑓𝑋1(𝑥1) =  {
𝜆 𝑒−𝜆𝑥1                  𝑥1 ≥ 0
      0                        𝑥1 < 0

  ;          𝑓𝑋2(𝑥2) =  {
𝜆 𝑒−𝜆𝑥2                  𝑥2 ≥ 0
      0                        𝑥2 < 0

 

Define   𝑌1 = 𝑋1 + 𝑋2 
              𝑌2 = 𝑋1 𝑋2⁄  
 

a. Find the joint pdf of 𝑌1 and 𝑌2. 
b. Find the marginal pdf’s 𝑓y1 ( 𝑦1) and 𝑓y2 ( 𝑦2). 
c. Are 𝑌1 and 𝑌2 independent? 

 
Solution 

                     𝑓𝑋1𝑋2(𝑥1, 𝑥2) = 𝑓𝑋1(𝑥1). 𝑓𝑋2(𝑥2) = {𝜆
2𝑒−𝜆(𝑥1+𝑥2)           ; 𝑥1 ≥ 0 , 𝑥2  ≥ 0

0                                𝑜. 𝑤
 

 
The Jacobean can be calculated as: 

J=|

𝜕𝑦1
𝜕𝑥1

𝜕𝑦1
𝜕𝑥2

𝜕𝑦2
𝜕𝑥1

𝜕𝑦2
𝜕𝑥2

| = |
1 1
1
𝑥2

− 𝑥1
𝑥22
|= |−𝑥1

𝑥22
− 1

𝑥2
| 

 

Therefore ,            𝑓𝑦1,𝑦2(𝑦1, 𝑦2) = 𝜆
2𝑒−𝜆(𝑥1+𝑥2)

|−𝑥1
𝑥2
2 − 

1
𝑥2
|

 =  𝜆2𝑒−𝜆(𝑥1+𝑥2) 𝑥22

𝑥1+ 𝑥2
 

 
Solving for 𝑥1 and 𝑥2 in terms of 𝑦1 and 𝑦2, we have             𝑥1= 𝑦1𝑦2

1+𝑦2
   ,   𝑥2 =

𝑦1
1+𝑦2

 

                𝑓𝑦1𝑦2(𝑦1, 𝑦2) = 𝜆2𝑒−𝜆𝑦1. 𝑥22

𝑥1+ 𝑥2
 = 𝜆2𝑒−𝜆𝑦1

     𝑦12

(1+𝑦2)2
      

𝑦1
 

 

                                      = 𝜆2𝑦1𝑒−𝜆𝑦1   
1

(1+𝑦2)2
             

0 ≤ 𝑦1 < ∞
0 ≤ 𝑦2 < ∞

 

The marginal pdf’s are: 
 
    𝑓𝑦1(𝑦1) = ∫ 𝜆2𝑦1𝑒−𝜆𝑦1

1
(1+𝑦2)2

𝑑𝑦2
∞
0  = 𝜆2𝑦1𝑒−𝜆𝑦1 ∫

1
(1+𝑦2)2

𝑑𝑦2
∞
0⏟        

1

 

    𝑓𝑦1(𝑦1) ={
𝜆2𝑦1𝑒−𝜆𝑦1         0 ≤ 𝑦1 < ∞
           0                   𝑦1 < 0    

 

    𝑓𝑦2(𝑦2) = ∫ 𝜆2𝑦1𝑒−𝜆𝑦1
1

(1+𝑦2)2
𝑑𝑦1

∞
0  = 1

(1+𝑦2)2
 ∫ 𝜆2𝑦1𝑒−𝜆𝑦1𝑑𝑦1
∞
0⏟          

1

 

                                                    𝑓𝑦1(𝑦1) ={
 1
(1+𝑦2)2

        0 ≤ 𝑦2 < ∞
           0                   𝑦2 < 0    

 

 
Since  𝑓𝑦1,𝑦2(𝑦1, 𝑦2) = 𝑓𝑦1(𝑦1) . 𝑓𝑦2(𝑦2), then 𝑌1 and 𝑌 are independent. 
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Example 2 
Let  𝑋1 and 𝑋2 be two independent uniform R.V with a joint pdf  
𝑓𝑋1𝑋2(𝑥1, 𝑥2) = {        1        ; 0 ≤ 𝑥1 ≤ 1 , 0 ≤ 𝑥2 ≤ 10                                         𝑜. 𝑤  
 
Define  𝑌1 = 𝑋1 + 𝑋2 
              𝑌2 = 𝑋1 − 𝑋2 
 

a. Find 𝑓𝑦1𝑦2(𝑦1, 𝑦2) and the region over which it is defined. 
b. Find  𝑓𝑦1(𝑦1) and 𝑓𝑦2(𝑦2). 
c. Are 𝑌1 and 𝑌2 independent? 

 
Solution 
           𝑓𝑦1𝑦2(𝑦1, 𝑦2) = 

𝑓𝑋1𝑋2(𝑥1,𝑥2)
|𝐽|

 ,      J=|1    1
1 −1| = |−1 − 1| = 2 

 
           𝑓𝑦1𝑦2(𝑦1, 𝑦2) = 1

2
 for 𝑦1, 𝑦2 ∈ �̀� 

 
Where �̀� is as shown below 
 

                 
 
                          𝑓𝑦1(𝑦1)  = ∫ 1

2
 𝑑𝑦2

𝑦1
−𝑦1

          0< 𝑦1 < 1 
 
                                        = 1

2
(𝑦1 − (−𝑦1) ) = 𝑦1 

 
                          𝑓𝑦1(𝑦1) =∫

1
2
 𝑑𝑦2

2−𝑦1
−2+𝑦1

= 1
2
[(2 − 𝑦1) − (−2 + 𝑦1)]               1 < 𝑦1< 2 

 
                                       = 1

2
(4 − 2𝑦1) = 2 − 𝑦1          1<𝑦1<2 

 

                                       = {𝑦1                   0 ≤ 𝑦1 ≤ 12 − 𝑦1         1 < 𝑦1 ≤ 2
 

 



PROBABILITY DISTRIBUTIONS FOR MORE THAN ONE R.V. CHAPTER IV 

 -78- 

 
 
 
 
 
                𝑓𝑦2(𝑦2) =∫

1
2
 𝑑𝑦1               − 1 < 𝑌2  < 0

2+𝑦2
−𝑦2

 
 
                             = 1

2
(2 + 𝑦2 − (−𝑦2) ) = 1+𝑦2         −1 < 𝑌2  < 0 

 
               𝑓𝑦2(𝑦2) =∫

1
2
 𝑑𝑦1

2−𝑦2
𝑦2

 =  1
2
[2 − 𝑦2 − 𝑦2]=1- 𝑦2       0 < 𝑦2  < 1 

 

                            = {1 + 𝑦2                   − 1 ≤ 𝑦2 ≤ 01 − 𝑦2                       0 < 𝑦2 ≤ 1
 

 

 
 
Clearly, since 𝑓𝑦1(𝑦1). 𝑓𝑦2(𝑦2) ≠ 𝑓𝑦1𝑦2(𝑦1, 𝑦2) = 1

2
 , then 𝑌1 and 𝑌2 are not independent 
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Example 3 
Let 𝑋1 and 𝑋2 be two zero –mean, unit variance independent Gaussian random variable. 
Define the polar random variables R and  𝜃 as 
 
R = √𝑥12 + 𝑥22     ,          𝜃= tan−1 𝑥2

𝑥1
 

Find 𝑓𝑅,𝜃(r,𝜃) , 𝑓𝑅(r) , 𝑓𝜃(𝜃) 
 
Solution 
It can be easily shown that: 
                𝑥1 = r cos 𝜃                      𝑥2 = r sin 𝜃 
 

              The Jacobian J = |

𝜕𝑟
𝜕𝑥1

𝜕𝑟
𝜕𝑥2

𝜕𝜃
𝜕𝑥1

𝜕𝜃
𝜕𝑥2

| = 1

|
𝜕𝑥1
𝜕𝑟

𝜕𝑥1
𝜕𝜃

𝜕𝑥2
𝜕𝑟

𝜕𝑥2
𝜕𝜃

|

 

                    
               J= 1

|cos𝜃 −𝑟 sin𝜃
sin𝜃 𝑟 cos𝜃

|
 = 1

|𝑟(cos𝜃)2+𝑟(sin 𝜃)2|
 = 1

𝑟
 

 
      Therefore, 
              𝑓𝑅,𝜃(r,𝜃) = 

𝑓𝑋1𝑋2(𝑥1,𝑥2)
|𝐽|

= r. 1
√2𝜋

𝑒−𝑥12 2⁄ . 1
√2𝜋

𝑒−𝑥22 2⁄  
 
                         = 𝑟

2𝜋
𝑒−(𝑥12+𝑥22) 2⁄   

                        
                        = 𝑟

2𝜋
𝑒−𝑟2 2⁄                0 ≤ 𝑟 < ∞ , −𝜋 ≤ 𝜃 ≤ 𝜋 

 
             𝑓𝑅,𝜃(r,𝜃) = = ( 1

2𝜋
)(𝑟𝑒−𝑟2 2⁄ ) 

     
             𝑓𝑅(r) =∫  1

2𝜋
𝑟𝑒−𝑟2 2⁄𝜋

−𝜋 𝑑𝜃 = 𝑟𝑒−𝑟2 2⁄  
 

             𝑓𝑅(r) ={𝑟𝑒
−𝑟2 2⁄                   0 ≤ 𝑟 < ∞
0                                      𝑜. 𝑤

 

            𝑓𝜃(𝜃) ={
1
2𝜋
                 − 𝜋 ≤ 𝑟 < 𝜋
0                                 𝑜. 𝑤

 

 
Exercise 
Let 𝑋1 and 𝑋2 be two zero –mean, unit variance independent Gaussian random variable. 
Define the  random variables 𝑌1 and 𝑌2  as: 
 
 𝑌1 = 𝑋12 + 𝑋22     ,          𝑌2= tan−1 𝑋2

𝑋1
 

Find the joint and marginal pdf’s for 𝑌1 and 𝑌2 
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Problem Set (4) 

Multiple Random Variables 
 
1) For a certain commodity which you buy, you can make either a $500 profit with 
probability 0.5 when you sell it, or $200 with probability 0.3 or lose $100 with 
probability 0.2. 

a. Find the mean and variance of your net profit if you sell one item. 
b. Suppose you sell 80 items separately and independently, find the mean and 

standard deviation of your total net profit. 
 
2) Two random variables X and Y are related by Y = aX + b, where X is a random 
variable with zero mean and unit variance. 

a. Find the mean and variance of Y 
b. Find the correlation coefficient between X and Y. 

 
3) Let X and Y be random variables with a joint pdf  Cyxf YX  ),(,  for 10 d�d YX , 

10 dd X , 10 dd Y  
a. Find C so that this is a valid joint pdf 
b. Find the marginal density functions of X and Y. 
c. Are X and Y independent? 
d. Find the conditional pdf of Y given X = 0.5 

 
4) If X and Y are independent, normal random variables with E(X) = 10, Var(X) = 4, 
E(Y) = 0, and Var(Y) = 9.   

a. Let T = X – Y, find the mean and variance of T 
b. Let Z = XY, find the mean and variance of Z. 

 
5) The random variables X and Y are independent and uniformly distributed in the 
interval (0,1). Find )( XYP d . 
 
6) Let X be a uniformly distributed random variable on the interval 100 dd x  and zero 
elsewhere  and let Y be another uniformly distributed random variable on 200 dd y  
and zero elsewhere. Assuming that X and Y are independent, find 

a. )84( d�d YXP  
b. E {X + Y} 
c. E {XY} 
d. Var (X + Y)  

 
7) The lifetime of a structure T is a Gaussian distribution which is dependent on the 
strength of used concrete. B250 has P = 35  years, V = 10 years, whereas B300 has P = 
50 years, V  = 5 years. 

a- If a structure with design period of 40 years will be designed, which concrete is 
better to be used? 

b- For B300, find time in years at which the lifetime of the structure will exceed 
95% of its design period. 
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8) For the joint density function shown in the figure, find the followings: 
 

a- Marginal density functions of X and Y 
b- P (X < 3) 
c- P (Y t  2) 
d- P [X = x / (Y = 1)] 
e- P (X t  Y) 

 
 
9) Let X1 and X2 be independent normal random variables with means 23 and 4 and 
variances 3 and 1, respectively. Find the probability density function of Y = 4X1 – X2. 
 
10) The joint pdf of two random variables X and Y is given by 

¯
®
 dddd

 
otherwise

yxkxy
yxf YX 0

3020
),(,  

a. Find the constant k so that this is a valid pdf. 
b. Are X and Y statistically independent? 
c. Find the expected value of the function g(X,Y) = 2X + 3Y 
d. Find P(X + Y < 1), P( Y – X < 1). 
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Basic Definitions and Terminology  
 

- In statistics, we take a random sample (X1, X2, ……, Xn) of size (n) from a distribution X 
(population) for which the pdf is  (x)Xf  by performing that experiment (n) times. The purpose 
is to draw conclusions from properties of the sample about properties of the distribution of the 
corresponding X (the population) 

 
- First let us introduce some basic definitions about the random sample 
- The sample mean XP̂  is defined as : 

X
1

1   
n

n

i
i

xP
 

 ¦  
 

- The sample variance 2
XV̂  , when the population mean 𝜇 is unknown is defined as: 

¦
 

 
n

i
iX x

1

2
X

2 )ˆ - (
1 -n 

1  ˆ PV  

 ˆˆ 2
XX V V  is called the sample standard deviation. 

 

- A computationally simpler expression for 2
XV̂  is:  

)1(
  ˆ

2

11

2

2

�

¸
¹

·
¨
©

§
�

 
¦¦
  

nn

xxn
n

i
i

n

i
i

XV  

- The sample variance 2
XV̂  , when the population mean 𝜇 is known is defined as: 

2 2
X

1

1ˆ   (  - )
n 

n

X i
i

xV P
 

 ¦  

 
 

� Regression Techniques 
Suppose in a certain experiment we take measurements in pairs, i.e. (x1,y1) , (x2,y2), … (xn,yn). 
We suspect that the data can be fit in a straight line of the form E�D xy . 
Suppose that the line is to be fitted to the (n) points and let (�) denote the sum of the squares 
of the vertical distances at the (n) points, then  

> @¦
 

E�D �
n

1i

2
ii )x( - y   

The method of least squares specifies the values of ED  and  so that � is minimized. 

0 x)x - y( 2 
n

1i
iii  E�D� 

Dw
�w ¦

 

 

¦
 

 E�D� 
Ew
�w n

1i
ii 0)x - y( 2  

¦¦
  

 D�E
n

1i
i

n

1i
i yxn   ……… (1) 

¦¦¦
   

 D�E
n

1i
ii

n

1i

2
i

n

1i
i yxxx  ……… (2) 

In matrix form, these equations are: 

¸
¸
¹

·
¨
¨
©

§
 ¸̧

¹

·
¨̈
©

§
¸
¸
¹

·
¨
¨
©

§

¦
¦

¦¦
¦

ii

i
2
ii

i

yx
y

α
β

 
xx
xn

 

(xi, Dxi + E) 

(xi,yi) 

x 

y 
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These two equations are called the normal equations. 

Solving the above two equations for the two unknowns, we get: 

2ˆ
XY

X

CD
V

  

where, 
1

1 ˆ ˆ  ( ) ( )
n - 1

n

XY i X i Y
i

C x yP P
 

 � �¦  is the sample covariance between x  and y,  ˆ 2
XV  is 

the sample variance of the x measurements (as defined earlier), XP̂  is the average value of the 
X measurements, and YP̂  is the average value of the Y measurements. 
 

ˆ ˆ  Y XE P DP �  

Finally, the sample correlation coefficient can be calculated as , ˆ ˆ
XY

X Y
X Y

CU
V V

  

Exercise: Show that 
 

1 1 1 
( 1)

n n n

i i i i
i i i

XY

n x y x y
C

n n
   

�
 

�

¦ ¦ ¦
 

 

� Fitting a Polynomial by the Method of Least Squares: 
Suppose now that instead of simply fitting a straight line to (n) plotted points, we wish to fit a 
polynomial of the form: 

2
321 xx    y E�E�E  

The method of least squares specifies the constants   and  , 321 EEE  so that the sum of the squares 
of errors � is minimized. 

> @¦
 

E�E�E �
n

1i

22
i3i21i )xx  ( -y   

Taking partial derivatives of � with respect to   and  , 321 EEE . 

¦¦ ¦
   

 E�E�E
n

1i
i

n

1i

n

1i

2
i3i21 yxxn   ……… (1) 

¦¦¦¦
    

 E�E�E
n

1i
ii

n

1i

3
i3

n

1i

2
i2

n

1i
i1 yxxxx  ……… (2) 

¦¦¦¦
    

 E�E�E
n

1i
i

2
i

n

1i

4
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n

1i

3
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n

1i

2
11 yxxxx  ……… (3) 

In matrix form, these equations are: 
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Then these equations can be solved, simultaneously for   and  , 321 EEE  . 

  



ELEMENTARY STATISTICS CHAPTER V 

 -68- 

Fitting an Exponential by the Method of Least Squares: 

Suppose that we suspect the data to fit an exponential equation of the form: 
  a ebxy    ……… (1) 

Taking the natural logarithm: 
)ln(e  ln(a)  )yln( bx�  

ln( )  ln(a)  b xy  �  ……… (2) 
Let /Y  = ln(y)  ;  /β = ln(a)  ;  /α = b 
So, equation (2) now becomes / / /  β α xy  �  
Which is the case of the straight line treated first. For each yi take its natural logarithm to get /

iy . 

The new pairs of the data are (x1, lny1), (x2, lny2), … (xn, lnyn), the solution of which is known. 
 

 
EXAMPLE (5-1): 
Suppose that the polynomial to be fitted to a set of (n) points is y = b x. It can be shown that: 

2

1 1
/

n n

i i i
i i

b x y x
  

 ¦ ¦  

 
 
EXAMPLE (5-2): 
Let y = a xb. 
Taking the ln of both sides, then: 
ln y = ln a + b ln x 
y' = E' + D' x'       (Linear regression) 
where: y' = ln y   ,   E' = ln a   ,   D' = b   ,   x' = ln x 

 
 
EXAMPLE (5-3): 

If a
x b

e1y
�

�  
Manipulation of this equation yields: 

ln x b  aln  -  
y-1

1ln ln � ¸̧
¹

·
¨̈
©

§
 

which is the standard form: 
y' = E' + D' x'       (Linear regression) 

 
 
EXAMPLE (5-4): 

If bxae1
Ly

��
  

This form reduces to: 

 xb  a  
y

y - Lln � ¸̧
¹

·
¨̈
©

§
 

which is in the standard form: 
y' = E' + D' x'       (Linear regression) 
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EXAMPLE (5-5): 

The number of pounds of steam used per month by a chemical plant is thought to be related 
to the average ambient temperature (in ˚F) for that month. The past year’s usage and 
temperature are shown in the following table 
 
Month Temp. Usage Month Temp. Usage 
Jan. 21 185 July 68 621 
Feb. 24 214 Aug. 74 675 
Mar. 32 288 Sept. 62 562 
Apr. 47 424 Oct.  50 452 
May 50 454 Nov. 41 373 
June 59 539 Dec. 30 273 

a. Assuming that a simple linear regression model is appropriate, fit the regression model 
relating steam usage (y) to the average temperature (x). 
b. What is the estimate of expected usage when the average temperature is 55 F˚? 
c. Find the correlation coefficient between x and y. 
 
Solution: 
a. The linear regression model to be fit is y xD E �  

Here, 558x
12

1i
i  ¦

 

, 29256x
12

1i

2
i  ¦

 

, 
12

i i
i 1

x y 265771 , 
12

i
i 1

5060y  

The equation parameters are given by: α = 9.2182, β = - 7.3126. The minimum value of the 
mean square error is MMSE = 38.1315. VERIFY THESE RESULTS. 
 
b. when the temperature is 55 F˚, the linear model predicts a usage of y=9.2182*55 -7.3126 
= 499.69. (Note that this temperature is not one of those that appear in the table, yet the 
model can predict the usage at this temperature). 
 
c. The correlation coefficient between the x and y data = 0.9999. This is very close to 1 
meaning that the data are highly correlated (we know that when y is linearly related to x, the 
correlation coefficient =1). 
 
Now let us try to fit the data in a polynomial 2

321 xx    y E�E�E . The equation parameters 
are:  -5.0455 1  E ,  9.1068 2  E ,  0.0012 3  E .  The MMSE = 37.0561. 
Note that the second order curve fitting has too little effect on the mean square error, which 
essentially implies that the linear model is quite satisfactory. 
The linear model and the measured data are shown in the figure below 
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Sums of Random Variables and the Central Limit Theorem 
 
Theorem: 
Let X1, X2, …, Xn be a sequence of Gaussian random variables, then any linear combination of 
them is Gaussian, i.e., if  

𝑌 = 𝐶1𝑋1 + 𝐶2𝑋2 + ⋯+ 𝐶𝑛𝑋𝑛 
 

Then the pdf of y is:  

2
y

2
Y

(  - )

2 

2
Y

1
( )  

2  

y

Yf y e  

where   nnY CCC PPPP ���  .........    2211  
And ...222 ...    3,232323,131312,12121

222
2

2
2

2
1

2
1

2 ������� UVVUVVUVVVVVV CCCCCCCCC nnY  
 
The following example illustrates this theorem for the case when the random variables are 
dependent Gaussian random variables. 
 

EXAMPLE (5-6): 
Let X1 and X2 be two Gaussian random variables such that: 1 0P  , 2

1 4V  , 2 10P  , 
2
2 9V  , 1,2 0.25U  . Define Y = 2X1 + 3X2 

a. Find the mean and variance of Y 
b. Find P(Y≤ 35). 

 
SOLUTION: 

1 22 3YP P P � = 2(0) + 3(10) = 30 
2 2 2

1 2 1 2 1,24 9 2(2)(3)( )( )YV V V V V U � �  4(4) 9(9) 2(2)(3)(2)(3)(0.25) � � = 115 
35 30( 35) (  ) (0.466)

115
P Y �

�  )  ) = 0.6794 

 
Theorem: 
Let X1, X2, …, Xn be a sequence of independent Gaussian random variables, each with mean iP  
and variance 2

iV . Define  
𝑌 = 𝐶1𝑋1 + 𝐶2𝑋2 + ⋯+ 𝐶𝑛𝑋𝑛 

Then Y has a Gaussian distribution with mean and variance given by: 
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     nnY CCC PPPP ���  .........    2211  
 2 2 2 2 2 2 2

1 1 2 2   ...Y n nC C CV V V V � � �  
EXAMPLE (5-7): 
Let X1 and X2 be two independent Gaussian random variables such that: 1 0P  , 2

1 4V  , 

2 10P  , 2
2 9V  . Define Y = 2X1 + 3X2 

c. Find the mean and variance of Y 
d. Find P(Y≤ 35). 

 
SOLUTION: 

1 22 3YP P P � = 2(0) + 3(10) = 30 
2 2 2

1 24 9YV V V �  = 4(4) 9(9) � = 97 
35 30( 35) (  ) (0.5077)

97
P Y �

�  )  ) = 0.6942. 

 
Theorem: 

Let X1, X2, …, Xn be a sequence of independent Gaussian random variables, each with mean P  
and variance 2V . Define the sample mean (sample average) as 

�̂� =
1
𝑛
∑𝑋𝑖

𝑛

𝑖=1

 

Then, P̂  has a Gaussian distribution with mean and variance given by: ˆ( )E P P ,  
2ˆ( ) /n Var P V . 

 
EXAMPLE (5-8): 
Soft-drink cans are filled by an automated filling machine. The mean fill volume is 330 ml 
and the standard deviation is 1.5 ml. Assume that the fill volumes of the cans are independent 
Gaussian random variables. What is the probability that the average volume of 10 cans 
selected at random from this process is less than 328 ml. 
 
SOLUTION: 

1 2ˆ ( ... ) /nX X X nP  � �  
ˆ{ } ( ... ) /E nP P P P P � �  =330 

2 2ˆ( ) / (1.5) /10 0.225Var nP V    
 P̂  is Gaussian with mean 330 and variance 0.225. 

328 330ˆ( 328) (  ) (-4.21)
0.225

P P �
�  )  ) = 1.2769e-005. 
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The Central Limit Theorem: 
Let X1, X2, …, Xn be a sequence of independent random variables, each with mean xP  and 
variance 2

xV , then the sample mean defined as: 

�̂� =
1
𝑛
∑𝑋𝑖

𝑛

𝑖=1

 

 
approaches a normal distribution (as   n  o f ) with mean and variance given by: ˆ{ } xE P P ,  

2ˆ( ) /n xVar P V . That is, the limiting form of the distribution of: , n  as  
n/

ˆ
  Z

X

XX fo
V

P�P
  is the 

standard normal distribution. 
 

- In many cases of practical interest, if 30n t , the normal approximation will be satisfactory 
regardless of the shape of the population. If n < 30, the central limit theorem will work well if 
the distribution of the population is not severely non-normal. 
 
The theorem works well for small samples n = 4 , 5 when the population has a continuous 
distribution as illustrated in the following example. 
 

 
EXAMPLE (5-9): 

Let Y = X1+ X2+X3 , where Xi are uniform over the interval (0 ≤ Xi ≤ 1) and are independent. 
Find and sketch the pdf of Y. 
 
SOLUTION: 

First we find the pdf of (X1+ X2) by convolving the pdf of X1 with that for X2. Then the new 

pdf is convolved with that for X3. The result is: 

2

2

2

0 0
/ 2 0 1

( ) 3 3/ 2 1 2
2 3(3 ) / 2

30

Y

y
y y

f y y y y
yy

y

d
° � d°° � � � d®
° � d�°

!°̄

 

The mean and variance of Y are: 3(1/ 2) 3/ 2YP   , 2 23( ) 3(1/12) 3/12Y xV V   . In the 
figure below we plot the pdf’s of X and (X1+ X2). Also, we plot the Gaussian pdf (Solid line) 
with mean 3/2 and variance 3/12 on the same graph of the pdf for Y=X1+ X2+X3 (dashed 
line) 
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It is very clear that even for n=3, f(y) is very close to the Gaussian curve.  
Now let us calculate P(0≤ Y ≤ 1) using the exact formula and the approximation. 
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P(0≤ Y ≤ 1) =
1

2

0

/ 2y dy³  = 0.1666; Exact probability 

P(0≤ Y’ ≤ 1) =  1 1.5 0 1.5( ) ( )
0.25 0.25
� �

) �) = 0.1587-0.0013= 0.1574.; Gaussian approximation 

(0 ' 1) 0.1574 94.44%
(0 1) 0.1666

P Y
P Y

d d
  

d d
 

 
EXAMPLE (5-10): 

An electronic company manufactures resistors that have a mean resistance of 100 Ω and a 
standard deviation of 10 Ω. Find the probability that a random sample of n = 25 resistors will 
have an average resistance less than 95 Ω. 
 
SOLUTION: 

XP̂  is approximately normal with: 

mean = )ˆ(E XP = 100 Ω. 

25
10

n
 ˆ)ˆ(Var

22
X2

XX  
V

 V P  

2
25

10
n

 ˆ
22

X
X   

V
 V  

P{ XP̂  < 95} = P{Z < 
2
10095 � } 

                   00621.0)5.2(  �)  

 
 
EXAMPLE (5-11): 

The lifetime of a special type of battery is a random variable with mean 40 hours and standard 
deviation 20 hours. A battery is used until it fails, then it is immediately replaced by a new 
one. Assume we have 25 such batteries, the lifetime of which are independent, approximate 
the probability that at least 1100 hours of use can be obtained. 
 
SOLUTION: 
Let X1, X2, …, X25  be the lifetimes of the batteries. 

Let Y = X1 + X2 + …… + X25  be the overall lifetime of the system 

Since Xi are independent, then Y will be approximately normal with mean and variance: 

100040*2525... 2521    ��� PPPPPY  

10000)20(*2525... 222
25

2
2

2
1

2    ��� XY VVVVV  

1)P(Z) 
10000

10001100  ()1100( ! 
�

! ! ZPYP = 1- )1() =0.158655 

 
 

95 
 

100 
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EXAMPLE (5-12): 

Suppose that the random variable X has a uniform distribution: over the interval 0≤ X≤ 1.A 
random sample of size 30 is drawn from this distribution. 
a. Find the probability distribution of the sample mean XP̂  
b. Find 52.0)ˆ( X �PP  
 
SOLUTION: 
Since X has a continuous distribution, and since n = 30, then the probability density function 

of the sample mean XP̂  is approximately normal with: 

  )ˆ(E XP = E(X) = 1/2. 

360
1

30
12/1 ˆ)ˆ(

2
2

X     
n

Var X
X

V
VP  

P{ XP̂  < 0.52} = P{Z < 379.0
360/1

5.052.0
 

� } 

                   648027.0)379.0(  )  

 
 
EXAMPLE (5-13): 

Suppose that X is a discrete distribution which assumes the two values 1 and 0 with equal 
probability. A random sample of size 50 is drawn from this distribution. 
a. Find the probability distribution of the sample mean XP̂  
b. Find 6.0)ˆ( X �PP  
 
SOLUTION: 
Since n=50 > 30, then we can approximate the sample mean by a normal distribution with: 
  )ˆ(E XP = E(X) = 0*1/2 + 1*1/2 =1/2. 

200
1

50
2/1*)2/11(2/1*)2/10(

 ˆ)ˆ(
222

2
X  

���
   

n
Var X

X
V

VP  

P{ XP̂  < 0.6} = P{Z < 
200/1

5.06.0 � } 92073.0)414.1(  )  
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Estimation of Parameters 
- The field of statistical inference consists of those method used to make decisions or to draw 

conclusions about a population. These methods utilize the information contained in a sample 
from a population in drawing conclusions. 
 

- Statistical inference may be divided into two major areas: 
Parameter estimation and hypotheses testing. In this chapter, we focus on parameter estimation 
and consider hypothesis testing in the next chapter. 
 
Basic Definitions and Terminology  
 

- In statistics, we take a set of n independent measurements (𝑋1, 𝑋2,… , 𝑋𝑛) of size (n) from a 
distribution X (population) for which the pdf is  (x)Xf  by performing that experiment (n) times. 

- The random variables 𝑋1, 𝑋2 … , 𝑋𝑛  , called a random sample, have the same distribution (
X (x ) if ) and are assumed to be  independent. 

- The purpose is to draw conclusions from properties of sample about properties of the 
distribution of the corresponding X (the population). We do this by calculating point 
estimators or confidence intervals or by performing a test of parameters or by a test for 
distribution functions. 
 

- For populations we define numbers called parameters that characterize important properties of 
the distributions ( XP  and 2

XV  in normal distribution, (p) in binomial distribution, λ for the 
exponential distribution, the rate of arrival in the Poisson distribution, the end points a and b in 
the uniform distribution). Here, the pdf is explicitly expressed in terms of the parameter as 

 )(x;X Tf . 
 

-  The unknown parameter (T) is estimated by some appropriate function of the observations  
 �̂� = 𝒇(𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏)  
 

- The function 𝜃 = 𝑓(𝑋1, 𝑋2,… , 𝑋𝑛)  is called a statistic or an estimator. A particular value of the 
estimator is called an estimate of T.  
 

- A probability distribution of a statistic is called its sampling distribution 
 

- Estimator: is a function of the observable sample data that is used to estimate an unknown 
population parameter. 
 

- We consider two types of parameter estimation, point estimation and interval estimation. 
 

Point Estimation 
Point estimation involves the use of the sample data to calculate a single value, which is to serve 
as a best guess for an unknown parameter. In other words, a point estimate of some unknown 
population parameter (T) is a single numerical value 1 2 n

ˆ  (X ,  X , ..., X ) fT  . 
 

- In the table below we list some examples of point estimators and the parameters that are used to 
estimate. 
 

Unknown  
Parameter (T) Statistic )Θ( ˆ  Remarks 
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XP  ¦
 

 P
n

1i
iX x

n
1  ˆ  

Used to estimate the mean regardless 
of whether the variance is known or 
unknown. 

2
XV  ¦

 

P V
n

1i

2
Xi

2
X )ˆ - x(

1 -n 
1  ˆ  Used to estimate the variance when the 

mean is unknown. 

2
XV  ¦

 

P V
n

1i

2
Xi

2
X ) - x(

n
1  ˆ  Used to estimate the variance when the 

mean is known. 

p 
n
xP̂   

Used to estimate the probability of  
a success in a binomial distribution. 
n : sample size 
x : number of successes in the sample 

2X1X P�P  ¦¦
  

� PP
n

1i 2

i 2
n

1i 1

i 1
X2X1 n

x
n
x

  ˆ-ˆ  Used to estimate the difference in  
the means of two populations. 

p1 – p2 
2

2

1

1
21 n

x
n
x

P̂P̂ � �  Used to estimate the difference in  
the proportions of two populations. 

 
� Desirable Properties of Point Estimators: 
1- An estimator should be close to the true value of the unknown parameter. 

- Definition: 
A point estimator )ˆ(T  is unbiased estimator of (T) if ˆ( )E T T . 
If the estimator is biased, then B)ˆ(E  T�T  is called the bias of the estimator )ˆ(T . 

2- Let  ˆ , ˆ
21 TT  be unbiased estimators of (T). 

A logical principle of estimation when selecting  
among several estimators is to chooses the one 
that has the minimum variance. 
 

- Definition: 
If we consider all unbiased estimators of (T), 
the one with the smallest variance is called 
the minimum variance unbiased estimator (MVUE). 
 
When ( )ˆ(Var)ˆ(Var 21 T�T , 1T̂  is called more efficient than 2T̂ ) 
The variance })](Eˆ{[E)ˆ(Var 2T�T T  is a measure of the imprecision of the estimator.  

3- the mean square error of an estimator )ˆ(T  of the parameter (T) is defined as:  
2ˆ ˆ( ) ( )MSE ET T T �  

This measure of goodness takes into account both the bias and imprecision. 
)ˆ(MSE T  can also be expressed as: 

})]))ˆ(E(())ˆ(Eˆ{[(E   }])ˆ(E)ˆ(Eˆ{[E)ˆ(MSE 2

B 

2

 

T�T�T�T T�T�T�T T  

22

0 

2 B)ˆ(VarB)}ˆ(Eˆ{(E B 2))ˆ(Eˆ(E)ˆ(MSE �T �T�T�T�T T
 

 

2ˆ ˆ( ) ( )MSE Var BT T �  
 

- Definition: 

T 

Distribution 
of   

 
Distribution 

of   
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An estimator whose variance and bias go to zero as the number of observations goes to infinity 
is called consistent. 
 

 
EXAMPLE (5-14): 
Show that the sample mean XP̂  

 
n 
1ˆ

1
¦
 

 
n

i
iX xP  

is an unbiased estimator of the population mean  XP  
SOLUTION:  
 

¿
¾
½

¯
®


 ¦
 

n

i
iX xE

n
E

1

1  }ˆ{P =
¿
¾
½

¯
®
¦

 

n

i
ixE

n 1
}{1 =

¿
¾
½

¯
®
¦

 

n

i
xn 1

1 P = xxn
n

PP  )(1  (unbiased estimator) 

The variance of  ˆ XP is  

¿
¾
½

¯
®


 ¦
 

n

i
iX xVar

n
Var

1
2

1  }ˆ{P =
n

Var X

2
X  }ˆ{ V

P   (The variance tends to zero as n tends to infinity. 

Therefore,  ˆ XP  is unbiased and consistent estimator. 
 

 
 
EXAMPLE (5-15): 
Show that the sample variance 2

XV̂   (when the mean is unknown). 

 )ˆ - (
1 -n 

1ˆ
1

2
X

2 ¦
 

 
n

i
iX x PV  

is an unbiased estimator of the population variance 2
XV  

SOLUTION: A computationally simpler expression for the sample variance is 
 

)1n(n

xxn
  ˆ

2n

1i
i

n

1i

2
i

2
X �

¸
¹

·
¨
©

§
�

 V
¦¦
  . 

°¿

°
¾
½

°̄

°
®


¸
¹

·
¨
©

§
�

�
 ¦¦

  

2

11

22

)1(
1  }ˆ{

n

i
i

n

i
iX xxnE

nn
E V =

°¿

°
¾
½

°̄

°
®


¸
¹

·
¨
©

§
�

�
 ¦¦

  

2

11

22 )(
)1(

1  }ˆ{
n

i
i

n

i
iX xExEn

nn
E V  

Note that since 222  }{ XXixE VP � , then  )()( 222

1

2
XX

n

i
i nxEn VP � ¦

 

 

 

¦¦¦¦¦¦¦
       

 ¸̧
¹

·
¨̈
©

§
 ¸̧

¹

·
¨̈
©

§
 ¸

¹

·
¨
©

§ n

i

n

j
ji

n

i

n

j
ji

n

j
j

n

i
i

n

i
i xxExxExxExE

1 11 111

2

1
)(  

The double summation contains n2 elements, n terms are such that i=j, and (n2-n)=n(n-1) are 
such that i ≠j. When i=j, 222  }{ XXixE VP � , and when i ≠j,   )()()( jiji xExExxE 2

XP  
since the random variables are independent. 

Therefore,  ¦¦
  

n

i

n

j
ji xxE

1 1
)( 222 )1()( XXX nnn PVP ��� = 222

XX nn PV �  
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^ `2222222 ) (
1) -n(n 

1  }ˆ{ XXXXX nnnE PVVPV ���  

^ ` 22222 )1(
1) -n(n 

1 
1) -n(n 

1  }ˆ{ XXXX nnnnE VVVV � �  

2
X

2
X   }ˆ{E V V  

 
 

 
EXAMPLE (5-16): 
Let  𝑋1 and 𝑋2 be a random sample of size two from a population with mean  𝜇𝑥 and variance  

2
XV . Two estimators for 𝜇𝑥  are proposed:

2
 ˆ 21

1
XX �

 P  and 
3
2 ˆ 21

2
XX �

 P . Which 

estimator is better and in what sense? 
 
SOLUTION: 

x
xxXXEE P

PP
P  

�
 

�
 

2
)

2
( )ˆ( 21

1  (Therefore,  ˆ1P is an unbiased estimator of xP ) 

x
xxXXEE P

PP
P  

�
 

�
 

3
2

)
3
2( )ˆ( 21

2  (Therefore,  ˆ2P is also an unbiased estimator of 

xP ) 
Now, we evaluate the variance of each one of the two estimators: 
From previous results we know: 

22221
1 2

1
4
1

4
1)

2
( )ˆ( xxx

XXVarVar VVVP  � 
�

  

22221
2 9

5
9
4

9
1)

3
2( )ˆ( xxx

XXVarVar VVVP  � 
�

  

Since 2
1 2

1 )ˆ( xVar VP   < 2
2 9

5 )ˆ( xVar VP  , then the first estimator is more efficient, and 

therefore is better than the second. 
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Method for Obtaining Point Estimators: The Maximum Likelihood (ML) Estimator 

Let us start this section with two motivating examples: 
 

 

EXAMPLE (6-1): 
 

The probability p = P(H) of a coin may be 0.1 or it may be 0.9. To resolve the uncertainty, 
the coin was tossed 10 times and 3 heads were observed. What will be your estimate for p in 
light of the experiment outcome? 
 
Solution: 
Let us calculate the probability of getting 3 successes in 10 trials for the two possible values 
of p using the binomial distribution 

73 )1.01()1.0(
3

10
)1.0;3( �¸̧

¹

·
¨̈
©

§
  xP = 0.0574 

73 )9.01()9.0(
3

10
)9.0;3( �¸̧

¹

·
¨̈
©

§
  xP = 8.748e-6 

Therefore, we conclude that p=0.1 has a higher probability of producing the outcome and 
our estimate for p would be 1.0ˆ  p . 
Instead, suppose that the experiment resulted in 8 heads, what would be our estimate for p?. 
Again, we calculate 

)1.0;8(  xP =3.645 e-7 
)9.0;8(  xP =0.1937 

In this case 9.0ˆ  p . 
 

 

EXAMPLE (6-2): 
 

Let p be the probability of a success in a binomial distribution. This probability is unknown. 
To estimate p, the experiment is performed 10 times and 3 successes were observed. Find a 
maximum likelihood estimate for p. 
 
Solution: 
Any value of 10 dd p  is likely to produce the three successes in the 10 trials. But there is 
a specific value, p̂ , to be estimated, that has the highest probability of producing the result. 
This value of p is called the maximum likelihood estimate. 
 
The probability of getting 3 successes in 10 trials for any value of p is: 

73 )1(
3

10
);3()( pppxPpf �¸̧

¹

·
¨̈
©

§
     

To find the value of p that maximizes f(p), we differentiate f(p) with respect to p, set the 
derivative to zero, and solve for p 

0)]1()1(7)1(3[
3

10)( 6372  ����¸̧
¹

·
¨̈
©

§
 pppp

dp
pdf  

Solving for p we get 10/3ˆ  p . 
 
For the sake of comparison, let us compute f(p) at three different values of p; p=0.3, p=0.35, 
and p=0.25.  f(0.3) = 0.2668, f(0.35) = 0.2503, f(0.25) = 0.2522. Hence 10/3ˆ  p  has the 
highest probability of generating the 3 successes in 10 trials. 
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How to Obtain the Maximum Likelihood Estimator 

 
The maximum likelihood estimator selects the parameter 𝜃 due to which the measurements 
𝑋1, 𝑋2, … , 𝑋𝑛 occur with the largest possible probability. The following steps summarize the 
procedure for obtaining a maximum likelihood estimator for a continuous parameter θ based on 
as random sample of measurements 𝑋1, 𝑋2,… , 𝑋𝑛 of size n 
 
 

x Form the joint pdf of the measurements 𝑋1, 𝑋2, … , 𝑋𝑛  (expressed in terms of  𝜃). The 
joint pdf is also known as the likelihood function. 

 
𝑳(𝜽) = 𝒇(𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏; 𝜽) 

 
Since the observations are independent, the joint pdf is the product of the marginal 
pdf’s, i.e. 

 
𝑳(𝜽) = 𝒇(𝑿𝟏, 𝜽)𝒇(𝑿𝟐, 𝜽)… , 𝒇(𝑿𝒏; 𝜽) 

 
x The maximum likelihood technique looks for that value )ˆ(T  of the parameter 𝜃 that 

maximizes the joint pdf of the samples. A necessary condition for the maximum 
likelihood estimator of (𝜃) is: 

( ) 0L T
T
w

 
w

 or equivalently ^ `ln ( ) 0L T
T
w

 
w

 

 
 Note that this step is justified since ln(u) is a monotonically increasing function in u. 
 

x Solve for 𝜃  that maximizes 𝑳(𝜽) . The solution to ^ `ln ( ) 0L T
T
w

 
w

 is the desired 

maximum likelihood estimator. 

 
The following two examples illustrate this technique. 
 

  



ESTIMATION THEORY AND APPLICATIONS CHAPTER VI 

-- 83 

 

EXAMPLE (6-3): 
 

Given a random sample of size (n) taken from a Gaussian population with parameters XP  
and 2

XV . Use the ML technique to find estimators for the cases: 
a- The mean XP  when the variance 2

XV  is assumed known. 
b- The variance 2

XV  when the mean XP  is assumed known. 
c- The mean XP  and variance 2

XV  when both are assumed unknown. 
 

 

SOLUTION: 

� �2
n

2
X

2
)x(

2
)x(n

1i
2
X   2

  
  2

1L ee
n

1i
2
X

2
Xi

2
X

2
Xi

VS

¦
 

VS
 

 V

P�
�

V

P��

 
�    Î   � �2

X

n

1  i
2
X

2
Xi   2ln

2
n

2
)x(

 )Lln( VS�
V
P�

� ¦
 

 

a- Set 0)(Lln
d

d

X

 P
P

  Î  treating 2
XV  as a constant. 

0)ˆx(
n

1  i

2
Xi  P�¦

 

   Î  X
1

1ˆ   
n

n

i
i

xP
 

 ¦        ……… (1)      Unbiased Estimator 
 

Thus the ML estimator of the mean is the sample average mentioned earlier. 

b- Set 0)(Lln
d

d 2
X2

X

 V
V

  Î  treating XP  as a constant  

The result is 2 2
X

1

1ˆ   (  - )
n

n

X i
i

xV P
 

 ¦             ……… (2)      Unbiased Estimator 

Note that: the division is by (n) since we are using the known mean of the distribution 
 

c- Set 2
Xln (  , ) 0X

X

L P V
P
w

 
w

 and 2
X2

X

ln (  , ) 0XL P V
V
w

 
w

  

This results in:      X
1

1ˆ   
n

n

i
i

xP
 

 ¦     and     ¦
 

P V
n

1i

2
Xi

2
X )ˆ - x(

n
1  ˆ  

2
XV̂  is a biased estimator since 

n
 1) -(n 

  }ˆ{E
2
X2

X
V

 V  

For this general case, the unbiased estimator of 2
XV  is: 2 2

X
1

1ˆ ˆ  (  - )
n-1

n

X i
i

xV P
 

 ¦  

Which is the sample variance introduced earlier. 
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EXAMPLE (6-4): 
 

Given a random sample of size (n) taken from a distribution X with pdf 
DD xxf )1()( � , 0 < x < 1. 

Use the ML technique to find an estimators for α. 
 

SOLUTION: 

The likelihood function is 

 )()...()()( 21 nxfxfxfL  D  
DD DDD nxxL )1...()1()( 1 �� = DDD n

n xx ...)1( 1�  

nxxnL ln...ln)1ln()(ln 1 DDDD ���  
Differentiating with respect to α and setting the derivative to zero, we get 

0ln...ln
1ˆ

)(ln 1  ��
�

 nxxnL
d
d

D
D

D
 

Solving for D̂  we get  

1
/)ln(

11
ln...ln

ˆ
11

�
�

 �
��

 
¦  

n

i in nxxx
nD  (note that 0ln �ix  since 0 < x < 1) 

Now, suppose that our random sample yield the observations 
{0.52, 0.6, 0.55, 0.58, 0.5} 
 
Our estimate of 𝛼 is: 

5 5 2ˆ 1 1
ln 0.52 ln 0.6 ln 0.55 ln 0.58 ln 0.5 3 3

D  �  �  
� � � � �
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Finding Interval Estimators for the Mean and Variance 
- An interval estimate of an unknown parameter of (T) is an interval of the form 21 TdTdT  where 

the end points 21  and TT  depend on the numerical value of the parameter to be estimated )ˆ(T  
for a particular sample. From the sampling distribution of )ˆ(T  we will be able to determine 
values of 21  and TT  such that: 
 

1 2( ) 1   ;  0    1P T T T D Dd d  � � �  
 
where: T is the unknown parameter 
 )1( D�  is the confidence coefficient 
 D  is called the confidence level. 
 1 2 and  T T  are the lower and the upper confidence limits 
 

I. Confidence Interval on the Mean: (Variance Known) 

- Suppose that the population of interest has a Gaussian distribution with unknown mean XP  and 
known variance 2

XV . 

The sampling distribution of ¦
 

 P
n

1i
iX x

n
1  ˆ  is Gaussian with mean XP  and variance 

n

2
XV . 

Therefore, the distribution of the statistic 
n/

ˆ
  Z

X

XX

V

P�P
  is a standard normal distribution. 

^ ` D� dd� DD 1ZP
22

zz   Î  D� 
°¿

°
¾
½

°̄
°
®


d
V

P�P
d� DD 1

n
ˆ

P
2

X

XX

2
zz  

^ ` D� V�PdPdV�P DD 1nˆnˆP X
2

XXX
2

X zz  

 
 
 
 
 
 
 
 
 
 

- Definition: 

If XP̂  is the sample mean of a random sample of size (n) from a population with known variance 
2
XV , a 100(1 – D)% confidence interval on XP  is given by: 

 
 

2 2
ˆ ˆ( ) 1X X X X XP n nD DP V P P V D� d d �  �z z  

 
where 

2
Dz  is the upper 100(D/2)% point of the standard normal. 

 

-z�D/2  

D/2 

z�D/2  

D/2 

z 

   
z 

Confidence Interval 

 
Error 
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� Choice of the Sample Size: 

The definition above means that in using XP̂  to estimate XP , the error Xˆ| |XE P P �  is less 
than or equal to nX

2
VDz  with confidence 100(1 – D). In situations where the sample size 

can be controlled, we can choose (n) so that we are 100(1 – D)% confident that the error in 
estimating XP  is less than a specified error (E).  

(n) is chosen such that   
2

E  X nD V z   Î  
2

2n  
E

XD V§ ·
¨ ¸ 
¨ ¸
© ¹

z
. 

 
EXAMPLE (6-5): 

The following samples are drawn from a population that is known to be Gaussian. 

7.31 10.80 11.27 11.91 5.51 8.00 9.03 14.42 10.24 10.91 
 

Find the confidence limits for a 95% confidence level if the variance of the population is 4. 

SOLUTION: 
From the sample we have: 
n = 10 

¦
 

 P
n

1i
iX x

n
1  ˆ  = 9.94 

2
Dz  = 1.96 

^ ` D� V�PdPdV�P DD 1nˆnˆP X
2

XXX
2

X zz  

95.0
10

496.194.9
10

496.194.9P X  
¿
¾
½

¯
®
 u

�dPd
u

�  

 
^ ` 95.01796.1170.8P X  dPd  

 
With n=10, we are 95% confident that the error is bounded by 

2
E  1.96*2 / 10 1.239X nD V   z  

Now we find the sample size if we want to be 95% confident that the error is less than 0.2 
Solution: n is obtained using the formula 

2
2

2 1.96*2n  385
E 0.2

XD V§ · § ·¨ ¸   ¨ ¸¨ ¸ © ¹© ¹

z
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II. Confidence Interval on the Mean: (Variance Unknown) 

- Suppose that the population of interest has a normal distribution with unknown mean XP  and 
unknown variance 2

XV . 
 

- Definition: 

Let X1, X2, …, Xn be a random sample for a normal distribution with unknown mean XP  and 
unknown variance 2

XV . The quantity 
ˆ

  
ˆ /

X

X

T
n

P P
V

�
  has a (t-distribution) with (n – 1) degree of freedom. 

 
The T-pfd is: 
 

 f��f

¸̧
¹

·
¨̈
©

§
�

¸
¹
·

¨
©
§*S

¸
¹
·

¨
©
§ �

*
 

�
  t  -    

1k
t

1

2
k  k 

2
)1k(

)t(f
2

1k
2

T
 

 
(k) is the number of degrees of freedom.  

The mean of the t-distribution is zero and the variance 
2k

k
�

. 

The t-distribution is symmetrical and unimodal. The maximum is reached at the mean value 
(quite similar to normal distribution. As fok , the t-distribution converges to the normal 
distribution). 
 

^ `2 , n-1 2 , n-1 1P Tt tD D
D� d d  �  

n/ˆ
ˆ

  T
X

X

V

P�P
  is the t-distribution with (n – 1) degree of freedom 

t 1-n , 2D
 is the upper 100(D/2)% point of the t- distribution with (n – 1) degree of freedom 

D� 
°¿

°
¾
½

°̄
°
®


d
V

P�P
d�

DD
1

nˆ
ˆ

P tt 1-n , 2
X

XX
1-n , 2

 

2 , n-1 2 , n-1

ˆ ˆˆ ˆ 1X X
X X XP

n nt tD D

V VP P P D ½� d d �  �® ¾
¯ ¿

 

 
- Definition: 

If XP̂  and XV̂  are the mean and standard deviation of a random sample from a normal 
distribution with unknown variance 2

XV , the 100(1 – D)% confidence interval on XP  is: 

- 2 , n-1 2 , n-1

ˆ ˆˆ ˆ 1X X
X X XP

n nt tD D

V VP P P D ½� d d �  �® ¾
¯ ¿

 

 

where t 1-n , 2D
is the upper 100(D/2)% point of the t-distribution with (n–1) degrees of freedom. 

-t�D/2  

D/2 

tD/2  

D/2 

t 

fT(t) 
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EXAMPLE (6-6): 

For the following samples drawn from a normal population:  

7.31 10.80 11.27 11.91 5.51 8.00 9.03 14.42 10.24 10.91 
 

Find 95% confidence interval for the mean if the variance of the population is unknown. 
 

SOLUTION: 
From the sample we have: 

¦
 

 P
n

1i
iX x

n
1  ˆ  = 9.94                ¦

 

P V
n

1i

2
Xi

2
X )ˆ - x(

1-n
1  ˆ  = 6.51 

From tables of t-distribution: 

Number of degrees of freedom = n – 1 = 10 – 1 = 9 = ν  

263.2025.0205.0 t 9 , 2  o Do D
D

 

D� 
¿
¾
½

¯
®
 V

�PdPd
V

�P
DD

1
n

ˆˆ
n

ˆˆP X
1-n , 2XX

X
1-n , 2X tt  

95.0
10
51.6263.294.9

10
51.6263.294.9P X  

¿
¾
½

¯
®


�dPd�  = ^ ` 95.077.1111.8P X  dPd  
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III. Confidence Interval on the Variance of a Normal Population: (Mean Known) 

- When the population is normal, the sampling distribution of: 
2n

1i X

Xi
2
X

2
X2 xˆ n ¦

 
¸̧
¹

·
¨̈
©

§
V
P�

 
V
V

 F   ;  2 2
X

1

1ˆ   (  - )
n

n

X i
i

xV P
 

 ¦  

is chi-square with (n) degrees of freedom. 
The confidence interval is developed as: 
^ ` D� FdFdF DD� 1P 2

n , 2
22

n , 21  
2

2 2
1 2 , n 2 , n2

ˆ 1X

X

nP D D
VF F D
V�

 ½
d d  �® ¾

¯ ¿
 

D� 
°¿

°
¾
½

°̄
°
®


F
V

dVd
F
V

D�D

1
ˆ nˆ n

P 2
n , 21

2
X2

X2
n , 2

2
X  

 
- Definition: 

If 2
XV̂  is the sample variance from a random sample of (n) observations from a normal 

distribution with a known mean and an unknown variance 2
XV , then a 100(1 – D)% confidence 

interval on 2
XV  is: 

2 2
2

2 2
2 , n 1 2 , n

ˆ ˆ  X X
X

n n
D D

V VV
F F �

d d  

where 2
n , 21

2
n , 2  and D�D FF  is the upper and lower 100(D/2)% point of the chi-square distribution 

with (n) degrees of freedom, respectively. 
 

 
EXAMPLE (6-7): 

For the following samples drawn from a normal population:  

7.31 10.80 11.27 11.91 5.51 8.00 9.03 14.42 10.24 10.91 
 

Find 95% confidence interval for estimation of the variance if the mean of the population is 
known to be 10. 
 

SOLUTION: 
From the sample we have: 

¦
 

 P
n

1i
iX x

n
1  ˆ  = 9.94    and     ¦

 

P V
n

1i

2
Xi

2
X ) - x(

n
1  ˆ  = 5.866 

From tables of 2χ -distribution: 

Number of degree of freedom = n = 10 = ν  

025.0205.0  Do D                   Î      247.3  and  20.483  2
10 , 975.0

2
10 , 025.0  F F  

D� 
°¿

°
¾
½

°̄
°
®


F
V

dVd
F
V

D�D

1
ˆ nˆ n

P 2
n , 21

2
X2

X2
n , 2

2
X     Î      95.0

247.3
866.510

483.20
866.510P 2

X  
¿
¾
½

¯
®
 u

dVd
u

 

 

^ ` 95.0065.18863.2P 2
X  dVd  

-F2
��D/2 , n 

D/2 D/2 
1 – D 

-F2
D/2 , n 
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IV. Confidence Interval on the Variance of a Normal Population: (Mean Unknown) 

- When the population is normal, the sampling distribution of: 
2n

1i X

Xi
2
X

2
X2 xˆ )1n( ¦

 
¸̧
¹

·
¨̈
©

§
V
P�

 
V

V�
 F   ;  2 2

X
1

1ˆ ˆ  (  - )
n-1

n

X i
i

xV P
 

 ¦  

is chi-square with (n – 1) degrees of freedom. 
 

- Definition: 

If 2
XV̂  is the sample variance from a random sample of (n) observations from a normal 

distribution with an unknown mean and an unknown variance 2
XV , then a 100(1 – D)% 

confidence interval on 2
XV  is: 

2 2
2

2 2
2 , n-1 1 2 , n-1

ˆ ˆ( 1) ( 1) X X
X

n n
D D

V VV
F F �

� �
d d  

where 2
1-n , 21

2
1-n , 2  and D�D FF  is the upper and lower 100(D/2)% point of the chi-square 

distribution with (n – 1) degrees of freedom, respectively. 
 

 
EXAMPLE (6-8): 

For the following samples drawn from a normal population:  

7.31 10.80 11.27 11.91 5.51 8.00 9.03 14.42 10.24 10.91 
 

Find 95% confidence interval for estimation of the variance if the mean of the population is 
unknown. 
 
SOLUTION: 
From the sample we have: 

¦
 

 P
n

1i
iX x

n
1  ˆ  = 9.94  

¦
 

P V
n

1i

2
Xi

2
X )ˆ - x(

1-n
1  ˆ  = 6.51 

From tables of 2χ -distribution: 

Number of degree of freedom = n = 10 – 1 = 9 = ν  

025.0205.0  Do D  

7.2  and  19.023  2
9 , 975.0

2
9 , 025.0  F F  

D� 
°¿

°
¾
½

°̄
°
®


F
V�

dVd
F

V�

D�D

1
ˆ )1n(ˆ )1n(

P 2
1-n , 21

2
X2

X2
1-n , 2

2
X  

95.0
7.2
51.69

023.19
51.69P 2

X  
¿
¾
½

¯
®
 u

dVd
u

 

^ ` 95.07.210799.3P 2
X  dVd  
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V. Confidence Interval on a Binomial Proportion: 

- Suppose that a random sample of size (n) has been taken from a large population and that       X 
; (x d  n) observations in this sample belong to a class of interest. Then nxP̂   is a point 
estimator of the proportion of the population (p) that belongs to this class. Here (n) and (p) are 
the parameters of a binomial distribution. 
(X) is binomial with mean (np) and variance np(1 – p). Therefore, 

nxP̂   has a mean (p) and variance 
n

p)- (1 p
n

p)- (1 p n
2   

 
- As was mentioned earlier (limiting case of the binomial distribution to the normal distribution) 

the sampling distribution P̂  is approximately normal with mean (p) and variance 
n

p)- (1 p .  

(p is not too close to 0 or 1 and (n) is large; {n p > 5} and {n p (1 – p) > 5}. 
 

- To find a 100(1 – D)% confidence interval on the binomial proportion using the normal 
approximation we construct the statistic: 

n
)p1(p

pP̂
)p1(np

npX  Z
�

�
 

�

�
   Î ^ ` D� dd� DD 1ZP

22
zz  

D� 

°
°
¿

°°
¾

½

°
°
¯

°°
®



d
�
�

d� DD 1

n
)p1(p

pP̂P
22

zz  

D� 
¿
¾
½

¯
®
 �

�dd
�

� DD 1
n

)p1(pP̂p
n

)p1(pP̂P
22

zz  

The last equation expresses the upper and lower limits of the confidence interval in terms of the 
unknown parameter. 

- The solution is to replace (p) by  P̂  in 
n

p)- (1 p
 so that: 

2 2

ˆ ˆ ˆ ˆ(1 ) (1 )ˆ ˆ 1P P P PP P p P
n nD D D

 ½� �° °� d d �  �® ¾
° °¯ ¿

z z  

 

 
EXAMPLE (6-9): 

In a random sample of 85 automobile engine crankshafts bearings, 10 have a surface finish 
that is rougher than the specifications allow. A 95% confidence interval for (p) is: 

025.0
2

zz  D  = 1.96         and         12.0
85
10

n
xP̂     

D� 
°¿

°
¾
½

°̄

°
®
 �

�dd
�

� DD 1
n

)P̂1(P̂P̂p
n

)P̂1(P̂P̂P
22

zz  

95.0
85

)12.01(12.096.112.0p
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)12.01(12.096.112.0P  
¿
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½

¯
®
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�
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^ ` 95.019.0p05.0P  dd  
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Problem Set (5) 
Estimation Theory 

 
1) A manufacturer of semiconductor devices takes a random sample of size n of chips and 
tests them, classifying each chip as defective or non-defective. Let Xi = 0 if the chip is non-
defective and Xi = 1 if the chip is defective. 

a. Find the mean and variance of the sample average defined as ¦
 

 
n

i
iX

n
X

1

1
. 

b. Compare the sample variance for the case when n = 50 and n = 100. Comment on the 
effect of sample size on the variance of the sampling distribution 

c. If p is the probability of a defective chip, find an unbiased estimator of p. 
 
2) Consider a random sample of size n taken from a discrete distribution, the pmf of which is 
given by: xxxf �� 1)1()( TT  , x = 0, 1. Two estimators for θ are proposed 

 ¦
 

  4
n

i
iX

n
X

1
1

1ˆ  

 
2
1ˆ

2 �
�

 4
n
Xn  

a. Which one of these two estimators is an unbiased estimator of the parameter θ? 
b. Which one has a smaller variance? 

 
3) In a random sample of 500 persons in the city of Ramallah, it was found that 372 voted for 
Abu Mazen in the 2005 presidential elections for the Palestinian Authority. Determine a 95% 
confidence interval for p, the actual proportion of Ramallah residents supporting Abu Mazen. 
 
4) The compressive strength of concrete is being tested by a civil engineer. He tests 12 
specimens and obtains the following data (in psi) 
2216 2237 2249 2204 2225 2301 2281 2283 
2318 2255 2275 2295 

a.    Find point estimates for the mean and variance of the strength 
b. Construct a 95% confidence interval on the mean strength 
c. Construct a 95% confidence interval on the variance of the strength. 

 
5) A random sample of n = 36 observations has been drawn from a normal distribution with 
mean 50 and standard deviation 12. Find the probability that the sample mean is in the interval 
47 to 53. 
 
6) Given the following pair of measurements, which are suspected to be linearly related. Do a 
regression analysis to find the linear relationship ED � xy  

 
iX 0.77 4.39 4.11 2.91 0.56 0.89 4.09 2.38 0.78 2.52 
iY 14.62 22.21 20.12 19.42 14.69 15.23 24.48 16.88 8.56 16.24 

 
7) A machine produces metal rods used in an automobile suspension system. A random 
sample of 9 rods is selected and the diameter is measured. The resulting data (in mm) are: 
8.24 8.23 8.20 8.21 8.22 8.28 8.17 8.26 8.19 
If the sampling comes from a normal population with a mean rod diameter  P and a variance 

2V , find  
a. point estimates for the mean and the variance 
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b. a 95% confidence interval on the mean 
c. a 95% confidence interval on the variance 

 
8) A random sample of n = 10 structural elements is tested for compressive strength. We know 
that the true mean compressive strength is P = 5000 psi and the standard deviation is V =  100 
psi. Find the probability that the sample mean compressive strength exceeds 4985 psi. 
 
9) Let X1 and X2 be a sample of size two drawn from a population with mean P and variance 
V2. Two estimators for P are proposed: 

2
ˆ 21

1
XX �

 P  

3
2ˆ 21

2
XX �

 P  

Which is the better estimator and in what sense? 
 

10) Suppose that X has the following discrete distribution 
¯
®
  

  
otherwise

x
xXP

0
3,2,13/1

)(   

A random sample of n = 200 is selected from this population. Approximate the probability that 
the sample mean is greater than 2.1 but less than 2.5. 
 
11) The amount of waiting time that a customer spends waiting at a  bank is a random variable 
with mean 8.2 minutes and standard deviation 1.5 minutes. Suppose that a random sample of n 
= 50 customers is observed. Find the probability that the average waiting time for these 
customers is less than 8 minutes. 
 
12) A computer, in adding numbers, round each number to the nearest integer. Suppose that all 
rounding errors are independent and uniformly distributed over (-0.5, 0.5). If 1500 numbers 
are added, what is the probability that the magnitude of the total error exceeds 15? 
 
13) Suppose that X has a normal distribution with mean μ and variance σ2, where μ and σ2 are 

unknown. A sample of size 15 yielded the values 7.8
15

1
¦
 

 
i

iX  and 3.27
15

1

2¦
 

 
i

iX . Obtain a 

95% confidence interval on the variance. 
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� Hypothesis Testing: 

In the last chapter we illustrated how a parameter can be estimated (points or interval estimation) 
from sample data. However, many problems require that we decide whether to accept or reject 
a statement about some parameter. The statement is called a hypothesis, and the decision-making 
procedure is called Hypothesis Testing. 
 
Two types of error are possible in such a decision process: 
 

1- We decide that the null hypothesis H0 is false when it is really correct  

This is called a type I error and its probability is denoted by D�

D is called the significance level or size of the test. 
 

2- We decide that the null hypothesis H0 is correct when it is really false  

This is called a type II error and its probability is denoted by E 
 

- Definition: 

The power of the test (1 – E) is the probability of accepting the alternative hypothesis when the 
alternative hypothesis is true. 
 

� One-Sided and Two-Sided Hypothesis: 

A test of hypothesis such as: 
H0 :  T = T0 

H1 :  T ≠ T0 
 
Is called a two-sided test. 
 
H0 : is known as the null hypothesis. 

H1 : is known as the alternative hypothesis. 
 
Tests such as: 
 
H0 :  T = T0  

H1 :  T > T0 
 
 
H0 :  T = T0  

H1 :  T < T0 
 
Are called one-sided tests. 

 
- D is called the significance level or size of the test. 

- The power of the test plotted against the true parameter value is called the Operating 
Characteristic (OC) curve. 
 
 

Reject H0 
Accept H1 

Accept H0 
T = T0 

Reject H0 
Accept H1 

T ≠ T0 
Rejection Region 

Acceptance  
region 

T ≠ T0 
Rejection Region 

Accept H0 Reject H0 
Accept H1 

T = T0 T > T0 

Reject H0 
Accept H1 

Accept H0 

T > T0 T = T0 

T̂  
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� Hypothesis Testing on the Mean: Variance Known 

- Suppose that we wish to test the hypothesis: 

H0 :  P = P0 
H1 :  P ≠ P0 

Where P0 is a specified constant. We have a random sample X1, X2, ……, Xn from the 
population (assumed normal). P̂  is normal with mean 0P  and variance n2V  when H0 is 
assumed true. 

- We use the test statistic:  
n

ˆ
Z 0

V

P�P
   ; Z is N(0 , 1) when H0 is assumed true. 

- If the level of significance is (D), 
then the probability is (1 – D)  
that the test statistic (Z) falls  
between 

22
 and DD� zz . 

- Reject H0 if 
22

or  DD ��! z  zzz  

Fail to reject H0 if 
22

 DD ��� z  zz  

- In the terms of P̂ , we reject H0 if: nˆ
2

0 V�P!P Dz  or nˆ
2

0 V�P�P Dz  

- Suppose that the null hypothesis is false  
and that the true value of the mean is G�P P 0 ,  
when H1 is true, Z is normal with mean: 

nn
)H/Z(E

n
)H/ˆ(E

)H/Z(E

00
1

01
1

V
G

 
V

P�G�P
 

V

P�P
 

 

and unit variance. ¸̧
¹

·
¨̈
©

§

V
G 1 , nN:Z  

 
The probability of type II error is the probability that (Z) will fall between 

22
 and DD� zz . This 

probability is: 

¸̧
¹

·
¨̈
©

§

V
G

��)�¸̧
¹

·
¨̈
©

§

V
G

�) E DD
n  n 

22
zz  

Now if we want to test H0 :  P = P0 
H1 :  P > P0 

n
ˆ

Z 0

V

P�P
 ,  Z is N(0 , 1) when H0 is assumed true. 

If (D) is the level of significance, then  

H0 is rejected if D!zz  and accepted if D�z  z  

D-
z�D/2  

D/2 
zD/2  

Critical 
region 

z 

N (0 , 1) 

Acceptance 
region 

D/2 

-z�D/2  
E 
zD/2  

f(z / H0) 

Acceptance 
region 

N (0 , 1) 

z 

f(z / H1) 

 

N ( , 1) 

0 z�D  
z 

N (0 , 1) 

A
cc

ep
ta

nc
e 

re
gi

on
 

D 
Critical 
region 



ENGINEERING DECISION CHAPTER VII 

-- 97 

If H1 is true, that is 0   ,   0 !GG�P P , then 

The type II error is the probability that z  falls between Df z and - . 

This probability is: 

¸̧
¹

·
¨̈
©

§

V
G

�) E D
n z  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
EXAMPLE (7-1): 

Aircrew space systems are powered by a solid propellant. The burning rate of this propellant 

is an important product characteristic. Specifications require that the mean burning rate must 

be 50 cm/s. We know that the standard deviation of burning rate is 2 cm/s. The experimenter 

decided to specify a type I error probability of significance level of D = 0.05. He selects a 

random sample of n = 25 and obtains a sample average burning rate of P̂  = 51.3 cm/s. What 

conclusions should be drawn? 
 

SOLUTION: 

Test   H0 : ��P = 50 cm/s     , D = 0.05 

���������+������P ≠ 50 cm/s 

Rejected H0 if 96.1!z  or 96.1 �� z  

For P̂  = 51.3 cm/s and V  = 2 cm/s, then  

25.3
252

503.51
n

ˆ
Z 0  

�
 

V

P�P
  

Since 3.25 > 1.96 we reject H0 and we have strong evidence that the mean burning rate 

exceeds 50 cm/s. 
 

 

z�D  

N (0 , 1) 

z 

 

N ( , 1) 

0 
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SUMMARY FOR HYPOTHESIS TESTING PROCEDURE 
NULL HYPOTHESIS TEST STATISTIC ALTERNATIVE 

HYPOTHESIS 
CRITERIA FOR REJECTION 

H0 :  P = P0 
2V  known 

n
ˆ

Z 0

V

P�P
  

N(0 , 1) 

01 :H PzP  

01 :H P!P  

01 :H P�P  

2
Z D!z  

D!z Z  

D� z -Z  

H0 :  P = P0 
2V  unknown 

n/ˆ
ˆ

  T 0

V

P�P
  

student t-distribution 
with (n – 1) degrees of freedom 

01 :H PzP  

01 :H P!P  

01 :H P�P  

1-n , 2t t D!  

1-n , 2tt D!  

1-n , 2tt D��  

H0 :  2
0

2 V V  
P  unknown 2

0

2
2 ˆ )1n(

V
V�

 F  

Chi-square distributions 
with (n – 1) degrees of freedom 

2
0

2
1 :H VzV  

2
0

2
1 :H V!V  

2
0

2
1 :H V�V  

2
1-n , 21

22
1-n , 2

2  or  D�D F�FF!F  

2
1 -n  , 

2
DF!F  

2
1-n , -1

2  DF�F  

H0 :  2
0

2 V V  
P  known 2

0

2
2 ˆ n

V
V

 F  

Chi-square distributions 
with (n) degrees of freedom 

2
0

2
1 :H VzV  

2
0

2
1 :H V!V  

2
0

2
1 :H V�V  

2
n , 21

22
n , 2

2  or  D�D F�FF!F  

2
n , 

2
DF!F  

2
n , -1

2  DF�F  

H0 :  p = p0 
 

n
)p1(p

pP̂
)p1(np

npX
  Z

00

0

00

0

�

�
 

�

�
  

N(0 , 1) 

01 pp:H z  

01 pp:H !  

01 pp:H �  

2
Z D!z  

D!z Z  

D� z -Z  
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� Decision Making for Two Samples: 

- The previous chapter presented hypothesis tests and confidence intervals for a single population 
parameter (the mean P , the variance 2V , or the proportion p). Here we extend those results to 
the case of two independent populations. 
 

- Population (1) has mean 1P  and variance 2
1V , population (2) has mean 2P  and variance 2

2V . 
Inferences will be based on two random samples of sizes (n1) and (n2). 
That is X11, X12, ……, X1n1  is a random sample of (n1) observations from population 1, and X21, 
X22, ……, X2n2  is a random sample of (n2) observations from population 2. 
 
 
 
 
 
 
 
 
 
 
 
 

� Inferences for a Difference in Means: Variances Known 

- Assumptions: 

1- X11, X12, ……, X1n is a random sample from population 1. 

2- X21, X22, ……, X2n is a random sample from population 2. 

3- The two populations presented by X1 and X2 are independent. 

4- Both populations are normal, or if they are not normal, the conditions for the central limit 
theorem apply. 
 

- The test statistic 

2

2
2

1

2
1

2121

nn

)(ˆˆ
  Z

V
�

V

P�P�P�P
  has an N(0 , 1) distribution. 

�  Testing hypothesis on (P1 – P2): Variances Known 

Null hypothesis:    H0 :   P1 – P2 = '0 

Test statistic:  

2

2
2

1

2
1

021

nn

)(ˆˆ
  Z

V
�

V

'�P�P
  

Alternative Hypothesis Criteria for Rejection 

0211 :H 'zP�P  

0211 :H '!P�P  

0211 :H '�P�P  

22
Zor    Z DD ��! zz  

D!z Z  

D� z -Z  

P� 

 
 

 

P� 



ENGINEERING DECISION CHAPTER VII 

-- 100 

- Definition: Confidence Interval on the Difference in Two Means: Variances Known. 

If 1P̂  and 2P̂  are the means of independent random samples of sizes (n1) and (n2) with known 
variances 2

1V  and 2
2V , then a 100%(1 – D) confidence interval for (P1 – P2) is: 

°¿

°
¾
½

°̄

°
®
 V

�
V

�P�PdP�Pd
V

�
V

�P�P DD
2

2
2

1

2
1

2
2121

2

2
2

1

2
1

2
21 nn

ˆˆ
nn

ˆˆ zz  

where 
2

Dz is the upper %2D  point of standard normal distribution. 

 
� Inferences for a Difference in Means of Two Normal Distributions: Variances Unknown 

- Hypothesis tests for the difference in means: 

CASE I: 22
2

2
1 σσσ    

- The pooled estimator of 2σ denoted by 2
ps  is defined as: 

2nn
s )1n(s )1n(

s
21

2
22

2
112

p ��
���

  

- The statistic 

21
P

2121

n
1

n
1s

)(ˆˆ
  T

�

P�P�P�P
  has a t-distribution with (n1 + n2 – 2) degrees of freedom 

when H0 is true. 
 
- The Two-Sample Pooled t-test: 

Null hypothesis:  H0 :   P1 – P2 = '0 

Test Statistic:    

21
P

021

n
1

n
1s

)(ˆˆ
  T

�

'�P�P
  

Alternative Hypotheses Criteria for Rejection 
0211 :H 'zP�P  

0211 :H '!P�P  

0211 :H '�P�P  

2nn , 22nn , 2 2121
ttor      tt ��D��D �!  

2nn , , 21
tt ��D!  

2nn , , 21
tt ��D��  

 
- Definition:  Confidence Interval on the Difference in Means of Two Normal 

Distributions: Variances Unknown and Equal. 
 

If 1P̂ , 2P̂ , 2
1S , and 2

2S  are the means and variances of two random samples of sizes (n1) and (n2) 
respectively from two independent normal populations with unknown but equal variances, then 
a 100%(1 – D) confidence interval on the difference in means (P1 – P2) is: 
 

¿
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¯
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��P�PdP�Pd��P�P
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P2nn , 22121
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CASE II: 2
2

2
1 σσ z  

If   H0 :   P1 – P2 = '0 is true, then the test Statistic 

2

2
2

1

2
1

021*

n
s

n
s

)(ˆˆ
  T

�

'�P�P
  

Is distributed approximately as t with degrees of freedom given by: 

� � � �
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   ν   if H0 is true. 

 
- Definition:  Confidence Interval on the Difference in Means of Two Normal 

Distributions: Variances Unknown and Unequal. 
 

If 1P̂ , 2P̂ , 2
1S , and 2

2S  are the means and variances of two random samples of sizes (n1) and (n2) 
respectively from two independent normal populations with unknown and unequal variances, 
then an approximate 100%(1 – D) confidence interval on the difference in means (P1 – P2) is: 
 

°¿

°
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½

°̄
°
®


�Q��d�d�Q��
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2
2

1

2
1

2α2121
2
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n
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n
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� Inferences on the variances of two normal populations: 

Next, we introduce tests and confidence intervals for two population variances. Both populations 
are assumed normal. 
 

- Definition: 

Let X11, X12, ……, X1n1 be a random sample from a normal population with mean 1P  and 
variance 2

1V , and let X21, X22, ……, X2n2  be a random sample from a second normal population 
with mean 2

2V  and variance 2
2V . Assume that both normal populations are independent. Let 2

1S  
and 2

2S  be the sample variances, then the ratio: 

2
2

2
2

2
1

2
1

/S
/S

F
V
V

  

has an F distribution with (n1 – 1) numerator degrees of freedom and (n2 – 1) denominator 
degrees of freedom. 
 

- Hypothesis testing procedure: 

A hypothesis testing procedure for the equality of two variances is based on the following: 
Null hypothesis:   H0 :   2

1V = 2
2V  

Test Statistic:      2
2

2
1

0 S
S

F   

Alternative Hypotheses Rejection Criterion  
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2
2

2
11 :H VzV  

2
2

2
11 :H V!V  

2
2

2
11 :H V�V  

1n,1n , 2101n,1n , 20 2121
ffor      ff ��D���D �!  

1n,1n , 0 21
ff ��D!  

1n,1n , 10 21
ff ��D��  

 

- Definition: Confidence Interval on the Ratio of Variances of Two Normal Distributions. 

If 2
1S  and 2

2S  are the sample variances of random samples of sizes (n1) and (n2) respectively 
from two independent normal populations with unknown variances 2

1V  and 2
2V , then a 100%(1 

– D) confidence interval on the ratio 2
2

2
1

V
V

 is: 

1n,1n , 22
2

2
1

2
2

2
1

1n,1n , 212
2

2
1

2121
f

S
S

f
S
S

��D��D� d
V
V

d  

where 1n,1n , 211n,1n , 2 2121
f and f ��D���D  

are the upper and lower D/2% points 
of the F distribution with  (n2 – 1) 
numerator degrees of freedom and  
(n1 – 1) denominator degrees of 
freedom respectively. 

- Remark:   
QD

QD�  
,u , 2

,u , 21 f
1f  

 
� Inferences on Two Population Proportions: 

Now we consider the case where there are two binomial parameters of interest p1 and p2 and we 
wish to draw inferences about these proportions. 
 

- Large Sample Test for H0: p1 = p2 

Suppose that the two independent random samples of sizes (n1) and (n2) are taken from two 
populations, and let X1 and X2 represent the number of observations that belong to the class of 
interest in the samples. Furthermore, suppose that the normal approximation is applied to each 
population so that the estimators of the population proportions: 

1

1
1 n

X
P̂   and 

2

2
2 n

X
P̂   have approximate normal distributions. 

- Hypothesis testing procedure: 

Null hypothesis:   H0 :   p1 = p2 

Test Statistic:      

¸̧
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·
¨̈
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§
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1 – D 
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Alternative Hypotheses Rejection Criterion  

211 pp:H z  

211 pp:H !  

211 pp:H �  

2
α0

2
α0 zor Z zZ ��!  

D! zZ0  

D�� zZ0  

 

- Confidence Interval for p1 – p2: 

The confidence interval for p1 – p2 can be found from the statistic: 

2

22

1

11

2121

n
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which is a standard normal r.v. 

The 100%(1 – D) confidence interval on p1 – p2 is: 
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